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Supplementary Figure 1 Normalized light intensity of ideal anti-diffracting light beams along z axis. (a) Bessel beam; 
(b) Airy beam. 

 
Supplementary Figure 2 Schematic of the focusing system.  is the focal sphere, with its center at O and a radius f, 
namely, the focal length of the objective lens (OL). P is the pupil filter in the wavefront of the lens. θ is the convergent 
angle.  denotes the electric amplitude of incident Gaussian beams.  

 
Supplementary Figure 3 Normalized light intensity of quasi-Airy beam. Quasi-Airy beam (a) is generated by the 
cubic phase (b), the parameters of which are ,  and 0 0.75ϕ π= . 
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Supplementary Figure 4 Light intensities of quasi-Airy beam in two symmetrical planes. (a, b) are the 
light intensities in the z=−1000λ, while their counterparts in z=1000λ plane are shown in (c, d). The 
corresponding transverse energy fluxes are indicated by the green arrows. Point A denotes the first sidelobe 
of the light beam. 

  
Supplementary Figure 5 Quasi-Airy beams with different η under the condition of NA=0.095 and .  
(a) Quasi-Airy beam with ; (b) Quasi-Airy beam with . All are generated by the phases (e, h), 
respectively. (f, i) show the light intensities of both light beams in the z=0 plane. (c, d) and (g, j) present the 
corresponding experimental results. The FWHMs of (a) and (b) are theoretically approximately 1515.6λ 
and 2560λ, respectively, while their experimental results are (c) 1522.1λ and (d) 2544.9λ, respectively. The 
light intensities of quasi-Airy beams are normalized to a unit value, which are indicated by the color bar. 
The phase scales of (e, h) are 0~2π. 
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Supplementary Figure 6 Quasi-Airy beams with different σ under the condition of NA=0.095 and η=5. (a) 
Quasi-Airy beam with σ=2.6; (b) Quasi-Airy beam with σ=3.6. All are generated by the phases (e, h), 
respectively. (f, i) show the light intensities of both light beams in the z=0 plane. (c, d) and (g, j) present the 
corresponding experimental results. The FWHMs of (a) and (b) are theoretically approximately 3084λ and 
1411λ, respectively, while their experimental results are (c) 3077.6λ and (d) 1419.3λ, respectively. The light 
intensities of quasi-Airy beams are normalized to a unit value, which are indicated by the color bar. The 
phase scales of (e, h) are 0~2π. 

 
Supplementary Figure 7 Bessel beam generated using high-pass pupil filter. (a) Light intensity of Bessel 
beam in y-z plane; (b) High-pass pupil filter with a ratio of the inner to outer ring radius r/R=0.8; (c, d) 
Light intensities and energy fluxes (green arrows) at points P2, P1 in the z=−300λ, 300λ planes, respectively. 
The light intensities of Bessel beam are normalized to a unit value, which are indicated by the color bar (e). 
The color bar (f) indicates the transmittance of high pass pupil filter (b). 

 



 
Supplementary Figure 8 Schematic of deriving optical pen in focusing system.  is the focal sphere, with its center 
at O and a radius f. A, B are the off- and on-axis points in . O1 is an arbitrary point in the focal region. P is the pupil 
filter in the wavefront of the objective lens (OL).  denotes the electric amplitude of incident Gaussian beams and 
θ is the convergent angle of OL. 

 
Supplementary Figure 9 Shifting foci in the y-z plane. The locations of foci in (a, c, e) are adjusted by the phases in 
(b, d, f), the parameters of which are N=1, s1=1, =0δ , x=0, and (a) y=−5, z=10; (c) y=0, z=0; and (e) y=5, z=−10.  
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Supplementary Figure 10 Focal arrays in the focal plane. Identical 4×4 focal arrays in (a-c) can be created 
by the different phases in (d-f), respectively. Here, these focal arrays are realized by multiplying two 
phases, which yield 1×4 focal arrays along the x- and y-axis. Thus, N=4, zj=0, and δj=0. For 1×4 foci along 
the x-axis, yj=0, with the foci located at , ,  and . For 1×4 foci along the y-
axis, xj=0, with the foci located at , ,  and . Three pupil filters for the 1×4 
focal array along the x- and y-axis are obtained, with s1=1.05, s2=0.7, s3=0.92, s4=−0.28; s1=s2=−0.885, 
s3=s4=1; and s1=−1.05, s2=0.7, s3=0.95, s4=0.33, which are denoted as  for the x-axis and  

for the y-axis. Finally, the phases for (d-f) are (d) ; (e) ; and (f) .  

 
Supplementary Figure 11 Arbitrary focal pattern in the focal plane. NANO (a) and OPT (b) are obtained 
by the phases (c, d), respectively. The light intensities in (a, b) are normalized to a unit value, which are 
indicated by the color bar (e). The color bar (f) shows the phase scale of (c, d). The parameters can be 
found in the Supplementary Note 3.  
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Supplementary Figure 12 Arbitrary focal pattern in the different z planes. (a) O, P, and T are generated in 
the z=−20λ, z=0 and z=20λ planes simultaneously using the phase (b). The parameters can be found in the 
Supplementary Note 3. 

 
Supplementary Figure 13 UAD light beams with different numbers of energy oscillations under the 
condition of NA=0.8. (a) zero oscillations (2.34λ); (b) one oscillation (31.96λ); (c) two oscillations 
(70.56λ); (d) three oscillations (99.50λ). All are generated by the phases (e-h), respectively. The parameters 
can be found in Supplementary Table 1. (i-k) Light intensities and energy fluxes (green arrows) of points 
A, B, and C in the z=−10λ, 0, and 10λ planes. Here, all light intensities are normalized to a unit value, 
which are indicated by the color bar (l). The color bar (m) shows the phase scale of (e-h). 

Supplementary Table 1: UAD Light Beams under the 
condition of NA=0.8 

N y1 y2 y3 z1 z2 z3 
1 0   0   
1 0   0   
2 −4.92 4.92  −19.505 19.505  
3 −4.92 4.92 −4.92 −39.12 0 39.12 
η1 η2 η3 δ1 δ2 δ3 Parameter 
0      NA=0.8 
5      φ0=0.75π 
−5 5  −0.95π 0.95π  xj=0 
−5 5 −5 0.26π 0 −0.26π sj=1 
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Supplementary Note 1: Definition of Finite Power for an Anti-Diffracting 

Light Beam 
In this paper, the concept of finite power is adopted as an intrinsic attribute of the anti-diffracting light 

beams. Note that the finite power is prevalent in the regime of anti-diffracting light beams: see 

references [1-4]. To be consistent with these references, the power for an anti-diffracting light beam is 

defined as the integration of the amplitude squared along the propagation trajectory. Therefore, for an 

ideal anti-diffracting light beam with infinite propagation distance, infinite power is needed to maintain 

its shape in free space; For a quasi- anti-diffracting light beam, it only possesses finite power in free 

space, resulting in a finite anti-diffracting distance. 

Taking the ideal Bessel beam and Airy beam as example. As shown in Supplementary Figure 1(a), 

an ideal Bessel beam with an amplitude proportional to  can preserve its shape 

infinitely without divergence during propagation in free space. Thus, the power of the ideal Bessel beam 

can be obtained by [1] 

  .                                       (1) 

Similarly, the power of the ideal Airy beam in Supplementary Figure 1(b) can be obtained by [2] 

                        (2) 

where , , and  is an arbitrary constant.  

Since the Bessel and Airy function in Supplementary Equations 1, 2 are not square integrable, both 

light beams possess infinite power in free space. However, such infinite power can only be achieved by 

the infinite aperture of the lens. In practice, finite apertures can only transfer finite power to an anti-

diffracting light beam, thereby leading to a finite anti-diffracting distance in free space. For this reason, 

the creation of ultralong anti-diffracting (UAD) light beam is always considered to be impossible in free 

space.  

( )exp( )n r zJ k r ik z−

2

( )exp( )B n r zI J k r ik z drdz
+∞

−∞
= −∫ ∫ → ∞

2
2 3( / 4)exp[ ( / 2 /12)]AI Ai s i s dxdzξ ξ ξ

+∞

−∞
= − −∫ ∫ → ∞

0/s x x= 2
0/z kxξ = 0x



9 

Supplementary Note 2: Energy Oscillation of Anti-Diffracting Light 

Beams 
Anti-diffracting light beams are special solutions of the Helmholtz equation (HE). According to their 

mathematical forms, these light beams can infinitely preserve their shapes without divergence during 

propagation in free space [1-4]. However, due to finite power in free space, only light beams with finite 

anti-diffracting distances can be obtained. It is well known that anti-diffracting light beams are 

composed of a mainlobe and sidelobes. As the light intensity of sidelobes increases, the anti-diffracting 

distance increases accordingly. Up to now, little is known about the mechanism underlying this physical 

phenomenon. To reveal this mechanism, the roles of the sidelobes and mainlobe in counteracting the 

diffraction effect in free space must be determined. 

In theory, anti-diffracting light beams are generally obtained by the Fourier transformation of their 

Fourier spectra [1-4]. The process of Fourier transformation can be accomplished by an objective lens in 

Supplementary Figure 2 [5, 6]. For example, a quasi-Airy beam can be obtained by focusing a Gaussian 

beam modulated using a cubic phase plate [2], whereas a Bessel beam can be created by the Fourier 

transformation of a Gaussian beam modulated using a high pass filter [1]. Based on the Debye vectorial 

diffractive theory, the electric and magnetic fields of an anti-diffracting light beam near the focus can be 

expressed as [7, 8] 
2 1/2

00 0
sin cos ( ) exp(c

iA T l ik d d
π α

θ θ θ θ ϕ
π

= − − •∫ ∫E or H V s )r                               (3) 

where θ  and ϕ  are the convergent angle and azimuthal angle, respectively; and A is a normalized 

constant. In addition, arcsin(NA / )nα = , where NA is the numerical aperture of the objective lens, and 

n is the refractive index in the focusing space. The wavenumber is 2 /k nπ λ= , where λ  is the 

wavelength of the incident beam, and ( cos , sin , )r r zφ φ=r  denotes the position vector of an arbitrary 

field point in the focal region. In the spherical polar coordinates, the sign of the unit vector s  along a ray 

in the focusing space is incorrect, as shown in Fig. 1 of Ref.[7]; i.e., ( sin cos , sin sin ,cos )θ ϕ θ ϕ θ= − −s  

is used instead of (sin cos ,sin sin ,cos )θ ϕ θ ϕ θ . Using s with the opposite sign will lead to symmetry 

between the calculated and experimental results about the focal plane. In addition, Tc is the Fourier 

spectrum of the desired anti-diffracting light beam, and 0( )l θ  is the electric amplitude of the incident 

Gaussian beam, which can be expressed as 
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2
0 0

sin( ) exp[ ( ) ]
sin

l θθ β
α

= −                                                       (4) 

where β0 is the ratio of the pupil radius to the incident beam waist. 

In Supplementary Equation 3, V represents the propagation unit vector of the incident beam right 

after having passed through the lens. Here, we take a linearly polarized beam as an example to generate 

an anti-diffracting light beam. Thus, the electric vector Ve and magnetic vector Vm can be written as [7] 
2cos (1 cos )sin

(1 cos )sin cos
sin cos

e

θ θ ϕ
θ ϕ ϕ
θ ϕ

 + −
 = − − 
  

V ; 2

(1 cos )sin cos
1 (1 cos )sin

sin sin
m

θ ϕ ϕ
θ ϕ

θ ϕ

− − 
 = − − 
  

V .                   (5) 

Eventually, the light intensity distribution of an anti-diffracting light beam can be obtained using 
2| |I = E . Moreover, the time-averaged Poynting vector, namely, the energy flux, can be obtained using 

[9] 

( )Re
4
c
π

∗= ×S E H                                                           (6) 

where c is the velocity of light in a vacuum, and the asterisk denotes the operation of complex 

conjugation. According to Supplementary Equation 6, one can flexibly explore the energy process of 

anti-diffracting light beams during propagation in free space. 

Suppose that 1P ( , , )x y z  and 2P ( , , )x y z−  are two symmetrical points on the anti-diffracting light 

beam. The electric and magnetic fields of these points can be expressed as [7] 
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By substituting Supplementary Equation 7 into 6, the relationship of transverse energy fluxes 

between 1P ( , , )x y z  and 2P ( , , )x y z− can be expressed as 

 
1 2tP tP
= −S S ,                                                          (8) 

which implies that the light beam experiences two inverse energy processes that transfer the energy from

2tP
S  to 

1tP
S  during propagation in free space. Without a loss of generality, 

2tP
S  and 

1tP
S  are the 

energy charge and energy discharge, respectively. 

Energy charge and discharge compose an entire energy oscillation, which is a directional energy 

flux that confines the energy of anti-diffracting light beams into an interaction between the mainlobe and 
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sidelobes when propagating in free space. Thus, the light beam would not diverge freely as observed 

with a Gaussian beam in free space. If only energy oscillation occurs, an anti-diffracting light beam can 

preserve its shape without divergence in free space. Even when encountering an obstacle, the mainlobe 

can carry out self-healing with the power from the sidelobes [10]. That is why an anti-diffracting light 

beam is naturally composed of a mainlobe and sidelobes. Moreover, since all anti-diffracting light 

beams can be created by focusing their corresponding Fourier spectra in Supplementary Figure 2, energy 

oscillation is therefore a general property shared by all anti-diffracting light beams. 

Energy oscillation mechanism of an Airy beam 

Although energy oscillation is a general property shared by all anti-diffracting light beams, different 

light beams exhibit different forms of energy oscillation, which are mainly determined by the Fourier 

spectrum Tc. For example, the cubic phase is the Fourier spectrum of Airy beam, the transmittance of 

which can be written as [2, 3] 

   ( ) ( )3 3
0 0

sinexp sin cos
sinc

kT i
s

s

θη ϕ ϕ ϕ ϕ
α

 
 = + + +  

 
                                    (9) 

where η  and s  are the parameters that control the period and phase distribution of the cubic phase plate, 

respectively. Typically, if 3s = , then Tc denotes a standard cubic phase, and the entire phase can be 

rotated by an angle 0ϕ . Accordingly, a quasi-Airy beam generated using the cubic phase of η−  can 

simply be obtained by rotating the cubic phase of η  with 0 =ϕ π . That is, light beams with η±  are 

symmetrical about the optical axis, thereby leading to 

1 1tP tPη η−= −S S                                                           (10) 

where 
1tPηS  and 

1tPη−S  are the transverse energy fluxes of point 1P ( , , )x y z  for η  and η− , 

respectively.  

From Supplementary Equations 8 and 10, the transverse energy flux relationship between quasi-

Airy beams with η±  can be simplified to 

1 2 2 1tP tP tP tPη η η η− −= = − = −S S S S   ,                                    (11) 
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where the energy charge 
2tPηS
 
is equal to the energy discharge 

1tPη−S , and the energy discharge 

1tPηS
 
is equal to the energy charge 

2tPη−S . Thus, quasi-Airy beams with η±  can be considered a pair 

of mutually complementary modes in free space.   

Energy interaction between the mainlobe and sidelobes 

In the following simulations and experiments, NA=0.095, n=1, and 0 1β = . The unit of length in all 

figures is the wavelength λ, and the light intensity is normalized to the unit value. The anti-diffracting 

distance of the UAD light beam is evaluated with the FWHM (full width at half maximum). 

The quasi-Airy beam in Supplementary Figure 3(a) generated by the cubic phase with the 

parameters 5η = , 3s =  and 0 =0.75ϕ π in Supplementary Figure 3(b) represents one entire energy 

oscillation in free space, which is composed of energy charge when z<0 and discharge when z>0. 

Energy charge and discharge imply two different energy processes. In the process of energy charge 

when z<0, the energy is transported from the mainlobe to the sidelobes as shown in Supplementary 

Figure 4(a, b). Thus, the mainlobe is the energy source of the sidelobes, and the energy of the mainlobe 

tends to be stored in the sidelobes instead of diverging as observed with a Gaussian beam. Compared 

with energy charge, the light beam when z>0 experiences a totally different energy process, namely, 

energy discharge. Due to the inverse energy flux in Supplementary Figure 4(c, d), the energy is 

transported from the sidelobes to the mainlobe. In this case, the sidelobes are the energy sources of the 

mainlobe while the mainlobe becomes an energy consumer. During propagation when z>0, the mainlobe 

endures an energy loss caused by the diffraction effect. However, this energy can be replenished by the 

power of the sidelobes; thus, the light beam can remain anti-diffracting. Even when encountering an 

obstacle, the light beam can carry out self-healing through the power of the sidelobes [10].  

Due to the energy oscillation mechanism, the power of the quasi-Airy beam is confined to the 

interplay between the mainlobe and sidelobes. Therefore, the light beam can propagate without 

significant divergence in free space. However, this confinement cannot be limitless. Finite power in free 

space can only support a finite energy charge when z<0, thus leading to only a finite energy discharge 

when z>0. When the power stored in the sidelobes is exhausted, the light beam can no longer maintain 

its shape at z>0, and the diffraction effect eventually dominates. Consequently, the light beam can 

propagate only a finite anti-diffracting distance in free space. In addition, the power of energy charge is 

equal to that of energy discharge because of energy conversation, thereby generating an equivalent non-

diffractive distance when z<0 and z>0. For this reason, a quasi-Airy beam possesses a symmetrical 
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trajectory as shown in Supplementary Figure 3(a). 

Throughout the entire energy oscillation process, the z=0 plane is the inflection plane in which the 

role of the mainlobe changes from the energy source to the energy consumer. Specifically, when z<0, 

the sidelobes can receive power from the mainlobe continually during the energy charge process. 

However, once the sidelobes attain the maximum energy capacity, energy charge can no longer be 

conducted, and the sidelobes begin providing power to the mainlobe when z>0. Thus, the sidelobes have 

maximum light intensity in the z=0 plane. Suppose that Is is the light intensity of sidelobe A in the z=0 

plane, as shown in Supplementary Figure 4(a). In principle, a larger Is indicates stronger energy 

oscillation, thereby leading to a longer anti-diffracting distance of the light beam in free space. That is, if 

Is can be adjusted, then the strength of the energy oscillation along with the non-diffractive distance can 

be controlled accordingly. 

Adjusting the Strength of Energy Oscillation 

Two methods are proposed to control the strength of energy oscillation via Is: adjust the period of cubic 

phase η  while 3s = , and manipulate the cubic phase distribution via s  while keeping the period η  

unchanged. For the first method, quasi-Airy beams with different values of η  are generated as shown in 

Supplementary Figure 5, where 3η =  in (a, f) and 5η =  in (b, i). Supplementary Figures 5(e, h) depict 

their corresponding cubic phase plates. The theoretical results show that Is increases with the period of 

the cubic phase η , where Is=0.213 for 3η =  [Supplementary Figure 5(f)] and Is=0.239 for 5η =  

[Supplementary Figure 5(i)]. Therefore, a longer non-diffractive distance can be achieved when η  is 

larger. The FWHMs of Supplementary Figure 5(a) and (b) are 1515.6λ and 2560λ, respectively. By 

adopting the same experimental setup as in Fig. 1 of the main text, quasi-Airy beams with 3η =  

[Supplementary Figure 5(c)] and 5η =  [Supplementary Figure 5(d)] are created under the condition of 

NA=0.095. The FWHMs are 1522.1λ and 2544.9λ, which are coincident with those of Supplementary 

Figure 5(a, b) in theory. 

As for the second one, Supplementary Figure 6 shows the light intensity of quasi-Airy beams with 

2.6s =  (a, f) and 3.6s =  (b, i) when 5η = . As shown in Supplementary Figure 6(f, i), Is increases as 

s  decreases, with Is=0.355 [Supplementary Figure 6(f)] and Is=0.239 [Supplementary Figure 6(i)]. 

Similarly, the non-diffractive distance of 2.6s =  is much longer than that of 3.6s = . In the experiment, 

the quasi-Airy beams shown in Supplementary Figure 6(a, f) and (b, i) are created by coding the phase 

of Supplementary Figure 6(e, h) in the SLM shown in Fig. 1 of the main text. The FWHM values for 
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both beams are 3077.6λ [Supplementary Figure 6(c)] and 1419.3λ [Supplementary Figure 6(d)], 

respectively, which fit well with those of 2.6s =  (3084λ) and 3.6 (1411λ) in theory. Although both 

methods mentioned above are capable of adjusting the energy strength via the light intensity of sidelobe 

Is, neither method can strengthen the energy oscillation without limitation, which makes the ideal Airy 

beam impossible in practice. However, this new mechanism still offers the possibility of breaking 

through the light beam limitation of finite non-diffractive distance in free space. 

Energy oscillation mechanism of a Bessel beam 

Supplementary Figure 7 presents the light intensity and energy flux of a Bessel beam, which is 

generated by focusing a linearly polarized Gaussian beam with the modulation of a high-pass pupil filter 

in Supplementary Figure 7(b) [1]. Here, the transmission of this pupil filter can be expressed as  

1 / 0.8
0 0 / 0.8h

r R
T

r R
≥

=  ≤ <
 ,                                                         (12) 

where r and R are the radii of the inner and outer ring of the high-pass pupil filter, respectively. By 

substituting Tc for hT  in Supplementary Equation 3, the light intensity and energy flux of the Bessel 

beam can be calculated using Debye vectorial diffractive theory. In the following simulations, 

NA=0.095, n=1, and 0 1β = . The unit of length in all figures is the wavelength λ, and the light intensity 

is normalized to the unit value. 

As shown in  Supplementary Figure 7(c, d), a Bessel beam can be divided into two parts according 

to the energy flux: energy charge when z<0 and energy discharge when z>0. For the light beam when 

z<0, the energy is transported from the sidelobes to the central mainlobe radially. Thus, the sidelobes are 

the energy source of the mainlobe, as shown in Supplementary Figure 7(c). Even when encountering an 

obstacle, the light beam can carry out self-healing [11]. In contrast to the light beam when z<0, the light 

beam when z>0 experiences an inverse energy process. As shown in Supplementary Figure 7(d), the 

energy is transported from the mainlobe to the sidelobes radially. In this case, the mainlobe turns into an 

energy source, while the sidelobes serve as the energy consumer of the mainlobe. Via this energy 

interaction between the mainlobe and sidelobes, the Bessel beam can preserve its shape without a 

significant divergence in free space. Similar to the quasi-Airy beam in Supplementary Figure 4, finite 

power in free space can support only a finite energy oscillation, thus leading to a finite anti-diffracting 

distance of the Bessel beam. 
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Supplementary Note 3: Derivation of the Optical Pen 
Supplementary Figure 8 presents a schematic of deriving optical pen in focusing system. A collimate 

incident vector beam propagating along the +z-axis goes through the pupil filter P before being focused 

by a lens obeying the sine condition. Ω  is the focal sphere, and its center is at O and its radius is f, 

which is the focal length of the lens. O1 is an arbitrary point in the focal region of the lens. In principle, 

only one focus is located at the focal point O, where constructive interference can occur only because of 

the equivalent optical paths of the light beams between the points in Ω  and point O. If constructive 

interference does not occur at point O but rather at arbitrary point O1, the focus is generated at point O1 

instead of at O. To this end, the optical path difference (OPD) for the light beams between the points in 

Ω  and O1 must be compensated by the phase of pupil filter P.  

As shown in Supplementary Figure 8, the OPD for the light beams between the points in Ω  and O1 

can be simplified to L2-L1, where L1 and L2 are the light paths AO1 and BO1, respectively. Here, in the 

cylindrical coordinate system, the points A, B, O and O1 can be expressed as 

( sin cos , sin sin , cos )f f fθ ϕ θ ϕ θ− , (0,0, )f− , (0,0,0)  and ( cos , sin , )s s zr ϕ r ϕ , respectively. The 

light paths L1 and L2 can be described as 

( ) ( )2 2 2
1

2 2 2

sin cos cos sin sin sin ( cos )

2 sin cos( ) 2 cos

s s

s

L f f f z

f z f fz

θ ϕ r ϕ θ ϕ r ϕ θ

r r θ ϕ ϕ θ

= − + − + +

= + + − − +
               (13) 

( ) ( )2 2 2
2

2 2 2

cos sin ( )

2

s sL f z

f z fz

r ϕ r ϕ

r

= + + − −

= + + +
              .                           (14) 

The OPD for the light beams between the points in Ω  and O1 can be calculated as 

2 1 2 2 2 2

2 sin cos( ) 2 (1 cos )
1 2 1 2 sin cos( ) 2 cos

s

z z z s z

zs L L
r r r

r θ ϕ ϕ θ
η η η η η η θ ϕ ϕ η θ

− + −
∆ = − =

+ + + + + + − − +
         (15) 

where θ  and φ are the convergent angle and azimuthal angle, respectively; /z z fη = ; and / frη r= . 

Since O1 is an arbitrary point in the vicinity of the focus, , z fr << . That is, , 0zrη η ≈ . Finally, 

Supplementary Equation 15 can be simplified to 

sin cos( ) (1 cos )ss zr θ ϕ ϕ θ∆ = − + −   .                                        (16) 

To generate a focus at O1, s∆  must be compensated by the pupil filter P. Thus, ps s∆ = −∆ , where 
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ps∆  is the OPD induced by the pupil filter P. According to the relationship between the phase and OPD, 

the phase of pupil filter P is pk sψ = ∆ , where 2 /k nπ λ=  is the wavenumber, and n is the refractive 

index in the focusing space. Consequently, the transmittance of pupil filter P for one single focus can be 

expressed as exp( )T iψ= . If multiple focuses occur in the focal region, the transmittance of pupil filter 

P can be further transformed into 

1
exp( )N

j jj
T s iψ

=
= ∑                                                       (17) 

where N is the number of foci and j denotes the j-th focus. As shown in Supplementary Equation 17, the 

pupil filter P requires both amplitude and phase modulation for the incident light beam. In practice, 

amplitude modulation always leads to low light transformation efficiency and is difficult to implement. 

However, this problem can easily be solved by extracting only the phase of pupil filter P in 

Supplementary Equation 17. Finally, the phase-only pupil filter P can be obtained using 

( ){ }1
exp Phase exp[ ( )]N

j j jj
T i s i ψ δ

=
 = +
 ∑                                               (18) 

Here, we refer to this pupil filter as the optical pen. For the sake of simplicity, this optical pen can 

also be expressed as 

 ( ){ }1
exp Phase PF( , , , , )N

j j j j jj
T i s x y z δ

=
 =
 ∑                                             (19) 

where xj, yj, zj are the positions of the j-th focus in the focal region corresponding to , ,s zr ϕ  in 

Supplementary Equation 16; and sj and δj are the two weight factors that are responsible for adjusting 

the amplitude and phase of the j-th focus, respectively.  

Manipulation of light field via the optical pen 
Note that the pupil filter P developed by the OPD compensation is valid for an arbitrary incident vector 

beam. Here, we take only a linearly polarized beam as an example to verify the function of the optical 

pen. Based on Debye vectorial diffractive theory, the light intensity in the vicinity of the focus can be 

obtained using Supplementary Equation 3. In the following simulations, NA=0.8, n=1, and 0 1β = . The 

unit of length in all figures is the wavelength λ, and the light intensity is normalized to the unit value. 

In the case of 1N = , only one focus is obtained in the focal region, and its position can be adjusted 

in three dimensions using the optical pen. As shown in Supplementary Figure 9, foci with different 

positions in the y-z plane are realized with the different phases of pupil filter P [namely, Supplementary 
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Figure 9(b, d, f)], the parameters of which are 1N = , 1 1s = , 1 1x = , 0δ = ; (a, b) 1 15, 10y z= − = , (c, d) 

1 10, 0y z= = , and (e, f) 1 15, 10y z= = − . Compared with the original focus in Supplementary Figure 

9(c), the shape of the focus remains invariant while the position can be adjusted freely in the focal 

region.  

For an optical pen, the focal region can be considered a drawing board on which an arbitrary 

pattern can be realized by precisely controlling the number and position of foci and their corresponding 

weight factors in Supplementary Equation 19. The size of the optical pen is determined by the focus of 

the incident linearly polarized beam, which is relevant to the NA. For one particular light pattern, the 

number and position of foci determine the shape of the light pattern, which can be manipulated using the 

parameters N, xj, yj, zj. Once the shape is confirmed, the amplitude and phase of each focus must be 

adjusted by sj and δj so that the desired light pattern can be realized in the focal region. 

For the same light pattern, which is determined only by the shape, the number and position of foci 

are identical. However, the weight factors sj and δj have countless possibilities. As shown in 

Supplementary Figure 10, a 4×4 focal array in the x-y plane can be realized with the different phases 

shown in Supplementary Figure 10(d-f), respectively. Supplementary Figure 10(d-f) can be obtained by 

multiplying two phases, which yields a 1×4 focal array along the x- and y-axis. Thus, 4N = , 0jz = and 

0jδ = . For the 1×4 foci along the x-axis, 0jy =  and the foci are located at 1 3x = − , 2 3x = , 3 9x = −  

and 4 9x = . For the 1×4 foci along the y-axis, 0jx =  and the foci are located at 1 3y = − , 2 3y = , 

3 9y = −  and 4 9y = . The distance between each focus along the x- and y-axis is 6λ . The only 

difference between the phases for the same 1×4 foci is the weight factor js . For example, three pupil 

filters for the 1×4 focal array along the x- and y-axis are obtained, with 

1 2 3 41.05, 0.7, 0.92, 0.28s s s s= = = = − ; 1 2 3 40.885, 1s s s s= = − = = ; and 1 21.05, 0.7,s s= − =  

3 40.95, 0.33s s= = , which are denoted as 1 3~x xl l  for the x-axis and 1 3~y yl l  for the y-axis. Finally, the 

phases can be obtained as follows: (d) 1 1x yl l× ; (e) 2 2x yl l× ; and (f) 3 2x yl l× . Clearly, all phases in 

Supplementary Figure 10(d-f) are different from each other, although they all generate an identical 4×4 

focal array in the focal plane. The most typical array is the phase in Supplementary Figure 10(e), which 

is a common Dammann grating, and it was also obtained in Ref. [12]. In other words, the optical pen in 

Supplementary Equation 19 represents all possible phases, with only the weight factors being different, 
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and the Dammann grating is only one of the special solutions. Thus, additional phases can be obtained 

by adjusting the weight factor js . 

When generating a light pattern in the focal region, the shape is determined by the number and 

position of foci, whereas the amplitude and phase of each focus ensure the quality of the entire pattern. 

By controlling the number and position along with the weight factors js  and jδ , more complex focal 

patterns can be realized. As shown in Supplementary Figure 11(a, b), NANO and OPT are created in the 

focal plane with the phases in Supplementary Figure 11(c, d). In addition, a three-dimensional focal 

pattern can also be realized using the optical pen. As shown in Supplementary Figure 12(a), OPT is 

obtained in the 20 ,0,20z λ λ= −  planes simultaneously, with the phase shown in Supplementary Figure 

12(b). All parameters for the above phases can be found in the Parameters of Supplementary Figures 11 

and 12. Once again, the phases for the generation of focal patterns in Supplementary Figures 11 and 12 

are not unique, but all can be obtained using js  and jδ  in Supplementary Equation 19. 

Significance of the Optical Pen 
The generation of an ultralong anti-diffracting light beam in free space leads to the precise manipulation 

of the number, position, amplitude and phase of foci in the focal region. However, such precision cannot 

be achieved using previous techniques [12-17]. The optical pen is therefore developed to solve this 

problem. As a versatile optical tool, the optical pen possesses an explicit form (Supplementary Equation 

19) that can be used to unify the relationship between the focal pattern and the phase in the entrance 

plane. By adjusting the parameters of the optical pen, the number, position, amplitude and phase of foci 

can be adjusted at will in the focal region so that an arbitrary focal pattern can be realized in free space. 

This advantage makes the optical pen a perfect optical tool for the creation of ultralong anti-diffracting 

light beams in free space. 

Parameters of Supplementary Figures 11 and 12 
The parameters of the phase in Supplementary Figure 11(c) 

Parameters for O 
16

1
PF( , , ,0)N

O j j jj
l s x y=

=
= ∑  , 

where cosj jx d φ= , sinj jy d φ=  and 9d = − ; 2 ( 1) / , 1,2,3...j j N j Nφ π= − =   ; 1 4 6,7 9 12 16 1s s s s− −= = = =  ; 

5 0.97s = ; 8,13 1.05s = ; 14 1.15s = ; 15 0.98s = . 

Parameters for N 
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2 7.5d = −  ; 3 10d = −  ; 

1 2 3 2 3 2 3 2 3

2 3 2 2

2 3 2 3

PF(1, , ,0) PF(0.97, , ,0) PF( 1, , / 2,0) PF(0.95, / 2, / 2,0)
   PF( 0.97, , / 2,0) PF( 0.8, ,0,0) PF(1.05,0,0,0) PF( 0.8, ,0,0)
   PF( 0.85, , / 2,0) PF(0.95, / 2, / 2,0) PF(

Nl d d d d d d d d
d d d d

d d d d

= − + − − + − − + − +
− − − + − + + − − +
− + − + − 2 3 2 3

2 3 2 3

0.88, , / 2,0) PF(0.88, , ,0)
   PF(1, , ,0) PF( 0.1,0,15,0) PF( 0.1, / 2, ,0)

d d d d
d d d d

− + +
− + − + − − −

 ; 

2 2 3 2 3 2 3 2 3

2 3 2 2

2 3 2 3

PF(0.98, , ,0) PF(0.93, , ,0) PF( 0.88, , / 2,0) PF(0.95, / 2, / 2,0)
   PF( 0.85, , / 2,0) PF( 0.8, ,0,0) PF(1.05,0,0,0) PF( 0.8, ,0,0)
   PF( 0.91, , / 2,0) PF(0.943, / 2, / 2,

Nl d d d d d d d d
d d d d

d d d d

= − + − − + − − + − +
− − − + − + + − − +
− + − 2 3 2 3

2 3 2 3

0) PF( 0.93, , / 2,0) PF(0.9, , ,0)
   PF(1, , ,0) PF( 0.2, / 2, ,0)

d d d d
d d d d

+ − − + +
− + − −

 ; 

Parameters for A 

4 10d = −  ; 5 7.5d = −  ; 

4 4 4 4 4 4

4 5 4 5 4 4 4

4 4 4 4

PF(0.83,0, ,0) PF( 0.9, / 4, / 2,0) PF( 0.9, / 4, / 2,0) PF(0.9, / 2,0,0)
 PF(0.9, / 2,0,0) PF(0.8, , / 2,0) PF(0.89, , / 2,0) PF( 0.82, / 4, / 2,0)
 PF( 0.83, / 4, / 2,0) PF(0.8, , ,0)

Al d d d d d d
d d d d d d d

d d d d

= − + − − + − − − + +
− + + − + − +

− − + 4 4PF(0.83, , ,0).  d d+ −
; 

Final phase 
6 15d =  

6 6 1 6 6 2 6 6 6 6Phase[PF(1.3, , ,0) PF(1.3, , ,0) PF(1, , ,0) PF(0.9, , ,0) ]pf N N A Od d l d d l d d l d d lψ = − − + − + + − ; 
exp( )pf pfl iψ= . 

The parameters of the phase in Supplementary Figure 11(d) 

Parameters for O 
16

1
PF( , , ,0)N

O j j jj
l s x y=

=
= ∑ , 

where cosj jx d φ= , sinj jy d φ= ; 9d = − ; 2 ( 1) / , 1,2,3...j j N j Nφ π= − = ; 1,3 6,7 1s s= = ; 2,11 1.03s = ;

4 1.01s = ; 5 1.15s = ; 8 1.1s = ; 9 1.08s = ; 10 1.05s = ; 13 1.24s = ; 12,14 16 1.02s − = . 

Parameters for P 
7

8 9 10 111

12 13 14

PF( ,0, ,0) PF( ,3,0,0) PF( ,6,0,0) PF( ,3,9,0) PF( ,6,9,0)

 PF( ,8,6.75,0) PF( ,8,2.25,0) PF( ,3, 9,0)
P j jj

l s d s s s s

s s s
=

= + + + + +

+ + −

∑ , 

where ( 4) 3jd j= − × ; 1 1.125s = ; 2 1.12s = ; 3,5 1.205s = − ; 4 1.505s = ; 6 0.935s = ; 7,13 1.1s = ; 8 1.6s = ; 

9 1.4s = ; 10 1.45s = ; 11,12 1.2s = ; 14 0.3s = .  

Parameters for T 
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7 9 11
11 8 10

PF( ,0, ,0) PF( , ,9,0) PF( , ,9,0)T j j j j j jj j j
l s d s D s D += = =
= + +∑ ∑ ∑ , 

where ( 4) 3jd j= − × ; ( 10) 3jD j= − ×  and 1 1.4s = ; 2 1.26s = − ; 3 1.3s = ; 4 1.1s = ; 5 1.25s = ; 

6 1.35s = − ; 7 1.55s = ; 8 0.95s = − ; 9,10 1.46s = ; 11 1.15s = − . 

Final phase 
Phase[PF(1.45, 20,0,0) PF(1.1, 3,0,0) PF(1.1,20,0,0) ]pf O P Tl l lψ = − + − + ; 

exp( )pf pfl iψ= . 
The parameters of the phase in Supplementary Figure 12 

Parameters for O 
16

1
( , , ,0)N

O j j jj
l PF s x y=

=
= ∑ ,  

where  cosj jx d φ= , sinj jy d φ=  and 9d = − ; 2 ( 1) / , 1,2,3...j j N j Nφ π= − = ; 1 0.95s = ; 13 1.2s = ; 

2,4,6 8,14 16 1s − − = ; 3,5,9 11 1.1s − = . 

Parameters for P 
7

8 9 10 111

12 13

PF( ,0, ,0) PF( ,3,0,0) PF( ,6,0,0) PF( ,3,9,0) PF( ,6,9,0)

PF( ,8,6.75,0) PF( ,8,2.25,0)
P j jj

l s d s s s s

s s
=

= + + + + +

+

∑ , 

where ( 4) 3jd j= − × ; 1,7 0.8s = ; 2,10,11 1.3s = ; 3 1.3s = − ; 4 1.6s = ; 5 1.4s = − ; 6,9 1.2s = ; 8 1.4s = ; 

12 1.15s = ; 13 1s = . 

Parameters for T 
7 9 11

11 8 10
PF( ,0, ,0) PF( , ,9,0) PF( , ,9,0)T j j j j j jj j j

l s d s D s D += = =
= + +∑ ∑ ∑ ,  

where ( 4) 3jd j= − ×  , ( 10) 3jD j= − × ; 1 1.45s = ; 2 1.35s = − ; 3 1.35s = ; 4 0.8s = ; 5 1.23s = ; 

6 1.25s = − ; 7 1.4s = ; 8 1s = − ; 9,10 1.3s = ; 11 0.95s = − . 

Final phase 

Phase[PF(1.25, 12, 12, 20) PF(0.98,0,0,0) PF(1,12,12,20) ]pf O P Tl l lψ = − − − + + ; 

exp( )pf pfl iψ= . 
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Supplementary Note 4: UAD light beams under the condition of NA=0.8 
Supplementary Figure 13 shows UAD light beams with 0, 1, 2, and 3 energy oscillations in the y-z plane, 

and they are generated by focusing a linearly polarized Gaussian beam with NA=0.8. The corresponding 

phases are shown in Supplementary Figure 13(e-h), and the parameters can be found in Supplementary 

Table 1. Notably, the anti-diffracting distances of the UAD light beams for zero and one energy 

oscillation are only 2.34λ and 31.96λ, respectively. However, using the multiple energy oscillation 

mechanism, UAD light beams can be easily achieved by simply increasing the number of energy 

oscillations via modulation of the optical pen. As shown in Supplementary Figure 13(c, d), the anti-

diffracting distances of two and three energy oscillations are 70.56λ and 99.50λ, respectively. 

The multiple energy oscillations mechanism can lead to a peculiar energy flux at the switch point 

between adjacent energy oscillations as indicated by the cross-shaped sidelobes in Supplementary Figure 

13(j). The bottom sidelobe corresponds to an energy discharge process similar to that at point A in the 

initial energy oscillation as shown in Supplementary Figure 13(i). Although the energy discharge at 

point B will soon be completed, the upper sidelobes can provide an additional energy recharge so that 

the light beam can propagate further. That is, at point B, the light beam experiences not only an energy 

discharge in the initial energy oscillation but also an energy charge similar to that at point C in 

Supplementary Figure 13(k) in the second energy oscillation. Thus, the UAD light beam can maintain its 

shape without significant divergence over a super-long range. 
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