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SUMMARY

Multi-region sequencing is used to detect intratumor
genetic heterogeneity (ITGH) in tumors. To assess
whether genuine ITGH can be distinguished from
sequencing artifacts, we performed whole-exome
sequencing (WES) on three anatomically distinct re-
gions of the same tumor with technical replicates to
estimate technical noise. Somatic variants were
detected with three different WES pipelines and
subsequently validated by high-depth amplicon
sequencing. The cancer-only pipelinewas unreliable,
with about 69% of the identified somatic variants be-
ing false positive. Even with matched normal DNA for
which 82% of the somatic variants were detected
reliably, only 36%–78% were found consistently in
technical replicate pairs. Overall, 34%–80% of the
discordant somatic variants, which could be inter-
preted as ITGH, were found to constitute technical
noise. Excluding mutations affecting low-mappabil-
ity regions or occurring in certainmutational contexts
was found to reduce artifacts, yet detection of sub-
clonal mutations by WES in the absence of orthog-
onal validation remains unreliable.

INTRODUCTION

Intratumor genetic heterogeneity (ITGH), typically defined as the

coexistence of genetically distinct but clonally related cancer

cells within the same patient (Yap et al., 2012), canmanifest itself

spatially within the same lesion or as genetic differences be-

tween different metastatic sites and the primary tumor from the

same patient (Ding et al., 2010; Gerlinger et al., 2012; Marusyk
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et al., 2012; Newburger et al., 2013; Yates et al., 2015). The broad

availability of massively parallel sequencing has accelerated

research into ITGH, and numerous studies have applied whole-

exome or targeted-exome sequencing to multiple biopsies

from the same cancer, to different metastatic lesions from the

same patient, and more recently to multiple single cells from

the same cancer (Gerlinger et al., 2012; Hou et al., 2012; Marte-

lotto et al., 2017; Navin et al., 2011; Newburger et al., 2013; Nik-

Zainal et al., 2012; Wang et al., 2014; Xu et al., 2012). ITGH

represents a snapshot of the tumor’s evolutionary path and is

a clinically important phenomenonwith implications in prognosis

and treatment response (Fisher et al., 2013; Hiley et al., 2014;

Jiang et al., 2014;Marusyk et al., 2012;Morris et al., 2016; Turner

and Reis-Filho, 2012).

The assessment of ITGH, by definition, involves the detection

of subclonal, low-frequency variants that are not uniformly pre-

sent in all cancer cells and is made possible by the availability

of bioinformatics tools to detect low-frequency somatic muta-

tions with high sensitivity (Cibulskis et al., 2013; Koboldt et al.,

2012; Saunders et al., 2012; Wilm et al., 2012). However, the

presence of technical noise in sequencing data is well known

(Li, 2014; Nakamura et al., 2011), and it is unclear whether

genuine ITGH can be reliably distinguished from artifacts gener-

ated during library preparation, sequencing, and data process-

ing (Qi et al., 2015; Smith et al., 2014). Understanding the

signal-to-noise characteristics in these experiments is critical

for the interpretation of ITGH.

Given the implications in prognosis and treatment response,

ITGH is an important consideration in the clinical setting.

Because the cost of WES and complex informed consent re-

quirements, the inclusion of matching normal samples still repre-

sents a limitation in the sequencing of tumor samples in some

large clinical trials (Shi et al., 2017). Whether subclonal mutations

can be robustly identified in the absence of matching normal

samples and whether pooled normal samples from unrelated
thor(s).
commons.org/licenses/by/4.0/).
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Figure 1. Reliability of Somatic SNVs and INDELs Detected by WES and High-Depth Amplicon Sequencing Validation of Variants

(A) Biopsies were obtained from three anatomically distinct regions of each tumor to assess spatial genomic heterogeneity. One of the three DNA samples was

split in two to provide a pair of technical replicates. Somatic variants were detected by three different WES analysis pipelines and subsequently validated by high-

depth amplicon sequencing.

(B) Number of somatic mutations identified by WES in each technical replicate, subclassified according to their validation status by high-depth amplicon

sequencing.

(C and D) Concordance of somatic SNVs (C) and INDELs (D) defined in each pair of technical replicates using the matched-normal WES analysis pipeline (left) or

high-depth amplicon sequencing (right). Discordance between the replicates quantified as the Jaccard distance shown next to each bar and the pathogenicity of

variants were assessed as described in Supplemental Experimental Procedures. Putative WES variants re-sequenced with high-depth amplicon sequencing

were further classified as absent (VAF < 1%), germline (tumor VAF/germline VAF < 5), or low depth (<503).

(E) Validation status of variants (SNVs and INDELs) detected byWES in technical replicate pairs, categorized as concordant (‘‘con’’) or discordant (‘‘dis’’) byWES,

and the distribution of their AmpliSeq validation status is shown within each bar.

See also Figure S1.
individuals would serve as a reasonable control should be

explored as alternative options for the assessment of ITGH in

the clinical setting.

In this study, we aimed to assess the reliability of somatic

variant detection from whole-exome sequencing (WES) in the

context of ITGH (Figures 1A and S1A). To address this ques-

tion, we performed WES on DNA from biopsies obtained

from three anatomically distinct regions of six primary breast

cancers (6 3 3 biopsies) and from matched peripheral blood

leukocytes. Additionally, to determine the background noise

levels as a comparator for the assessment of ITGH, aliquots

of the same DNA samples from six distinct biopsies were

sequenced twice to generate technical replicates. We exam-

ined the reliability of somatic variant detection using three
different analysis approaches, namely, using cancer WES

data only, cancer data and WES from pooled unrelated (i.e.,

non-matched) normal samples, and WES data from cancer

and matching normal tissue (i.e., blood). Each approach used

different sets of detection algorithms and filtering steps in an

attempt to control for the specific biases associated with

each approach. To generate the ‘‘gold standard’’ benchmark

dataset, we re-sequenced all somatic variants identified by

any of the three somatic variant detection pipelines in at least

one sample using high-depth targeted amplicon sequencing.

Given the higher depth obtained by amplicon sequencing, we

assessed true ITGH and estimated the frequency of false pos-

itives by the different detection pipelines. Finally, we evaluated

the sequence patterns and context in which the artifactual
Cell Reports 25, 1446–1457, November 6, 2018 1447



Table 1. Tumor Characteristics and Estimated Tumor Cellularity

and Ploidy from WES Data Using FACETS

Sample Subtype Stage Grade

Estimated

Purity (%)

Estimated

Ploidy

Case 1 biorep

A/techrep 1

ER+/PR+/

HER2+

IIA 2 53.8 1.92

Case 1 biorep B 46.3 2.00

Case 1 biorep C 26.0 1.92

Case 1 techrep 2 54.0 1.92

Case 2 biorep A ER�/PR�/

HER2�
IIB 3 40.0 2.14

Case 2 biorep

B/techrep 1

32.3 1.79

Case 2 biorep C NE 1.72

Case 2 techrep 2 38.5 2.03

Case 3 biorep A ER+/PR+/

HER2+

IIB 2 56.4 1.89

Case 3 biorep B 72.8 1.93

Case 3 biorep

C/techrep 1

64.9 1.90

Case 3 techrep 2 66.7 1.93

Case 4 biorep A ER+/PR�/

HER2�
IIB 2 60.4 1.98

Case 4 biorep

B/techrep 1

61.7 1.95

Case 4 biorep C 57.6 1.99

Case 4 techrep 2 57.6 1.94

Case 5 biorep A ER�/PR�/

HER2�
IIA 3 78.7 2.60

Case 5 biorep

B/techrep 1

76.7 2.62

Case 5 biorep C 80.8 2.82

Case 5 techrep 2 76.2 2.61

Case 6 biorep

A/techrep 1

ER+/PR+/

HER2+

IIA 2 47.8 1.99

Case 6 biorep B 49.4 2.05

Case 6 biorep C 52.9 2.18

Case 6 techrep 2 49.0 1.96

biorep, biological replicate; NE, could not be estimated; techrep, tech-

nical replicate; WES, whole-exome sequencing.
mutations occurred to improve the specificity of WES for char-

acterizing genuine ITGH.

RESULTS

Limited Reliability of SomaticMutations Defined byWES
We performed WES on DNA extracted from three distinct re-

gions of the primary tumor and the matching normal blood cells

from six breast cancer patients, including four with estrogen re-

ceptor-positive and two with triple-negative cancers (Table 1).

The biopsies were obtained from three anatomically distinct re-

gions of each tumor at least 1 cm apart (i.e., intratumor repli-

cates; Figure 1A) in the context of a prospective institutional

review board-approved study to assess intratumor molecular
1448 Cell Reports 25, 1446–1457, November 6, 2018
heterogeneity (von Wahlde et al., 2017). All tumor samples had

at least 50% tumor cellularity on the basis of pathologic assess-

ment. For the technical replicates, a second library was gener-

ated from one of the tumor DNA samples randomly selected

from each cancer and sequenced byWES using the same proto-

col at the same facility on a different day. The mean target depth

was 1603 (range 703 to 2203; Table S1), consistent with rec-

ommendations for WES (Clark et al., 2011; Sims et al., 2014).

Following WES, somatic single-nucleotide variants (SNVs) and

small insertion-deletions (INDELs) were identified by three

different somatic variant calling pipelines that used (1) the tumor

DNA alone (i.e., tumor only, a common approach in clinical prac-

tice), (2) tumor DNA and pooled unrelated normal DNA (i.e.,

cohort normal), or (3) tumor DNA and patient-matched normal

DNA (i.e., matched normal; Figure S1A; Supplemental Experi-

mental Procedures). Targeted amplicon sequencing using an

orthogonal library generation and an independent sequencing

method (AmpliSeq) was performed for all putative somatic vari-

ants identified by any of the WES variant calling pipelines on

all tumor and matching normal DNA to a median depth of

6053 to define the ‘‘gold standard’’ mutation status for each

identified somatic variant (Table S1; Supplemental Experimental

Procedures).

To quantify the technical reliability of somatic mutation detec-

tion by the matched-normal WES pipeline, the approach that is

most frequently used in the research setting to assess ITGH,

we compared the somatic mutations identified in the six pairs

of technical replicates. In this experiment, tumor samples and

normal samples were sequenced to a median coverage of

1843 (range 92–211) and 903 (range 80–138), respectively

(Table S1). We identified medians of 74 (range 40–125) and 3

(range 0–13) somatic SNVs and INDELs, respectively, in each

of the 12 DNA samples. Considering the high-depth amplicon

sequencing results as the ‘‘gold standard,’’ we categorized

candidate mutations detected in WES as true somatic, absent,

germline-like (incorporating genuine germline variants and arti-

factual variant alleles caused by alignment biases and/or the

sequencing technology) (Kim and Speed, 2013), or low-depth

(i.e., technical failure with amplicon sequencing; Table S2; Sup-

plemental Experimental Procedures). Excluding the low-depth

(technical failure) variants, a median 82% (range 56%–90% per

sample) of the somatic SNVs were confirmed as somatic, a me-

dian 5% (range 0%–16%) as germline-like, and the remaining

were absent by AmpliSeq (Figure 1B; Table S3).

Given that both technical replicates used the same input DNA,

we anticipated detecting nearly identical somatic mutations in

each pair of replicates. However, only a subset of the somatic

SNVs and INDELs were consistently identified in technical repli-

cate pairs, with median Jaccard distances (ranging from 0,

perfect agreement, to 1, absence of overlapping variants; Sup-

plemental Experimental Procedures) of 0.39 (range 0.24–0.64)

for SNVs (Figure 1C) and 0.17 (range 0–0.50) for INDELs (Fig-

ure 1D). Interestingly, the technical replicate pairs with the

highest Jaccard distances were those with the lowest tumor

cell content as inferred by FACETS (Shen and Seshan, 2016)

(Table 1). There were also a small number of potentially patho-

genic variants among the discordant variants in technical repli-

cate pairs (range 0–3; Figure 1C, red bars) that could have



been misinterpreted as ITGH. We obtained fewer somatic muta-

tions but similarly modest reproducibility with the cohort-normal

WES pipeline and far fewer somatic mutations but improved

reproducibility using the tumor-only pipeline (see explanation

below; Figures S1B and S1C). Comparing only the mutations

that were confirmed to be somatic by AmpliSeq between the

technical replicate pairs, we observed almost perfect agreement

for SNVs (Figure 1C) and for INDELs (Figure 1D) (maximum

Jaccard distance of 0.02 and 0, respectively).

When we examined the somatic mutations found to be

concordant or discordant between pairs of technical replicates

on the basis of WES, a median of 95% (range 73%–97%) of

the concordant variants were confirmed to be genuinely somatic

in at least one of the two technical replicates, compared with a

median 33% (range 14%–48%) of the discordant variants (Fig-

ure 1E). Of the discordant WES variants, a median of 44% (range

36%–71%) were found to be absent by AmpliSeq (i.e., false pos-

itive in one of the two technical replicates), and a median of 7%

(range 3%–22%) were germline(-like) variants (i.e., missed by

WES in the matching normal). The validation status of 3% (range

1%–8%) of the mutations could not be ascertained, because of

technical failure of low AmpliSeq coverage in the validation

experiments.

Taken together, these results suggest that WES performed at

typical sequencing depth may be inadequate for detecting

ITGH, particularly when the tumor cell content is less than

50%, as only 62% (range 36%–76%) of the somatic mutations

were detected consistently in the technical replicate pairs

by WES, with the remaining mutations falsely appearing as

discordant.

WES Overestimates True ITGH
Next, we quantified ITGH by comparing somatic variant calls be-

tween the geographically distinct biopsies from the same can-

cer. In this analysis, we also examined how the three different

WES analytic approaches differed in the quantification of ITGH

(Figure S1A; Supplemental Experimental Procedures). Tumor

cellularity of all samples was inferred from WES using FACETS

(Shen and Seshan, 2016) (Table 1). We usedmixed-effects linear

modeling to estimate an average cellularity of 54.7% with intra-

tumor and technical SDs of 7.0% and 2.2%, respectively (Sup-

plemental Experimental Procedures). The matched-normal

pipeline detected a median of 150 unique somatic mutations

(range 68–186) in each tumor. Compared with the matched-

normal pipeline, the cohort-normal pipeline detected a median

of 101 mutations (range 48–131; p > 0.05, Wilcoxon test), and

the tumor-only pipeline identified a median of 62 mutations

(range 36–97; p = 0.01, Wilcoxon test; Figures 2A and 2B;

Table S4).

To assess the reliability of the different WES pipelines in de-

tecting ITGH, we compared the WES candidate mutations with

the ‘‘gold-standard’’ AmpliSeq-validated somatic variants from

the same sample. A median of 62% (range 50%–98%) of the

candidate somatic variants detected by the tumor-only pipeline

were germline variants, and only 28% (range 2%–45%) were

validated as true somatic mutations, highlighting the challenges

posed by this commonly used approach in clinical practice. By

contrast, a median of 79% (range 59%–91%) and 84% (range
61%–92%) of the variants defined by the cohort-normal and

the matched-normal pipelines, respectively, were true somatic

mutations (Figures 2A, S1D, and S1E). The tumor-only pipeline

had the lowest sensitivity (median 18%, range 0%–29%) and

precision (median 28%, range 0%–46%) for identifying true so-

matic variants. The matched-normal pipeline had the highest

sensitivity (median 87%, range 47%–94%) and precision (me-

dian 86%, range 62%–94%; Figure 2C), whereas the cohort-

normal pipeline had similar precision (median 83%, range

61%–91%) but significantly lower sensitivity (median 48%, range

26%–64%; p < 0.001,Wilcoxon test). Using thematched-normal

pipeline, tumor cellularity was positively correlated with sensi-

tivity (Pearson r = 0.7, p = 0.001) and numerically, though not

statistically significantly, correlated with precision (Figure S2A).

We did not observe the same correlation with the other two

pipelines.

Next, we estimated the apparent ITGH on the basis of muta-

tions detected by the three WES calling pipelines using the

Jaccard distance as the metric of ITGH. Mutations identified

as somatic in one or two of the three biopsies and as germ-

line-like or absent in the remaining biopsies contributed to

ITGH. The tumor-only pipeline had a median Jaccard distance

of 0.34 (range 0.19–0.96) compared with the cohort-normal

pipeline of 0.70 (range 0.53–0.91) and matched-normal pipeline

of 0.60 (range 0.44–0.89) (Figure 2B). The apparently lower

ITGH defined by the tumor-only pipeline (p = 0.03 for tumor-

only versus cohort-normal, p > 0.05 versus matched-normal,

paired Wilcoxon tests) was due to the large number of germline

variants misidentified as somatic mutations by the tumor-only

pipeline (Figure 2A). When ITGH was estimated on the basis

of the AmpliSeq-validated somatic mutations only, the median

Jaccard distance was 0.40 (range 0.19–0.61; Figure 2B),

which in the context of this study was considered a true esti-

mation of ITGH. We also observed that the proportion of private

mutations in a given biopsy was positively correlated with its

purity relative to the mean purity of all biopsies for the patient

(Pearson r = 0.531, p = 0.023; Figure S2B), suggesting that

ITGH may be overestimated in cases with large variability in tu-

mor purity between biopsies. Compared with the apparent

ITGH defined by the candidate mutations in the cohort-normal

and matched-normal WES pipelines, the true ITGH was signif-

icantly smaller (p = 0.015 versus cohort-normal and p = 0.015

versus matched-normal, paired Wilcoxon tests). We noted

that 5.8% of the heterogeneous variants, also called branch

mutations, that were not present in all biopsies of a given

case were predicted to be pathogenic, but there was no

statistically significant enrichment in pathogenic mutations

compared to non-pathogenic variants among the heteroge-

neous somatic variants (Figure 2B). Heterogeneous variants

were detected in a small number of cancer genes (21 of 306

[6.9%]), and five of these variants (1.6%) were predicted

pathogenic.

Taken together, these results suggest that the tumor-only

WES pipeline misidentifies a substantial proportion of germline

variants as somatic mutations. Even when using the matched-

normal DNA for mutation detection, the extent of ITGH defined

solely on the basis of WES performed at typical sequencing

depth is overestimated, potentially affecting actionable cancer
Cell Reports 25, 1446–1457, November 6, 2018 1449
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Figure 2. ITGH as Assessed by Different WES Analysis Pipelines

(A) Total number of somatic variants (SNVs and INDELs) identified in intratumor biopsies by the three WES analysis pipelines. One of the two technical replicates

was randomly selected for inclusion in this analysis. Validation status by high-depth amplicon sequencing (i.e., somatic, germline, absent [VAF < 1%], low depth

[< 503 coverage]) is shown according to the color key.

(B) Venn diagrams showing the overlap of putative somatic variants detected in intratumor biopsies from each tumor by the threeWES analysis pipelines. The last

row includes only ‘‘true’’ somatic variants validated by high-depth amplicon sequencing. The size of the circles is proportional to the number of somatic variants in

a biopsy, with the numbers representing the total variants and those in parentheses indicating the number of pathogenic variants.

(C) Performance characteristics of the three WES analysis pipelines to identify true somatic variants. Putative somatic variants were considered as ‘‘true’’ if

confirmed by high-depth amplicon sequencing. Precision was calculated as TP/(FP + TP) and sensitivity as TP/STP, where TP and FP are the number of true-

positive and false-positive variants and STP is the total number of true somatic calls made by all three pipelines. Each circle represents one sample as analyzed by

each pipeline, and the size of the circles is proportional to the number of putative somatic variants per biopsy identified by each analysis pipeline.

See also Figure S2.
genes. For example, a deleterious stop-gain branch mutation in

CDC27 (p.Cys71*) was identified as heterogeneous (in one of the

three biopsies) by thematched-normalWES pipeline but was not

validated by AmpliSeq. False-positive heterogeneous variants

were mostly not actionable, however.
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Characteristics of Artifactual WES Somatic Mutations
To identify the characteristics of the putative mutations identified

by WES that were subsequently found not to be truly somatic

variants, we examined the alternative coverage (i.e., the number

of reads supporting the alternate allele), the variant allele
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Figure 3. Coverage Characteristics of True Somatic Variants and False-Positive Mutations in the WES Data

(A and B) Alternative allele coverage (i.e., number of read supporting the alternative allele) (A) and total coverage (B) are plotted against variant allele fraction (VAF;

all log10 scale) for the three WES analysis pipelines (rows). The different subsets of WES putative somatic variants according to validation status by high-depth

amplicon sequencing are shown as columns: validated somatic mutations, validated homogeneous somatic mutations (i.e., present in all three biopsies of the

same tumor), validated heterogeneous somatic mutations (i.e., present in one or two biopsies from the same tumor), and putative somatic mutations identified by

theWES pipelines but failed validation by high-depth amplicon sequencing (i.e., putative somaticmutations that were validated to be germline, absent [VAF < 1%]

or low coverage [< 50x]).

(C and D) For the matched-normal WES pipeline, (C) total coverage in the tumor (bottom) is plotted against the coverage in the matched normal sample, and (D)

WES alternative allele coverage is plotted against VAF and of somaticmutations identified in all the specimens. The validation status categories are the same as in

(A) and (B). Density kernel plots of the marginal distributions are included above and to the right of the scatterplots for each of the four categories of mutations.

See also Figure S3.
frequency (VAF), and the total depth of coverage of the candi-

date somatic mutations identified by the three WES pipelines

from the intratumor biopsies. The tumor-only pipeline reported

a median of 2 variants (range 0–5) with VAF < 10% because of

reduced sensitivity of the single-sample mutation detection

algorithm at low VAF and the strict filtering imposed to remove

potential germline variants (Figures 3A and 3B). Despite aggres-

sive filtering, most of the putative somatic variants from the

tumor-only analysis were germline variants with VAF � 50%,

indicating the presence of a large number of private mutations

that have not been cataloged in publicly available databases

(Figures 2A, 3A, and 3B). The cohort-normal analysis correctly

identified somatic variants with low VAF, including many that

were heterogeneous between the biopsies, but missed somatic

variants with VAF > 45% because of filtering imposed to remove
likely germline variants that may not be present in the pooled

normal DNA used as the reference (Figures 2C, 3A, and 3B).

The validated somaticmutations defined by thematched-normal

pipeline covered the widest range of VAFs. The putative somatic

mutations identified by the matched-normal pipeline that were

found to be absent by AmpliSeq were mostly in the low-VAF

range (median 7.3%, range 0.6%–44%; Figures 2A, 3A, and 3B).

Given that the majority of the ITGH studies carried out to date

(Ding et al., 2010; Gerlinger et al., 2012; Nik-Zainal et al., 2012)

used matched tumor-normal samples and analysis pipelines

similar to our matched-normal pipeline and that mainly low-

VAF mutations contributed to ITGH (Figures 3A and 3B), we

compared the true- and false-positive somatic mutations (i.e.,

the validated and the unvalidated putative somatic variants)

and the validated homogeneous (i.e., present in all biopsies
Cell Reports 25, 1446–1457, November 6, 2018 1451



from a case) and heterogeneous (i.e., absent in at least one

biopsy from a case) somatic mutations derived from the distinct

biopsies using thematched-normal WES pipeline. We found that

the total depth for the true positive (median 124, range 9–1,028;

Figure 3C, green) was significantly higher than for the false-pos-

itive mutations (median 78, range 12–926; p < 0.001, Wilcoxon

test; Figures 3C and S3A, red). Furthermore, the false positives,

compared with truemutations, had significantly lower alternative

coverage (median 7, range 1–126 versus median 22, range

4–231; p < 0.001, Wilcoxon test) and VAF (median 11%, range

0.6%–64% versus median 23%, range 3%–93%; p < 0.001, Wil-

coxon test; Figures 3D and S3B). There were also significant dif-

ferences in the VAF distribution of the validated homogeneous

and heterogeneous mutations (median 25%, range 1%–93%

versus median 6%, range 1%–57%; p < 0.001, Wilcoxon test)

and between the validated homogeneous mutations and the

false positives (median 25%, range 1%–93% versus median

12%, range 2%–64%; p < 0.001, Wilcoxon test; Figures 3D

and S3B). Crucially, the validated mutations implicated in true

ITGH had significantly lower VAF than the false positives

(p < 0.001, Wilcoxon test; Figures 3D and S3B–S3E), which indi-

cates that true ITGHmutations may display similarly low or lower

VAFs compared with the false-positive and false-negative muta-

tions. These results suggest that filtering somatic variants with

low VAF or low alternative coverage may improve the precision

of the WES pipeline but would also eliminate many true somatic

variants that contribute to ITGH. Importantly, false-positive mu-

tations had significantly lower total depth in the matched normal

DNA (median 35, range 6–492) compared with true-positive mu-

tations (median 68, range 9–514; p < 0.001, Wilcoxon test) and

validated heterogeneous mutations (median 72, range 12–343;

p < 0.001, Wilcoxon test; Figure 3C). Many putative somatic mu-

tations (47%) with total depth in the normal DNA of 10 or less

were confirmed as germline-like by AmpliSeq, emphasizing the

importance of having adequate sequencing depth in the normal

samples.

Separating True ITGH from WES Artifacts
Because subclonal mutations are expected to be the predom-

inant contributors to ITGH, we inferred the clonality of all

mutations identified by WES using ABSOLUTE (Carter et al.,

2012). Subclonal mutations were significantly overrepresented

among the validated heterogeneous variants compared with

the homogeneous somatic variants (83.2% versus 28.9%;

p < 0.001, Fisher’s exact test) but were similarly overrepre-

sented among the artifactual somatic variants (91.5% versus

83.2%; p > 0.05, Fisher’s exact test; Figures 4A and S4A).

Importantly, subclonal mutations were also significantly en-

riched among discordant variants in the WES technical repli-

cates compared with the concordant variants (72.0% versus

24.9%; p < 0.001, Fisher’s exact test; Figures 4A and S4A).

These results suggest that compared with clonal variants, sub-

clonal variants detected by WES are more likely to be errone-

ously attributed to ITGH.

Examination of the genomic locations of mutations revealed

that 41.1% of the artifactual somatic mutations occurred in re-

gions of low mappability (Derrien et al., 2012) compared with

only 6.4% for the validated somatic heterogeneous mutations
1452 Cell Reports 25, 1446–1457, November 6, 2018
(p < 0.001, Fisher’s exact test; Figures 4B and S4B). Further-

more, 30.8% of the discordant variants in the WES technical

replicates occurred in regions of low mappability compared

with 8.4% for the concordant variants (p < 0.001, Fisher’s

exact test; Figures 4B and S4B). These results suggest that

ambiguous mapping of DNA fragments directly contributes

to artifactual somatic variants, even if longer reads (100 bp)

were used (Figure S4C). Compared with the validated heteroge-

neous mutations, artifactual somatic mutations appeared to be

significantly enriched in T > C transitions (p < 0.001, Fisher’s

exact test; Figures 4C and S5A), particularly in the ApTpA and

NpTpG trinucleotide contexts and also in T > G transversions

in the GpTpG context (Figure 4E). By contrast, artifactual so-

matic mutations were significantly depleted in C > G transver-

sions (p < 0.001, Fisher’s exact test; Figures 4C and S5A).

Interestingly, validated somatic heterogeneous mutations were

enriched for C > G substitutions in the TpCpA and TpCpT con-

texts (Figure 4E), the characteristic substitution patterns induced

by the upregulation of APOBEC cytidine deaminases (Nik-Zainal

et al., 2016). However, this enrichment appears to be driven

primarily by the case with the largest variability in tumor purity

(Figures S2B and S5A). Although a substantial proportion of

the artifactual mutations detected were C > T transitions, which

have been associated with both the aging process and with lab-

induced cytosine deamination during DNA library preparation

(Alexandrov et al., 2013; Chen et al., 2014), their proportion

was similar between the artifactual and validated somatic het-

erogeneous variants (34.6% versus 33.9%; p > 0.05, Fisher’s

exact test; Figure 4C), with mutations occurring in the TpCpN

context being significantly underrepresented in the artifactual

variants (Figure 4E). We also did not observe an enrichment of

C > T substitutions at low VAFs among the artifactual somatic

mutations, which would have been indicative of likely FFPE

fixation artifacts (Graw et al., 2015; Do and Dobrovic, 2015)

(Figure S5B). Mutational signature analysis using previously

defined mutational signatures (Alexandrov et al., 2013) identified

signatures 5 and 29 to be overrepresented in the artifactual

somatic mutations (p = 0.028, Wilcoxon test; Figure 4D), with a

median of 16.1% (range 0%–44.4%) of the artifactual mutations

classified as signature 5, driven mainly by the T > C transitions

reported above. Signature 29 is driven by C > A mutations,

predominantly in the ApCpA and GpCpA contexts, that were

significantly overrepresented among the artifactual variants

(Figure 4E).

Finally, we considered whether applying filtering strategies to

exclude mutations that occur in low-mappability regions or

within sequence contexts enriched in artifactual mutations

(C >Amutations in ApCpA andGpCpA contexts, T >Cmutations

in ApTpA and [C/T/G]pTpG contexts, and T > G mutations in

GpTpG context; Figure 4E) can improve the reliability of WES.

Excluding putative somaticmutations in low-mappability regions

improved the precision for mutations detected in the technical

(0.862 versus 0.792 without filtering) and biological replicates

(0.876 versus 0.817 without filtering), while reducing moderately

the sensitivity (0.858 versus 0.913 for technical, 0.773 versus

0.824 for biological). Filtering by mutational context reduced

the sensitivity without appreciably improving precision, as did

filtering by the combination of filters (Figure 5).
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Figure 4. Mappability and Sequence Context of True and Artifactual Somatic Variants
(A and B) Clonality as defined by ABSOLUTE (A) and mappability of somatic variants (B) identified by the matched-normal WES pipeline. In each panel, the first

two sets of bars enumerate the putative somatic variants identified as concordant or discordant in the technical replicates, whereas the bottom four sets of bars

enumerate the somatic variants identified in intratumor biopsies and subsequently validated by high-depth amplicon sequencing. High-mappability regions are

regions with mappability score of 1 (see Supplemental Experimental Procedures).

(C) Comparison of the mutational spectra of validated somatic heterogeneous mutations and artifactual somatic mutations that failed validation in all samples.

The reference base listed (C or T) includes the corresponding reverse complement (G or A).

(D) Distribution of signature weights obtained from the decomposition of mutational signatures from each tumor sample.

(E) Detailed mutational spectra of the trinucleotide context of the pool of mutations detected in all tumor samples. Trinucleotide contexts with significant

enrichment in the validated somatic heterogeneous mutations or in the artifactual somatic mutations are shown with an asterisk above the corresponding bars.

*p < 0.005. Statistical comparisons in (A), (B), (C), and (E) are based on Fisher’s exact tests. Statistical comparisons in (D) are based on Wilcoxon tests. All

statistical tests are two-sided. A p value < 0.05 was considered to indicate statistical significance. See also Figures S4–S6.
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Figure 5. Effect of Filtering of Variants Called by WES Pipelines in

Technical Replicates and Intratumor Biopsies

Excluding somatic mutations in low-mappability regions improves precision

(or positive predictive value) by reducing false-positive calls, while slightly

reducing the sensitivity by increased false-negative calls.
DISCUSSION

WES is an appealing and increasingly affordable technology to

study the extent of ITGH in an unbiased manner (i.e., without a

priori selecting genes of interest for sequencing). The reliability

of WES to detect low-frequency mutations, which often ac-

count for the majority of ITGH within a cancer, and therefore

to resolve clonal architecture (Figure S6) depends on the exper-

imental design, the sequencing depth, tumor purity, and the

bioinformatics approaches used to define the somatic variants.

To examine the influence of these factors on measuring ITGH,

here we generated a dataset incorporating both technical and

biological replicates sequenced to depths commonly found in

clinical or translational research studies, and validated every

putative somatic variant detected with orthogonal high-depth

sequencing methods. All datasets generated in this study

have been made publicly available to provide a resource for

the community to refine analytical tools for ITGH detection

from WES.

We performed six pairs of technical replicates that involved

independent library preparation and sequencing of aliquots

from the same DNA extractions, and experiments were per-

formed on different days. The technical replicates revealed an

unexpectedly high degree of discordance in the putative so-

matic variants identified, even using the current best practice

matched-normal variant calling analysis approach. Subsequent

validation with high-depth amplicon sequencing (6053 median

coverage) of all variants identified by WES demonstrated that

the majority of the false-positive somatic variants (1) displayed

low VAF and were often detected as subclonal in one experi-

ment but not in the other, (2) were in fact germline-like variants

that appeared as heterogeneous somatic mutations (Kim and
1454 Cell Reports 25, 1446–1457, November 6, 2018
Speed, 2013), or (3) map to genomic regions of low mappabil-

ity. The enrichment of subclonal mutations among the discor-

dant mutations in the WES technical replicates is expected,

given the well-known difficulty in identifying somatic mutations

at low VAF. Indeed, comparing the putative mutations that did

not validate to the ‘‘true’’ somatic mutations validated by high-

depth amplicon sequencing demonstrated that mutations with

low VAF and/or low alternative coverage were more difficult

to be reliably identified by WES. On the other hand, our results

revealed a not insignificant proportion of germline-like false-

positive mutation calls. Although some of these germline-like

variants are genuinely germline alleles not detected in the

matched normal samples, a substantial proportion of these

are likely attributed to alignment and sequencing biases (Kim

and Speed, 2013) that manifested as false-positive variants at

low VAF or alternative coverage. Importantly, our results high-

lighted the often overlooked importance of adequate coverage

for the matched-normal sample in the accurate identification of

somatic mutations, given that mutations that failed validation

were, on average, associated with lower coverage in the normal

sample. In terms of mappability of genomic regions, we found

that false-positive mutation calls were enriched in genomic

regions of poor mappability. In fact, we demonstrated that

this may represent a reasonable filter if specificity is of para-

mount importance and some trade-off in sensitivity can be

tolerated. Although our study provides direct evidence in sup-

port of ITGH, the mutations implicated in ITGH showed sub-

stantial overlap with the alterations stemming from intrinsic

technical noise in terms of VAF, alternate allele depth, total

depth in tumor and normal, as well as mappability. Incorpo-

rating unique molecular identifiers into deep sequencing exper-

iments will likely reduce false positives and enhance sensitivity

in detecting subclonal mutations with greater confidence (Salk

et al., 2018). Furthermore, because private mutations are

less likely to be identified in biopsies of relatively low purity,

ITGH should be best assessed in biopsies with uniformly high

cellularity.

Our analysis of the mutational signatures between the vali-

dated mutations implicated in ITGH versus the false-positive

mutations revealed striking differences. The heterogeneous

mutations were enriched in a pattern typically associated with

increased APOBEC activity, and this pattern has been previ-

ously shown to contribute to ITGH in breast and lung cancers

(de Bruin et al., 2014; Ng et al., 2017). On the other hand,

the false-positive mutations were enriched for, in particular,

C > A and T > G mutations at specific sequence contexts.

A recent study of rare polymorphisms determined by high-

depth whole-genome sequencing in 300 individuals of diverse

genetic origins identified four mutational signatures, two of

which were consistent within populations and had a clear asso-

ciation with geographic distribution (Mathieson and Reich,

2017). The origin of the remaining two were uninterpretable,

with one of these latter signatures dominated by T > G muta-

tions in the GpTpG context and the other signature highly

correlated with COSMIC signature 5, which has been found

in all cancer types (Alexandrov et al., 2013) and has been

suggested to display clock-like properties suggestive of an as-

sociation with the aging process (Alexandrov et al., 2015). Our



analysis of the sequence context of false-positive variants iden-

tified both these features as being significantly enriched in arti-

factual putative mutations (Figures 4C–4E), strongly suggesting

that caution should be exercised in the interpretation of the re-

ported mutational signatures.

This study has several limitations. The sample size of 6 breast

cancers with 18 biopsies may be too limited to allow generalizing

our results on ITGH to all breast cancer subtypes or to other can-

cers. Of note, the unique nested experimental design incorpo-

rating within-sample technical replication, processed and

sequenced in the same manner as the intratumor biopsies, pro-

vided an estimate of background discordance against which the

ITGH results could be interpreted. Additionally, the extensive

orthogonal validation by high-depth amplicon sequencing on

an independent sequencing platform with very different chemis-

try from the platform used for WES adds rigor to our study. The

sequencing depth attained in this study is comparable with that

in previous studies using WES (with subsequent high-depth

sequencing for validation) for the genomic characterization of

ITGH (Yates et al., 2015); it is plausible, however, that WES at

higher depth (i.e., >2503) would mitigate in part the false posi-

tives and false negatives, in particular in samples with tumor

cell content < 50%. Finally, the three WES analyses pipelines

used different calling algorithms and filtering steps that reflected

the best practice at the time of the analysis, but future improve-

ments could result in reduced bias.

In summary, our study showed thatWES at 184mean depth of

coverage in the tumor samples overestimates the extent of

ITGH, and the technical noise associated with somatic mutation

detection using WES alone can confound true ITGH. Our results

also suggested that it is not possible to reduce the false-positive

rate through more aggressive minimum depth filtering without

affecting the sensitivity of detecting true somatic mutations in

the 1%–5% VAF range, but excluding mutations that occur in

low-mappability regions of the genome, or in certain mutational

contexts could reduce artifactual somatic mutations and provide

less biased estimates of ITGH. Nevertheless, orthogonal, high-

depth validation experiments are highly desirable in the context

of quantifying ITGH.
EXPERIMENTAL PROCEDURES

Tumor Sample Collection

Breast cancer samples were collected from patients with newly diagnosed

invasive breast cancer with tumor size > 2 cm at the Yale Cancer Center. Tu-

mor tissues were obtained with three punch biopsies at least 1 cm apart from

three different regions of the tumor after pathologic gross examination. Six of

these tumors with high enough cellularity (>50%) and high DNA quality from all

three biopsies and with matched blood DNA were selected for this study.

WES and Analysis

DNA was extracted and library was prepared using standard protocols, and

the exome was captured using the NimbleGen SeqCap EZ Human Exome

Kit version 2.0. Sequencing was performed on the HiSeq 2000 in paired-end

75-cycle mode at the Yale Center for Genome Analysis. We used three

different analytical pipelines for detecting variants. A single-sample ‘‘tumor-

only’’ pipeline, a ‘‘cohort-normal’’ pipeline using an in-house normal reference

obtained from ten unrelated normal blood DNA samples, and a ‘‘matched-

normal’’ pipeline using the matched-normal DNA from each patient as refer-

ence. Further details are provided in Supplemental Experimental Procedures.
Validation of Putative Variants with High-Depth Amplicon

Sequencing

Variants identified byWESwere subjected to validation with high-depth ampli-

con sequencing using custom AmpliSeq panels on the same tumor and

matched normal DNA samples. Amplicon sequencing was performed to ame-

dian depth of 6003. Further details are provided in Supplemental Experimental

Procedures.

Mutational Signature Analysis and Mappability

Mutational signature analyses comparing the validated variants that contribute

to ITHG and the WES false-positive calls were performed for individual tumor

samples and for the pooled mutations over all samples using the R package

deconstructSigs (Rosenthal et al., 2016). Mappability of SNVs was assessed

using the CRG Alignability track (Derrien et al., 2012) in the UCSC Genome

Browser. Additional details are provided in Supplemental Experimental

Procedures.
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Figure S1. (a) Experimental design and analytical pipelines for calling somatic variants, Related to Figure 1.  
DNA from three intra-tumor biopsies plus an additional technical replicate from each of six breast tumors was 
sequenced using whole exome sequencing. Raw DNA reads were processed and aligned to the hg19 or the GRCh37 
human reference genome using BWA. Subsequently, somatic SNVs and INDELs were identified by three independent 
pipelines: 1) tumor-only using only the tumor DNA, 2) cohort-normal using the tumor DNA and a reference germline 
DNA pooled from ten unrelated blood DNA samples, and 3) matched-normal using the tumor DNA and blood DNA 
from the same patients. Each pipeline used different filters to exclude false positive somatic variants as described in 
the Supplemental Experimental Procedures. The identified somatic variants were subsequently validated by high-
depth amplicon sequencing. Further details are provided in Supplemental Experimental Procedures. 
(b-c) Comparison of technical variation in somatic variants identified from the three WES pipelines, Related 
to Figure 1; Figure 2.  Comparison of the number of somatic (b) SNVs and (c) INDELs identified in the technical 
replicate pairs from each tumor using the tumor-only, cohort- normal, and matched-normal WES pipelines. Each bar 
corresponds to a technical replicate. The x-axis of these graphs is the total number of somatic variants identified by 
each pipeline in the pair of technical replicates from each tumor. The number above each bar is the Jaccard distance 
for the set of variants identified in each pair of technical replicates from a given tumor, which is a measure of the 
technical variation of the pipelines. 
(d-e) Intratumor heterogeneity in somatic SNVs and INDELS detected by whole exome sequencing relative to 
deep sequencing, Related to Figure 1; Figure 2.  Comparison of the number of somatic (d) SNVs and (e) INDELs 
identified in the intratumor biopsies from each tumor using the three WES pipelines (left) and their validation status 
according to high-depth amplicon sequencing (right). All putative WES somatic variants in the intratumor biopsies 
were validated by high-depth amplicon sequencing and classified as low depth (<50x), absent (VAF<1%), germline 
(tumor VAF<5x germline VAF), somatic and somatic (low VAF, Table S3). Homogeneous somatic variants were 
those identified in all three intratumor biopsies and heterogeneous were those detected in one or two biopsies. 
Pathogenicity of variants was assessed as described in Supplemental Experimental Procedures. The extent of 
intratumor heterogeneity in the somatic variant calls was quantified as the Jaccard distance for each case and is shown 
next to each bar. 
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Figure S2. (a) Relationship between tumor purity and performance characteristics of the three WES analysis 
pipelines, Related to Figure 2. Precision and sensitivity are defined as in Fig. 2c. Each dot represents a tumor biopsy, 
color coded by the patients. Tumor purity was estimated using FACETS. Correlation was computed as Pearson 
correlation (r). The estimated purity for Case 2 biorep C, for which purity could not be estimated by FACETS, was 
set to 0.2.  
(b) Relationship between tumor purity and intratumor genetic heterogeneity, Related to Figure 2. The 
proportion of private mutations (i.e. mutations found only in a given biopsy as a proportion of the union of all validated 
somatic mutations in a given patient, left) and absent/missed mutations (i.e. mutations found in at least one other 
biopsy but not the biopsy of interest) are plotted against estimated purity as defined by FACETS (top) and estimated 
purity relative to the mean purity of all intratumor biopsies of a given patient (bottom). Each dot represents a tumor 
biopsy, color coded by patients. Correlation was computed as Pearson correlation (r). The estimated purity for Case 2 
biorep C, for which purity could not be estimated by FACETS, was set to 0.2.  
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6 

 
Figure S3. (a) Coverage characteristics of true somatic variants and false positive mutations in the WES data 
for individual patients, using the matched-normal WES pipeline, Related to Figure 3. Total coverage in the tumor 
is plotted against the coverage in the matched normal sample of somatic mutations identified in all the specimens of 
a given patient. The validation status categories are the same as in panels Figure 3. Density kernel plots of the marginal 
distributions are included above and to the right of the scatter plots for each of the four categories of mutations.   
(b) Coverage characteristics of true somatic variants and false positive mutations in the WES data for 
individual patients, using the matched-normal WES pipeline, Related to Figure 3. WES alternative allele 
coverage is plotted against VAF of somatic mutations identified in all the specimens of a given patient. The validation 
status categories are the same as in panels Figure 3. Density kernel plots of the marginal distributions are included 
above and to the right of the scatter plots for each of the four categories of mutations.   
(c-e) Characteristics of variants called by WES pipelines in the intratumor biopsies, Related to Figure 3. 
Alternative allele coverage from WES versus variant allele fraction (log10 scale) for variants identified by (c) tumor-
only, (d) cohort-normal or (e) matched-normal WES analysis pipelines in the intratumor biopsies from all cases. These 
calls include all putative somatic variants as defined by each of the pipelines prior to validation by amplicon 
sequencing. Variants are labeled as concordant in the technical replicates, discordant in the technical replicates, 
homogeneous if they were identified in all three biopsies, and heterogeneous if they were identified in one or two of 
the biopsies. 
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Figure S4. (a) Clonality as defined by ABSOLUTE of true and artifactual somatic variants identified by the 
matched-normal WES pipeline for individual patients, Related to Figure 4. In each panel, the first two sets of 
bars enumerate the putative somatic variants identified as concordant or discordant in the technical replicates, whereas 
the bottom four sets of bars enumerate the somatic variants identified in intratumor biopsies and subsequently 
validated by high-depth amplicon sequencing. 
(b) Mappability of true and artifactual somatic variants identified by the matched-normal WES pipeline for 
individual patients, Related to Figure 4. In each panel, the first two sets of bars enumerate the putative somatic 
variants identified as concordant or discordant in the technical replicates, whereas the bottom four sets of bars 
enumerate the somatic variants identified in intratumor biopsies and subsequently validated by high-depth amplicon 
sequencing. High mappability regions are regions with mappability score of 1.  
(c) Mappability of somatic variants identified by the matched-normal WES pipeline, comparing the effects of 
alignment algorithms and read length, using 10 breast cancer cases from TCGA, Related to Figure 4. 
Comparison of mappability of somatic variants identified (left) between paired-end 75bp reads aligned with BWA aln 
and BWA mem and (right) between paired-end 75bp reads and paired-end 100bp reads aligned with BWA mem. 
Comparisons were performed using WES data from 10 tumor-normal pairs from the TCGA breast cancer cohort, 
originally sequenced using 100bp paired-end sequencing. To obtain 75bp reads, reads were trimmed to 75bp prior to 
alignment. For the 100bp reads, reads were aligned as is, then downsampled to 75% to match the overall sequencing 
depth of the trimmed 75bp reads. Somatic mutations were called using the matched-normal WES pipeline. Statistical 
comparisons were performed using Fisher exact tests. 
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Figure S5. (a) Mutational spectra of true and artifactual somatic variants identified by the matched-normal 
WES pipeline for individual patients, Related to Figure 4. Comparison of the mutational spectra of validated 
somatic heterogenous mutations and artifactual somatic mutations that failed validation in all samples for individual 
patients. The reference base listed (C or T) includes the corresponding reverse complement (G or A). 
(b) Mutational spectra of true and artifactual somatic variants identified by the matched-normal WES pipeline 
stratified by VAF, Related to Figure 4. Comparison of the mutational spectra of validated somatic, validated somatic 
homogeneous, validated somatic heterogenous and artifactual somatic mutations that failed validation in all samples. 
Mutations are stratified into VAF>10% and VAF<=10%. The reference base listed (C or T) includes the corresponding 
reverse complement (G or A).  
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Figure S6. Impact of sequencing depth on clonal inference, Related to Figure 4. Boxplot showing clonal inference 
error at various degrees of downsampling sequencing depth. Clonal inference was performed using PyClone and clonal 
inference error was calculated in relation to no downsampling (i.e. 100% in the figure). Clonal inference error was 
calculated as 1-(the number of mutations in the same clusters as no downsampling/the total number of mutations). 
Downsampling was performed at 2.5% increments up to 25%, then at 5% increments, for 20 iterations. All somatic 
mutations were included, regardless if they would have been considered somatic at the reduced depth. Boxplots are 
colored according to the median number of clusters identified in the 20 runs. The minimum median tumor coverage 
refers to the minimum sample-level median depth of the mutations that were somatic in at least one sample in a given 
case (i.e. homogeneous or heterogeneous mutations). The median effective coverage refers to the sample-level median 
depth (as above) multiplied by its estimated tumor purity. Case 2 biorep C, for which purity could not be estimated by 
FACETS, was set to 0.2. The grey dotted line indicates 5% clustering error. Note the overlap between the minimum 
median tumor coverage and the minimum median effective coverage between the 4 cases with stable clonal inference 
(Cases 1, 3, 5, and 6) vs the 2 cases with unstable clonal inference (Cases 2 and 4). 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Tumor sample collection 
 
Breast cancer samples were collected in the context of a prospective study to assess within-tumor genomic 
heterogeneity as previously published (Qi et al., 2015). Patients with newly diagnosed invasive breast cancer with 
tumor size > 2 cm were eligible and were recruited between 9th of January 2012 and 13th of November 2013 at the 
Yale Cancer Center. Tumor tissues were obtained with 2-3 punch biopsies at least 1 cm apart from 3 different regions 
of a tumor after pathologic gross examination had been completed. One biopsy from each location was formalin fixed 
and embedded in paraffin and the remaining biopsies were collected into RNAlater™ and stored at -80°C until DNA 
extraction. Tumor cellularity of each biopsy was assessed on the hematoxylin-and-eosin stained formalin-fixed sister 
biopsy from a given tumor location. We processed DNA for WES only if the biopsy cellularity was ≥50%. This study 
was approved by the Yale Cancer Center human investigations committee and all patients signed informed consent. 
Six tumors from this cohort with high quality DNA from all three biopsies and matched blood DNA were selected in 
this study to represent different breast cancer subtypes and disease spectra (Table 1). 
 
Whole-exome sequencing  
 
DNA from the three biopsies and matched blood from each of the six cases was extracted using the AllPrep Universal 
Kit (Qiagen). 1 µg genomic DNA was sheared to mean fragment length of 140 bp using the Covaris E210 instrument 
and purified by Magnetic AMPure XP beads (Beckman Coulter), and subsequently labeled with 6 base barcode during 
PCR amplification. The NimbleGen SeqCap EZ Human Exome Kit v2.0 (Roche) was used for exome capture 
following manufacturer’s instructions. Intratumor biopsies and technical replicates were assigned uninformative 
identifiers to allow blinded sample processing, and subsequent library preparation and sequencing. Libraries were 
sequenced on Illumina HiSeq 2000 in paired-end 75-cycles mode at the Yale Center for Genome Analysis to a median 
depth of coverage of tumor samples and normal samples of 184 (range 92–211) and 90 (range 80–138), respectively 
(Table S2). 
 
Whole-exome sequencing (WES) analysis pipelines 
 
We used three different analytical pipelines for WES analysis (Fig. S1a). The single-sample “tumor-only” pipeline 
used only the reads derived from the tumor samples to define likely somatic mutations. Sequence reads were aligned 
to the human genome reference sequence version hg19 using the Burrows-Wheeler Aligner (Li and Durbin, 2009) 
(BWA, v0.6.2). PCR duplicates were removed using MarkDuplicates algorithm from Picard (version 1.47, 
http://picard.sourceforge.net/). Local realignment was performed using GATK (v3.1-1) (McKenna et al., 2010) around 
novel and known variant sites followed by GATK base quality recalibration. The overlap between the GATK 
HaplotypeCaller and UnifiedGenotyper algorithms was used to define mutations. Those identified by both callers 
were annotated by ANNOVAR (Yang and Wang, 2015) and non-exonic variants in regions with low mappability 
(Zook et al., 2014) or those outside the exome capture regions were excluded. We further excluded as putative 
germline SNPs those present in 1000Genomes phase1 (2014 Oct. http://www.1000genomes.org/), ESP6500 
(http://evs.gs.washington.edu/EVS/), ExAC01 (http://exac.broadinstitute.org/about) or dbSNP (Build 138; variants 
not flagged as somatic or clinical or as having a minor allele frequency >1%). 

The cohort-normal pipeline used an in-house normal reference obtained from 10 unrelated normal blood 
DNA samples sequenced using the same protocol, each downsampled to 20% and then pooled. Sequence reads were 
aligned to the human reference genome (GRCh37) using the Burrows-Wheeler Aligner (BWA, v0.6.2), followed by 
PCR duplicate removal, local realignment and base quality recalibration as described above. Somatic SNVs and small 
somatic insertions and deletions (INDELs) were defined by MuTect (Cibulskis et al., 2013) (v.1.1.4) and Strelka 
(Saunders et al., 2012) (v.1.0.14), respectively, using the pool of normal reads as reference and annotated by 
ANNOVAR (Yang and Wang, 2015). Recurrent variants with five or more occurrences in COSMIC (v.64) or ClinVar 
(http://www.ncbi.nlm.nih.gov/clinvar/) were whitelisted. Variants outside the target region were excluded. Low 
confidence somatic calls, defined as those with total coverage of fewer than 15 reads in the tumor, were present in at 
least five normal breast samples from the TCGA cohort (Koboldt et al., 2012a), considered likely germline in dbSNP 
(Build 138), or were present in ESP6500, 1000Genomes or ExAC01 were also excluded. We further removed variants 
with tumor variant allele fraction (VAF) < 5 times of that in the pooled normal DNA or with tumor VAF between 
0.45 and 0.55. All remaining variants were manually inspected in the Integrative Genomics Viewer (Robinson et al., 
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2011).  
The “matched-normal” pipeline is considered the best-practice pipeline for identifying somatic events. 

Sequence alignment and processing up to base quality recalibration are the same as for the cohort-normal pipeline. 
Somatic SNVs and INDELs were detected using the sequencing reads derived from matched normal DNA from each 
patient as the reference. Somatic SNVs were defined using MuTect (Cibulskis et al., 2013); small INDELs were 
identified by the intersection of Strelka (Saunders et al., 2012) and VarScan 2 (Koboldt et al., 2012b), and further 
curated by manual inspection. Only variants at positions with total read depth >5 in both the tumor and normal were 
considered. Variants outside the target region or those supported by <5 reads were disregarded (De Mattos-Arruda et 
al., 2014; Martelotto et al., 2015). Variants covered by <20 reads in the germline of which more than one supported 
the mutant allele were disregarded. Variants covered by at least 20 reads in the germline were disregarded if the VAF 
in the tumor was < 5 times than that of the VAF in the germline. Variants present at global minor allele frequency 
>1% in dbSNP (version 138) were disregarded. Variants were annotated using SnpEff (Cingolani et al, 2012). 

The identification of allele-specific copy number alterations (CNAs) and the estimation of tumor cellularity 
were performed using FACETS (Shen and Seshan, 2016), which performs a joint segmentation of the total and allelic 
copy ratio and infers allele-specific copy number states, using the reads derived from tumor samples and their matched 
normal counterparts. Regions of loss of heterozygosity were defined as regions having lesser (minor) copy number of 
zero. 
 
Assessing technical variance of tumor cellularity estimated from WES 
 
Estimates of tumor cellularity from technical replicate biopsies were obtained from FACETS (Shen and Seshan, 2016). 
We used a linear mixed-effects model with fixed and random intercept terms to estimate the mean cellularity and 
intratumor standard deviation. The error term provided an estimate of the within tumor or technical standard deviation 
of estimated cellularity. 
 
Validation of putative somatic variants with high-depth amplicon sequencing (Ampliseq) 
 
Variants identified by WES in both the biological and the technical replicates were subjected to validation with high-
depth amplicon sequencing using custom Ampliseq panels on the same DNA on which WES was performed for all 
tumor and matched normal DNA from all six cases. Validation of putative WES somatic variants identified in the 
intratumor biopsies and technical replicates was performed separately. The validation panel for the intratumor biopsies 
included all putative mutations identified from at least one of the three pipelines (tumor-only, cohort-normal and 
matched-normal) described above. The validation panel for the technical replicates included putative mutations 
identified by the matched-normal pipeline only. Amplicons were successfully designed for 93.0% (1401/1508, range 
91.0%–95.1% per patient) and 93.4% (741/793, range 85.5%–96.9% per patient) of the unique mutations for the 
biological replicates and the technical replicates, respectively. Putative mutations identified from WES for which 
amplicons could not be designed were excluded from further analyses.  

Amplicon sequencing was performed to a median depth of 604x (range 363x–1519x) and 602x (range 460x–
3102x) for the intratumor biopsies and technical replicates respectively (Table S1). Paired-end reads in FASTQ format 
were aligned to the reference human genome GRCh37 using the Torrent Mapping Alignment Program (TMAP, v3.4.1, 
https://github.com/iontorrent/TS/tree/master/Analysis/TMAP). Local realignment was performed using GATK 
(v3.1.1). Putative mutations were interrogated using pileup files generated using samtools mpileup (version 1.2 htslib 
1.2.1)(Li, 2011), using reads with mapping quality of at least 1. For a given sample, mutations sequenced to £ 50x 
total depth were considered “low depth”, and mutations present at VAF £ 1% were considered “absent”. Mutations 
were considered “germline-like” if the VAF in the tumor was < 5 times than that of the VAF in the germline. The 
remaining mutations were considered validated to be “somatic”. These definitions are summarized in Table S2.  

For each pair of technical replicates, variants validated to be somatic in both samples were considered 
“concordant”. Variants classified as low depth in either of the tumor samples were considered “low depth”. Variants 
that were validated to be absent in both samples were considered “absent”. Variants classified as germline-like in both 
tumor samples, or classified as germline-like in one sample and absent in the other sample, were considered “germline-
like. Variants validated to be somatic in one of the two samples and germline or absent in the other sample were 
considered to be “discordant”. Similarly, for the multiple biopsies from the same cancer, variants validated as somatic 
in all three biopsies were considered “homogeneous”. Variants that were validated to be absent from all three biopsies 
were considered as “absent”. Variants classified as low depth in any of the three biopsies were considered as “low 
depth”. Variants that were validated to be germline-like in one of the biopsies and germline-like or absent in the other 
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two were considered “germline-like”. The remaining variants that were validated as somatic in 1 or 2 of the biopsies 
and germline or absent in the other biopsies were considered as “heterogeneous”. These definitions are summarized 
in Table S2. 

 
Assessing technical variance and intra-tumor genetic heterogeneity (ITGH) 
 
Concordance in putative somatic mutations as defined in the technical replicates by each of the three WES pipelines 
prior to validation was assessed using the Jaccard index (Levandowsky et al., 1971). The extent of discordance or 
technical noise involved in calling somatic mutations by a given pipeline was assessed by the Jaccard distance, which 
was defined as 1–Jaccard index, where 0 would indicate identical calls and 1 completely non-overlapping calls within 
each pair. 

ITGH was assessed by comparing the somatic mutations identified in the three intratumor biopsies from the 
same tumor. The extent of ITGH for each case was then estimated by the Jaccard distance considering calls made on 
all three intratumor biopsies (1-homogeneous variants/union of somatic variants). 

 
Identification of pathogenic and potentially pathogenic mutations 
 
All validated non-synonymous mutations were classified as likely pathogenic or passenger mutations using in silico 
methods. For missense SNVs, their potential functional effects were assessed using a combination of MutationTaster 
(Schwarz et al., 2010) and CHASM (breast classifier) (Carter et al., 2009). SNVs defined as non-deleterious/passenger 
by both MutationTaster and CHASM were considered passenger mutations, as this combination was previously shown 
to have the highest negative predictive value (Martelotto et al., 2014). Non-passenger missense SNVs were defined 
as likely pathogenic if they were recurrent hotspot mutations (Chang et al., 2016), or predicted as “driver” or “cancer” 
alterations by CHASM or FATHMM (Shihab et al., 2013), respectively. 

Pathogenicity of somatic in-frame indels was assessed using MutationTaster (Schwarz et al., 2010) and 
Protein Variation Effect Analyzer (PROVEAN) (Choi et al., 2012). In-frame indels predicted to be neutral by either 
were considered as passenger mutations, otherwise in-frame indels were considered likely pathogenic if they were 
associated with haploinsufficient affected genes (Dang et al., 2008), loss of the wild-type allele (based on FACETS 
(Shen and Seshan, 2016), see above), or at least one of the three cancer gene datasets (127 significant mutated genes 
(Kandoth et al., 2013a), the Cancer Gene Census (Futreal et al., 2004a) and Cancer5000-S gene set (Lawrence et al., 
2014a)). Frameshift indels, splice donor/acceptor mutations and truncating mutations were considered potentially 
pathogenic if they were associated with loss of the wild-type allele (based on FACETS (Shen and Seshan, 2016)) or 
haploinsufficient affected genes (Dang et al., 2008), or affected cancer genes (Futreal et al., 2004b; Kandoth et al., 
2013b; Lawrence et al., 2014b). Mutations that did not satisfy the above criteria were considered passenger mutations. 
Lists and characteristics of somatic variants detected by WES and Ampliseq on technical replicates are listed in Table 
S3. Somatic variants detected by WES and Ampliseq on the intratumor biopsies are listed in Table S4. 
 
 
Identification of subclonal mutations 
 
The clonality of putative somatic mutations identified from WES analysis was inferred using ABSOLUTE (Carter et 
al., 2012) using the segmented copy number log ratio from FACETS and the number of reads supporting the reference 
and the alternate alleles of the mutations obtained from WES as previously described (Ng et al., 2017a). The clonality 
of validated somatic mutations by Ampliseq was inferred using the number of reads supporting the reference and the 
alternate alleles of the mutations obtained by Ampliseq. A mutation was classified as clonal if its probability of being 
clonal was >50% or if the upper bound of the 95% confidence interval of its CCF was 100% (Landau et al., 2013). 
 
Mutational signature analysis and mappability 
 
We performed mutational signature analysis using the R package deconstructSigs (Rosenthal et al., 2016) as 
previously described (Ng et al., 2017b). First, the fraction of mutations found in each of the 96 possible trinucleotide 
contexts was calculated to build the mutational profile for each sample, normalized by the number of times each 
trinucleotide context is observed in the sequencing regions. For the pooled analysis, mutations from all samples were 
combined to result in a “pooled sample” profile. Next, the mutation profile was reconstructed with minimum error by 
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iteratively inferring the weighted contribution of each of the 30 reference signatures. Definition and interpretation of 
mutational signatures were obtained from COSMIC (http://cancer.sanger.ac.uk/cosmic/signatures). 

We assessed mappability of SNVs in the GRCh37/hg19 reference genome using the 75bp CRG Alignability 
track available in the UCSC genome browser (http://genome.ucsc.edu/cgi-
bin/hgTrackUi?db=hg19&g=wgEncodeMapability). The CRG Alignability track displays how uniquely 75-mer 
sequences align to different regions of the genome (Derrien et al., 2012). The mappability score is defined as the 
reciprocal of the number of matches found in the genome. A mappability score of 1 is considered high as it indicates 
a unique match. 

To assess the effects of sequencing alignment using the newer BWA mem algorithm (http://bio-
bwa.sourceforge.net/bwa.shtml) and of read length on variant identification in regions of low mappability, we obtained 
10 tumor-normal pairs from The Cancer Genome Atlas breast cancer cohort (Kobolt et al., 2012a). These 10 tumor-
normal pairs were sequenced using the 100bp paired-end sequencing. We 1) trimmed the raw sequences to 75bp and 
aligned the data with BWA aln (Li and Durbin, 2009), as we performed for our 6 cases in our manuscript, 2) trimmed 
the raw sequences to 75bp and aligned the data with BWA mem (http://bio-bwa.sourceforge.net/bwa.shtml), and 3) 
aligned the 100bp reads using BWA mem, then downsampled the resulting BAM files to 75% such that the overall 
sequencing depth largely matched the first 2 processing approaches. Mutation calling was performed using the 
matched-normal pipeline. Mappability was computed as described above. 

 
Clonal inference 
 
We performed clonal inference using PyClone (Roth et al., 2014), using the read counts from high-depth Ampliseq 
sequencing for all validated homogeneous and heterogeneous mutations. Major and minor copy numbers for each 
mutation, as well as tumor purity, were defined using FACETS (as described above). Case 2 biorep C, for which purity 
could not be estimated by FACETS, was set to 0.2. 10,000 iterations of Markov Chain Monte Carlo sampling were 
performed with the first 1,000 iterations discarded as “burn-in”. Clusters composed of single mutation were discarded. 
 
To assess the impact of sequencing depth on clonal inference, we performed a downsampling analysis. Specifically, 
we downsampled the number of reads for each mutation, at increments of 2.5% up to 25%, then at 5% up to 95%, of 
the original depth. Each downsampling experiment was performed 20 times. The downsampled number of reads was 
used as input to PyClone and clonal inference performed as described above. Clonal inference error was computed in 
relation to the clusters inferred from no downsampling. Clonal inference error was calculated as 1-(the number of 
mutations in the same clusters as no downsampling/the total number of mutations). All somatic mutations were 
included, regardless if they would have been considered somatic at the reduced depth. 
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