Supplementary Information

Tuning Anhydrous Proton Conduction in Single-Ion Polymers by Crystalline Ion Channels

Onnuri Kim^{1§}, Kyoungwook Kim^{2§}, U Hyeok Choi³, and Moon Jeong Park^{1,2*}

¹Department of Chemistry, ²Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784,

³Department of Polymer Engineering, Pukyong National University, Busan, Korea 608-737.

[§] These two authors contributed equally.

* Corresponding author

(moonpark@postech.ac.kr)

Supplementary Figures

Supplementary Figure 1. Thermal transitions of PSS:Im-*b*-PMB with additives. DSC thermograms of PSS:Im-*b*-PMB (1.2-*b*-1.0 kg mol⁻¹) containing ZImS, ZImS/Im, and ZImS₂/Im, compared with that of neat PSS:Im-*b*-PMB, indicating a decrease in the T_g value of PSS:Im with additives. T_g of PMB (-68 °C) was not affected by additives.

Supplementary Figure 2. Co-organization of ZImS and Im. WAXS profiles of neat Im, and neat ZImS, and ZImS/Im. Miller indices of the reflection planes (*hkl*) of each crystal were obtained by Mercury DSD 3.9 software, as given in the figure.

Supplementary Figure 3. Dissimilar dipolar orientations. Molecular conformations of SS:Im with incorporated ZImS and neutral Im, for which the geometries had been optimized by *ab initio* calculations based on the density functional theory (B3LYP/6-31G(d)).

Supplementary Figure 4. Amorphous characteristics of PSS:Im homopolymers. WAXS profiles of PSS:Im homopolymers (1.2 kg mol⁻¹ and sulfonation level of 20 mol.%) comprising ZImS, ZImS/Im, and ZImS₂/Im, compared with that of neat PSS:Im, measured at 25 °C. It is evident that all samples have amorphous ionic phases.

Supplementary Figure 5. Dissimilar proton dissociation degrees. Fourier transform Raman spectra of PSS:Im-*b*-PMB comprising ZImS, ZImS/Im, and ZImS₂/Im over the wavenumber ranges 900 – 1700 cm⁻¹. C–CH aromatic ring quadrant of PSS chains (at 1600 cm⁻¹) was used as an internal reference. As assigned in the figure, the absorption band at 1210 cm⁻¹ indicates the ring breathing of Im⁺, whereas that of neutral Im is shown at 1338 cm⁻¹. The peak at 1413 cm⁻¹ signifies CH₃-N and CH₂-N stretching of Im⁺, whereas that at 1446 cm⁻¹ denotes the N-H stretching of neutral Im. From the intensity ratio, e.g., $I^{1210}/(I^{1210} + I^{1338})$, the degree of proton dissociation was calculated as 52%, 65%, and 54% for the samples containing ZImS, ZImS/Im, and ZImS₂/Im, respectively.

Supplementary Figure 6. High molecular weight PSS:Im-*b*-PMB comprising additives. a, WAXS profiles of PSS:Im-*b*-PMB (20-39 kg mol⁻¹ and a sulfonation level of 25 mol.%) comprising ZImS, ZImS/Im, and ZImS₂/Im, measured at 25 °C. SAXS profile of neat PSS:Im-*b*-PMB displaying lamellar morphology ($d_{100} = 56$ nm) is shown in the inset. **b**, Temperature-dependent ionic conductivity of PSS:Im-*b*-PMB (20-39 kg mol⁻¹) comprising additives.

Supplementary Figure 7. Dielectric relaxation behavior. Representative dielectric permittivity spectra of PSS:Im-*b*-PMB copolymers with various additives, measured at 60 °C. The spectra with model fits were horizontally shifted to show the static dielectric constants, ε_s .

Supplementary Figure 8. Dissimilar dipolar arrangements. The static dielectric constants, ε_s , of PSS:Im-*b*-PMB and PSS:Im with the addition of ZImS, ZImS/Im, and ZImS₂/Im at different temperatures, revealing dissimilar dipolar arrangements in ionic phases of block copolymers and homopolymers.

Supplementary Figure 9. Polarization experiments. Current density profile of PSS:Im-*b*-PMB containing ZImS/Im, after polarizing the sample with ΔV of 100 mV. Symmetric cell was employed by sandwiching the polymer with carbon electrodes. PSS:Im-*b*-PMB containing ionic liquid was used as a control.

Supplementary Tables

Supplementary Table 1. Crystal Structures and Lattice Parameters of Neat Im, Neat ZImS, and ZImS/Im Mixture

	Im	ZImS	ZImS/Im	
Crystal structure	Monoclinic	Monoclinic	Monoclinic	
Space group	<i>P</i> 2 ₁ /c	P21/c	P1m1	
<i>a</i> (Å) (α)	9.8 (90°)	9.8 (90°)	11.1 (90°)	
b (Å) (β)	5.5 (117°)	11.4 (98°)	7.0 (113.0°)	
<i>c</i> (Å) (γ)	7.8 (90°)	8.1 (90°)	10.1 (90°)	

Supplementary	Table 2.	Dielectric	Relaxation	Parameters	of PSS:Im-b-PMB	Block
Copolymers Co	mprising	ZImS, ZIm	S/Im, and Zl	mS ₂ /Im		

PSS:Im- <i>b</i> -PMB	Dipolar moiety	Number density ^a (v, nm ⁻³)	Dipole moment ^b (m, D)	g ^c	$V_{\rm p}/V_{\rm m}{}^d$
w/ ZImS	Ion pair $(SO_3 - Im^+)$	0.36	7	0.4	0.8
	ZImS	0.32	17.5	0.4	
w/ ZImS/Im	Ion pair $(SO_3 - Im^+)$	0.32	7	1.0	1.1
	Neutral pair (Im - ZImS)	0.39	19.3	1.9	
w/ ZImS2/Im	Ion pair $(SO_3 - Im^+)$	0.27	7		
	Neutral pair (Im - ZImS)	0.32	19.3	1.1	1.5
	ZImS	0.24	17.5		

^{*a*}estimated from the group contribution method based on molecular structure.

^{*b*} calculated using a DFT exchange-correlation functional, *B3LYP*.

^{*c*} calculated using eq (1) at 343 K

^{*d*} calculated using eq (2) at 343 K