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Web Appendix A: Computational Details of PenCoxFrail

A.1 Score Function and Information Matrix

In this section we specify more precisely the single components which are derived in
Step 2 (a) of the PenCoxFrail algorithm. Based on the B-spline design vector B(t),
we define ΦT (t) := (zij0 · BT (t), zij1 · BT (t), . . . , zijr · BT (t)). Then, the penalized
score function spen(δ) = ∂lpen(δ)/∂δ, obtained by differentiating the log-likelihood
from equation (7), has vector components

spenβ (δ) =
n∑
i=1

Ni∑
j=1

xij

(
dij −

∫ tij

0

exp(ηij(s))ds

)
,

spenα (δ) =
n∑
i=1

Ni∑
j=1

(
dijΦ(tij)−

∫ tij

0

exp(ηij(s))Φ(s)ds

)
−Aξ0,ξ,ζ α,

speni (δ) =

Ni∑
j=1

uij

(
dij −

∫ tij

0

exp(ηij(s))ds

)
−Q−1(θ)bi, i = 1, . . . , n.

Note here that the linear predictors ηij(t) depend on the parameter vector δ, compare
equation (1). This is suppressed here for notational convenience. The vectors spenβ

and spenα have dimension p and (r + 1)M , respectively, while the vectors speni are of
dimension q.

The penalty matrix Aξ0,ξ,ζ is a block-diagonal matrix of the form Aξ0,ξ,ζ =
diag(Aξ0 ,Aξ,ζ). The first matrix Aξ0 = ξ0∆

T
M∆M corresponds to the penalization

of the squared differences between adjacent spline coefficients α0 of the baseline haz-
ard from equation (6), with ∆M denoting the ((M − 1) ×M)-dimensional difference
operator matrix of degree one from equation (5). The second matrix Aξ,ζ results from
a local quadratical approximation of the penalty in equation (4), following Oelker
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and Tutz (2016). It is a block-diagonal penalty matrix Aξ,ζ = diag(A1,ξ,ζ , . . . ,Ar,ξ,ζ),
where for k = 1, . . . , r the single blocks have the form

Ak,ξ,ζ = ξ
(
ζψk(α

T
k ∆̃

T

M∆̃Mαk + c)−1/2∆̃
T

M∆̃M + (1− ζ)φk(α
T
kαk + c)−1/2

)
,

where c is a small positive number (in our experience c ≈ 10−5 works well) and the
matrix ∆̃M is equal to ∆M , except that its first row consists of zeros only.

The penalized information matrix F pen(δ), which is partitioned into

F pen(δ) =



F ββ F βα F β1 F β2 . . . F βn

Fαβ Fαα Fα1 Fα2 . . . Fαn

F 1β F 1α F 11 0 . . . 0
F 2β F 2α 0 F 22 0

...
...

...
. . .

F nβ F nα 0 0 F nn


, (A.1)

has single components

F ββ = −∂
2lpen(δ)

∂β∂βT
= −

n∑
i=1

Ni∑
j=1

xijx
T
ij

∫ tij

0

exp(ηij(s))ds,

F βα = F T
αβ = −∂

2lpen(δ)

∂β∂αT
= −

n∑
i=1

Ni∑
j=1

xij

∫ tij

0

exp(ηij(s))Φ
T (s)ds,

Fαα = −∂
2lpen(δ)

∂α∂αT
= −

n∑
i=1

Ni∑
j=1

∫ tij

0

exp(ηij(s))Φ(s)ΦT (s)ds+Aξ0,ξ,ζ ,

F βi = F T
iβ = −∂

2lpen(δ)

∂β∂bTi
= −

Ni∑
j=1

xiju
T
ij

∫ tij

0

exp(ηij(s))ds,

Fαi = F T
iα = −∂

2lpen(δ)

∂α∂bTi
= −

Ni∑
j=1

uTij

∫ tij

0

exp(ηij(s))Φ(s)ds,

F ii = −∂
2lpen(δ)

∂bi∂b
T
i

= −
Ni∑
j=1

uiju
T
ij

∫ tii

0

exp(ηii(s))ds+Q−1.

Note that the information matrix from equation (A.1) is subject to certain limita-
tions with regard to the number of observations and of time-varying effects that can
be considered. Situations of very high dimensions can lead to numerical instability.
However, in those scenarios that we have investigated, in particular in the application
from Section (6) with more than 20,000 lines and 16 covariates, each endued with a
potentially time-varying effect, the method still works well.

A.2 Variance-Covariance Components

Variance estimates for the random effects can be derived as an approximate EM al-
gorithm, using the posterior mode estimates and posterior curvatures. If we define

β̃
T

:= (βT ,αT ), we get the following simpler block structure for the information ma-
trix from equation (A.1):

F pen(δ) =


F β̃β̃ F β̃1 . . . F β̃n

F 1β̃ F 11 0
...

. . .

F nβ̃ 0 F nn

 .
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If the cluster sizes Ni are large enough, the estimator δ̂ becomes approximately normal,

δ̂
a∼ N(δ,F pen(δ̂)−1),

see Fahrmeir and Tutz (2001). Hence, the (expected) curvature of lpen(δ̂) evaluated at
the posterior mode, i.e. F pen(δ̂)−1, is a good approximation to the covariance matrix.
Then, using standard formulas for inverting partitioned matrices (see, for example,
Magnus and Neudecker, 1988), the required posterior curvatures V ii can be derived
via the formula

V ii = F−1
ii + F−1

ii F iβ̃(F β̃β̃ −
n∑
i=1

F β̃iF
−1
ii F iβ̃)−1F β̃iF

−1
ii .

Now, Q̂
(l)

can be computed by

Q̂
(l)

=
1

n

n∑
i=1

(V̂
(l)

ii + b̂
(l)

i (b̂
(l)

i )T ).

A.3 Starting Values

For fixed penalty parameters ξ0 and ζ, we propose to first fit the model with a moderate

choice of the parameters β̂
(0)
, α̂(0), û(0) and θ̂

(0)
(typically β̂

(0)
= α̂(0) = û(0) = 000; θ̂

(0)

such that Q(0) is moderate) and a high value for the penalty parameter ξ, such that
all spline coefficients α̂ are shrunk down to zero. Next, the penalty parameter ξ is
successively decreased and for each new fit of the algorithm the previous parameter
estimates serve as suitable starting values.

The PenCoxFrail algorithm is implemented in the pencoxfrail function of the
corresponding R-package (Groll, 2016; publicly available via CRAN, see http://www.

r-project.org).
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Web Appendix B: Simulation Studies

In the following, we present the details of the simulation study design of the simula-
tion study from Section 5. The underlying models are random intercept models with
balanced design

λij(t|zzzij, ui) = exp (ηij(t)) , i = 1, . . . , n, j = 1, . . . , Ni ,

ηij(t) = γ0(t) +
r∑

k=1

zijkγk(t) + bi ,

with different selections of (partly time-varying) effects out of the set:

γ0(t) = 5 · fΓ(t) + 0.1, γ1(t) ≡ 1.2, γ2(t) ≡ −1.4,
γ3(t) ≡ −0.8, γ4(t) ≡ 0.7, γ5(t) ≡ 0.8,
γ6(t) ≡ −0.7, γ7(t) = (t+ 1)1/10 − 2, γ8(t) = 0.3 · sin(0.25t) + 0.4 + 0.03t,

γ9(t) = −15 · gΓ(t) + 1, γ10(t) =
√
t− 2, γ11(t) = 1/(t+ 0.5),

γ12(t) = 1.5 · sin(0.25t)− 1 + 0.2t, γ13(t) = γ14(t) = γ15(t) = γ16(t) ≡ 0,

where exp(γ0(t)) reflects the baseline hazard and fΓ denotes the density of a Gamma
distribution Γ(ζ, θ). Shape and scale parameter were chosen as ζ = 4, θ = 2. Also
gΓ denotes a Gamma density with shape and scale parameter chosen to be 5 and 2,
respectively. So γ1(t) to γ6(t) represent time-constant and γ7(t) to γ12(t) time-varying
effects, while the covariates corresponding to the remaining effects are noise variables,
which are included into the linear predictors to check the performance with respect to
variable selection. All covariates zijk, k = 1, . . . , 16, have been drawn independently
from a uniform distribution on [−0.5; 0.5]. The number of observations is either fixed
by n = 100 or n = 500 clusters, each with Ni ≡ 5 or Ni ≡ 1 replicates, respectively.
The random effects are specified by bi ∼ N(0, σ2

b ) with three different scenarios σb ∈
{0, 0.5, 1}. In the following, we consider three different simulation scenarios:

Scenario A : ηij(t) = γ0(t) +
∑

k∈{1,2,3,4,7,8,13,14,15,16}

zijkγk(t) + bi ,

Scenario B : ηij(t) = γ0(t) +
∑

k∈{5,6,9,10,11,12,13,14}

zijkγk(t) + bi ,

Scenario C : ηij(t) = γ0(t) +
∑

k∈{1,2,3,4,13}

zijkγk(t) + bi .

For the three scenarios, the performance of estimators is evaluated separately for the
structural components and the random effects variance. In order to show that the
penalty (4), which combines smoothness of the coefficient effects up to constant effects
together with variable selection, indeed improves the fit in comparison to conventional
penalization approaches, we compare the results of the PenCoxFrail algorithm with
the results obtained by three alternative penalization approaches.

In order to compare the different approaches’ performances, we consider the fol-
lowing mean squared errors for the baseline hazard, the smooth coefficient effects and
σb, averaging across 50 data sets:

mse0 :=
T∑
t=1

vt(γ0 − γ̂0)2, mseγ :=
r∑

k=1

T∑
t=1

vt(γk − γ̂k)2, mseσb := (σb − σ̂b)2. (B.1)

To evaluate the estimated and true coefficient functions in the relevant part weights
vt are included that are defined by use of the cumulative baseline hazard Λ0(·). They
are given by vt = (Λ0(T )− Λ0(t))/Λ0(T ).
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B.1 Additional Results for Simulation Study I

Scenario σb Ridge Linear Select PenCoxFrail gam coxph

A
0 163 ( 182) 33 ( 40) 26 (47) 23 (39) 72 ( 48) 1089 (1467)
0.5 494 (1652) 51 ( 91) 47 (56) 35 (38) 108 (109) 614 ( 390)
1 391 ( 452) 98 (141) 74 (93) 69 (93) 172 (378) 693 ( 676)

B
0 50 ( 78) 59 ( 59) 14 (18) 20 (24) 43 ( 21) 758 (1131)
0.5 90 ( 92) 76 ( 79) 27 (25) 29 (25) 93 (185) 649 (1131)
1 180 (403) 106 (121) 45 (56) 50 (70) 112 (134) 422 ( 473)

C
0 118 (144) 34 (48) 15 (28) 20 (43) 70 (106) 583 (487)
0.5 132 (130) 35 (37) 23 (29) 23 (23) 74 ( 36) 535 (544)
1 220 (321) 62 (88) 45 (58) 46 (54) 100 (104) 352 (423)

Web Table 1: Results for mse0 (standard errors in brackets).

Scenario σb Ridge Linear Select PenCoxFrail gam coxph

A
0 .032 (.030) .021 (.022) .009 (.017) .011 (.018) .006 (.017) .002 (.003)
0.5 .010 (.011) .007 (.013) .011 (.026) .010 (.026) .008 (.017) .049 (.042)
1 .012 (.018) .012 (.019) .016 (.024) .014 (.023) .012 (.020) .060 (.085)

B
0 .040 (.041) .046 (.043) .019 (.028) .020 (.029) .015 (.028) .003 (.008)
0.5 .008 (.019) .008 (.018) .006 (.010) .006 (.010) .007 (.015) .060 (.038)
1 .011 (.019) .009 (.017) .012 (.014) .012 (.014) .012 (.023) .062 (.220)

C
0 .037 (.030) .029 (.025) .013 (.021) .017 (.024) .009 (.016) .002 (.003)
0.5 .007 (.009) .007 (.009) .009 (.013) .007 (.010) .009 (.012) .064 (.042)
1 .012 (.013) .013 (.016) .017 (.021) .016 (.020) .016 (.017) .047 (.043)

Web Table 2: Results for mseσb (standard errors in brackets).

Scenario σb Ridge Linear Select PenCoxFrail gam coxph

A
0 1152 (346) 1770 (542) 3656 (1173) 13746 (4799) 1491 (316) 12 (1)
0.5 909 (289) 1438 (675) 3110 (1243) 12469 (9409) 1781 (731) 10 (1)
1 1072 (409) 1634 (1270) 2869 (1665) 11166 (7530) 2256 (938) 15 (3)

B
0 541 (125) 976 (290) 2282 (420) 6736 (2202) 1065 (344) 8 (1)
0.5 714 (170) 851 (234) 1746 (377) 5454 (1997) 1271 (534) 7 (1)
1 767 (234) 1029 (466) 1786 (728) 5638 (2050) 1510 (523) 10 (2)

C
0 371 (84) 619 (202) 1372 (331) 4398 (1542) 622 (207) 6 (1)
0.5 272 (47) 430 (120) 1009 (394) 3502 (1462) 680 (298) 5 (1)
1 304 (93) 430 (120) 818 (342) 1929 (2468) 1044 (524) 4 (1)

Web Table 3: Results for average computational times (standard errors in brackets).
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Scenario σb Ridge Linear Select PenCoxFrail gam coxph

A
0.0 0.14 0.24 0.00 0.14 0.00 0.00
0.5 0.00 0.00 0.00 0.02 0.00 0.00
1.0 0.00 0.00 0.00 0.00 0.00 0.00

B
0.0 0.10 0.12 0.06 0.08 0.00 0.00
0.5 0.00 0.00 0.00 0.00 0.00 0.00
1.0 0.00 0.00 0.00 0.00 0.00 0.00

C
0.0 0.34 0.28 0.06 0.10 0.00 0.00
0.5 0.00 0.00 0.00 0.02 0.00 0.00
1.0 0.00 0.00 0.00 0.00 0.00 0.00

Web Table 4: Proportion of non-convergent simulation runs.

Web Figure 1: Estimated (log-)baseline hazard γ̂0(t), exemplarily for Scenario B

and σb = 1; left: Ridge (yellow), Linear (blue), Select (green) and PenCoxFrail

(red); right: gam (blue), coxph (green) and PenCoxFrail (red); true effect in black
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Scenario σb Ridge Linear Select PenCoxFrail gam coxph

A

0 null 0 0 0.44 0.30 0.54 0
0 constant 0 0.92 0.01 0.77 0.01 0
0 smooth 1 0.12 1 0.24 0.99 1
0 exact 0 0 0 0 0 0
0.5 null 0 0 0.55 0.46 0.53 0
0.5 constant 0 0.96 0.04 0.77 0.02 0
0.5 smooth 0.99 0.02 1 0.24 1 1
0.5 exact 0 0 0 0 0 0
1 null 0 0.01 0.48 0.44 0.55 0
1 constant 0 0.96 0.06 0.66 0.04 0
1 smooth 0.98 0.05 0.97 0.32 0.98 1
1 exact 0 0 0 0 0 0

B

0 null 0 0 0.34 0.28 0.54 0
0 constant 0 0.65 0.01 0.17 0 0
0 smooth 1 0.55 1 0.92 1 1
0 exact 0 0 0 0 0 0
0.5 null 0 0.02 0.46 0.46 0.49 0
0.5 constant 0 0.60 0.01 0.08 0 0
0.5 smooth 1 0.50 0.98 0.95 1 1
0.5 exact 0 0 0 0 0 0
1 null 0 0.02 0.50 0.53 0.58 0
1 constant 0 0.73 0.08 0.12 0.01 0
1 smooth 1 0.38 0.98 0.94 1 1
1 exact 0 0 0 0 0 0

C

0 null 0 0.02 0.36 0.38 0.42 0
0 constant 0 0.90 0 0.77 0 0
0 smooth - - - - - -
0 exact 0 0.02 0 0.26 0 0
0.5 null 0 0 0.44 0.34 0.46 0
0.5 constant 0 0.95 0.01 0.78 0 0
0.5 smooth - - - - - -
0.5 exact 0 0 0 0.16 0 0
1 null 0 0 0.44 0.36 0.50 0
1 constant 0 0.92 0.02 0.63 0 0
1 smooth - - - - - -
1 exact 0 0 0 0.14 0 0

Web Table 5: Proportions of correctly identified null (null), constant (constant) and

time-varying effects (smooth) as well as proportions of correctly identified exact true

model structure (exact).
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Web Figure 2: Estimated (partly time-varying) effects γ̂5(t), γ̂6(t), γ̂9(t), γ̂10(t), ex-

emplarily for Scenario B and σb = 1; left: Ridge (yellow), Linear (blue), Select

(green) and PenCoxFrail (red); right: gam (blue), coxph (green) and PenCoxFrail

(red); true effect in black

8



B.2 Simulation Study II

Simulation Study II (n = 500, Ni = 1)
Similar to Simulation Study I, we now investigate classical frailty scenarios, with no
cluster structure or repeated measurements, but where each observation obtains its
own random intercept for modeling possible unobserved heterogeneity. Hence, the
underlying models are basically the same random intercept models from above, but
now with the number of observations fixed by n = 500 clusters without replicates,
i.e. Ni ≡ 1. Note that the underlying models fulfill all necessary assumptions from
Van den Berg (2001), which guarantee identifiability in the sense that there is a unique
choice of the linear predictor and the random effects density that is able to generate
these data. The random effects are again specified by bi ∼ N(0, σ2

b ) with three different
scenarios σb ∈ {0, 0.5, 1} and we consider the same three different simulation Scenarios
A,B and C from above. The performance of estimators is again evaluated separately
for the structural components and the random effects variance and we again compare
the PenCoxFrail method with several alternative approaches. In Web Figure 3, the
comparison of the PenCoxFrail procedure with the other methods is visualized.

It is obvious that the Ridge and coxph method are again clearly outperformed by
all other methods in terms of mse0 and mseγ. In addition, it turns out that in terms
of mse0 all other procedures perform well, but considerably deteriorate for the σb = 1
cases in all scenarios. The best performer in terms of mseγ is changing over the scenar-
ios, similar to Simulation Study I. Again, the flexibility of the combined penalty (4)
becomes obvious: regardless of how the underlying set of effects is composed of, again,
the PenCoxFrail procedure is consistently among the best performers and yields esti-
mates that are close to the estimates of the respective “optimal type of penalization”.
With respect to the estimation of the random effects variance σ2

b all approaches yield
satisfactory results, but have considerably deteriorated in comparison to Simulation
Study I as no cluster structure is present, but each observation got its own random
intercept. Altogether, the simulations show that the proposed penalty (4) yields im-
proved estimators in comparison to all conventional penalization approaches, as it can
flexibly adopt to the underlying data driving mechanisms.
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Web Figure 3: Simulation Study II : boxplots of log(mseγ(·)/mseγ(PenCoxFrail))

for Scenario A (top), B (middle) and C (bottom)
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B.3 Simulation Study III

Simulation Study III (n = 100, Ni = 5)
In order to investigate the methods’ robustness with regard to violations of the normal
distribution assumption of the random effects, we consider a third simulation scenario.
We use exactly the same simulation setting as in Simulation Study I, with the only
difference that now the random effects are specified by bi ∼ Γ(ζ, θ) with ζ = θ = 1.
With respect to the quantities mse0 and mseγ very similar result are obtained as
in Simulation Study I, compare Web Table 6 and 7. However, while again most
methods also yield good results in terms of mseσb , even though the normal distribution
assumption of the random effects is violated, the gam method yields rather defective
results, see Web Table 8.

Scenario σb Ridge Linear Select PenCoxFrail gam coxph

A 1 226 (349) 116 (77) 170 (114) 147 (100) 167 (297) 841 (2235)
B 1 99 ( 97) 68 (45) 69 ( 40) 66 ( 36) 91 ( 55) 290 ( 403)
C 1 150 (137) 131 (84) 177 (115) 159 (107) 99 ( 75) 246 ( 193)

Web Table 6: Simulation Study III : Results for mse0 (standard errors in brackets).

Scenario σb Ridge Linear Select PenCoxFrail gam coxph

A 1 10613 (13337) 487 ( 630) 909 (400) 667 (554) 1564 (992) 9194 (4931)
B 1 6686 ( 9026) 3346 (4066) 1337 (598) 1440 (708) 1263 (606) 5690 (3944)
C 1 3555 ( 5924) 404 (1271) 609 (356) 373 (400) 836 (505) 3524 (3242)

Web Table 7: Simulation Study III : Results for mseγ (standard errors in brackets).

Scenario σb Ridge Linear Select PenCoxFrail gam coxph

A 1 .017 (.025) .013 (.021) .011 (.014) .011 (.016) 580 (169) .101 (.144)
B 1 .011 (.017) .010 (.018) .010 (.018) .010 (.018) 486 (130) .054 (.076)
C 1 .012 (.016) .011 (.015) .011 (.016) .011 (.015) 564 (153) .066 (.098)

Web Table 8: Simulation Study III : Results for mseσb (standard errors in brackets).
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Web Appendix C: Application

proportion

Religion
Christian 0.667
other 0.040
none 0.293
# siblings
no siblings 0.19
one sibling 0.43
two siblings 0.22
three or more siblings 0.16
Education level of parents
high 0.271
medium 0.061
low 0.570
no info 0.098

Number of women 2,501
Number of events 1,591

Web Table 9: Distribution of the time-constant covariates in the sample

# days proportion

Employment status
full-time employed/self-employed 3,369,964 0.276
marginal/part-time employed 405,473 0.033
education 187,972 0.015
school 2,832,410 0.232
unempl./job-seeking/housewife 5,023,955 0.412
no info 388,936 0.032
Education level
high 7,004,695 0.574
medium 4,301,786 0.352
low 837,023 0.069
no info 65,206 0.005
Relationship status
single 6,463,726 0.529
partner 3,190,299 0.261
cohabitation 1,842,180 0.151
married 712,505 0.058

Number of women 2,501
Number of events 1,591
Number of days 12,208,710

Web Table 10: Distribution of the time-varying covariates in the sample
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