Supplementary Information for

Designing seryl-tRNA synthetase for improved serylation of selenocysteine tRNAs

Xian Fu, Ana Crnković, Anastasia Sevostyanova and Dieter Söll

This file includes:

Supplementary Text

Figure S1: Nonsense suppression efficiency of tRNA^{UTuX} and tRNA^{SecUX}.

Figure S2: Nonsense suppression efficiency using a serine-specific reporter, CAT-S146TAG.

Figure S3: Serylation of tRNA^{UTuX} by SerRS variants with a flexible linker and S55A mutation as monitored by a nonsense suppression assay.

Figure S4: Reexamination of selected SerRS variants in a tRNA^{UTuX}-dependent nonsense suppression assay.

Figure S5: Serine 55-to-alanine mutation is essential for SerRS V20 activity *in vivo*. Figure S6: Stop-codon read-through using evolved variants and tRNA^{Ser} derived suppressor, SupD.

Table S1: Oligonucleotides used in this study.Supplementary References

Initial design and trials in SerRS evolution

We initially tested two assumptions: (i) that increasing the distance between N- and Cterminal domains of SerRS may help accommodate long acceptor-TψC arm of tRNA^{Sec} and its variants and (ii) that the mutagenesis of an N-domain serine residue (S55), implicated in tRNA^{Sec} vs. tRNA^{Ser} discrimination [1], could help improve tRNA^{Sec} recognition. Because tRNA^{UTuX} allowed a wider range of Cm levels at which we could asses suitability of particular SerRS mutations (Figure S1, S2), and was seemingly a better substrate for wild-type SerRS, we decided to test our SerRS variants using this particular tRNA^{Sec} derivative.

To create a SerRS variant with increased flexibility between its N-and C-domains, a sequence coding for a GGGGS linker was inserted before glycine 114. Because canonical tRNA^{Sec} has a long, atypical, 13-base pair acceptor-T ψ C arm, this feature was speculated to be the main reason for the lack of efficient charging by *E. coli* SerRS [2,3]. However, *in vivo* suppression assay using CAT-112TAG reporter revealed that DH10B *ΔselAB*::zeo cells expressing the linker-containing variant were slightly more sensitive to Cm than cells expressing wt SerRS (Figure S3). This suggests that the linker-containing SerRS variant serylates tRNA^{UTuX} less proficiently than wt SerRS.

When SerRS-S55A variant was assayed using CAT-112TAG reporter both wt SerRS and SerRS-S55A variant facilitated cell growth at similar Cm concentrations (\leq 75 µg/ml, Fig. S3), revealing that S55A mutation has little if any influence on EcSerRS and tRNA^{UTuX} interaction.

Figure S1. Nonsense suppression efficiency of tRNA^{UTuX} and tRNA^{SecUX}. *E. coli* strain DH10B *ΔselAB*::zeo expressing chloramphenicol (Cm) acetyltransferase (CAT) with an amber codon at position 112 and tRNA^{UTuX} or tRNA^{SecUX} was grown on LB with different concentration of Cm (0, 25, 50 µg/ml). Cells not expressing any suppressor tRNAs were used to monitor levels of near-cognate suppression. Cells expressing wild-type (wt) CAT were used to determine maximum expression. Wild-type SerRS was induced with 0.15% L-arabinose.

Figure S2. Nonsense suppression efficiency using a serine-specific reporter, CAT-S146TAG. DH10B Δ *selAB*::zeo cells expressing different amber suppressors (tRNA^{UTuX}, tRNA^{SecUX} or tRNA^{PyI}) and CAT-S146TAG were grown on LB plates supplemented with various concentration of Cm (0 and 20 µg/ml). tRNA under the control of an *lpp* promoter and the *cat* gene with an amber codon at position 146 were in the same plasmid. SerRS-coding sequence was placed under the P_{BAD} promoter on the second, high-copy plasmid. SerRS expression was induced by 0.15% L-arabinose. Suppressors which are not recognized by *E. coli* SerRS cannot facilitate growth, as demonstrated by attempted use of tRNA^{PyI}.

Figure S3. Serylation of tRNA^{UTuX} by SerRS variants with a flexible linker and S55A mutation as monitored by a nonsense suppression assay. *E. coli* cells DH10B Δ *selAB*::zeo expressing tRNA^{UTuX} and SerRS (wt and mutant enzymes as indicated) were grown on LB plates supplemented with different concentrations of Cm (0, 25, 50, 75 µg/ml). tRNA^{UTuX} was under the control of an *lpp* promoter and SerRS was placed under the P_{BAD} promoter; these two genes were on the same high-copy plasmid. The CAT gene with an amber codon at position 112 was on the second plasmid. SerRS expression was induced with 0.15% L-arabinose. Cells not expressing any suppressor tRNAs were used to monitor levels of near-cognate suppression. Cells expressing wild-type (wt) CAT were used to determine maximum expression.

tRNA ^{UTuX}		V5	V13	V22	V7	V8	V15	Plate layou	
		V16	V20	V21	WT				
tRNA ^{Pyl}		V5	V13	V22	V7	V8	V15		
		V16	V20	V21	WТ				
+ 0.15	%	ara	abino	se	- 0.1	5% I	ara	binc	ose
• •	۲	۲	•						•
00					• •				
0				9			•		•
0	•							3	

Figure S4. Reexamination of selected SerRS variants in a tRNA^{UTuX}-dependent nonsense suppression assay. Using a serine-specific CAT-S146TAG reporter in combination with either tRNA^{UTuX} or tRNA^{PyI}, a total of 22 selected SerRS clones were assayed in the DH10B *ΔselAB*::zeo strain. Cell survival was examined at 65 µg/ml Cm. Four clones (SerRS V5, V8, V20, and V22) were found to allow much higher Cm resistance than the wt SerRS; later experiments showed that the activity of variant V5 is not stable. The activity of other SerRS clones was not dependent on tRNA^{UTuX} expression and those clones were removed from the study. Although SerRS-encoding sequences were placed under the P_{BAD} promoter, no difference in growth was observed when arabinose was omitted from the screen. This arabinose-independent expression occurred due to an in-frame deletion of the AraC N-terminus. The N-terminal arm of AraC is involved in the light switch mechanism where a significant structural change occurs upon arabinose binding [4]. Because AraC mutations allow constitutive expression from P_{BAD} promoter [5] the four SerRS clones were expressed even when arabinose was absent from the media, thereby allowing CAT biosynthesis and subsequently Cm resistance.

Figure S5. Serine 55-to-alanine mutation is essential for SerRS V20 activity *in vivo*. *E. coli* strain WL30153 (MC4100 Δ *selAB*, [6]) expressing a suppressor tRNA (tRNA^{UTu1}, tRNA^{SecUX}, SupD or tRNA^{UTuX}) and SerRS V20 or SerRS V20-A55S (denoted as SerRS V20*) was grown on LB plates supplemented with different concentrations of Cm (400, 20, 300, 55 mg/l). The *cat* gene with an amber codon at position 146 and the tRNA gene under the control of an *lpp* promoter were on the same plasmid. SerRS V20 or V20-A55S were placed under the *trc* promoter on a separate plasmid. SerRS expression was induced with 0.05 or 0.1 mM IPTG.

Figure S6. Stop-codon read-through using evolved variants and tRNA^{Ser} derived suppressor, SupD. *E. coli* strain WL30153 [6] in which tRNA SupD and SerRS variants were expressed was grown on LB plates supplemented with 300 mg/l of Cm. The *cat* gene with an amber codon at position 146 and the tRNA gene under the control of an *lpp* promoter were on the same plasmid. SerRS variants were placed under the *trc* promoter on a separate plasmid. SerRS expression was induced with 0.05 or 0.1 mM IPTG.

Primer name	Sequence	Application
pACYC.UTu1F	gttcccctccgaattcagcgttacaagtattacac	pACYC184
		backbone
		amplification for
pACYC.UTu1R	ccgccaggatcctctagagtcgacctg	tRNA ^{UTu1} gene
		insertion
UTu1.F	cgctgaattcggaggggaacttctatctgg	tRNA ^{UTu1} gene
UTu1.R	tctagaggatcctggcggaggggaagggaatc	amplification
pACYC.selCF	cgatcttccgaattcagcgttacaagtattacac	pACYC184
		backbone
		amplification for
pACYC.selCR	ttccgccaggatcctctagagtcgacctg	selC(amb)
		insertion
SelC.F	gctgaattcggaagatcgtcgtctccgg	selC(amb)
SelC.R	ctagaggatcctggcggaagatcacaggag	amplification
pACYC.supDF	atctctccgaattcagcgttacaagtattacacaaag	pACYC184
		backbone
pACYC.supDR	ctccgccaggatcctctagagtcgacctgcagatccttag	amplification for
		supD insertion
supD.F	acgctgaattcggagagatgccggagcg	supD
supD.R	ctagaggatcctggcggagagaggggg	amplification
A55S.F	agcgtaactcccgatcgaaatccattggccaggcgaaagc	SerRS V20
A55S.R	caatggatttcgatcgggagttacgctccgcttgc	mutagenesis
EcSer.Fi	cagcagattgggatcgagcat	pET15
Facar Di		backbone
EcSer.RI	gaacggactggaatatattggc	amplification
EcSer.F	atgctcgatcccaatctgctg	serS gene
		amplification to
EcSer.R	gccaatatattccagtccgttc	generate
		pET15-serS
p18UTu1.F	gttcccctcctatagtgagtcgtattaggatccccg	pUC18
		backbone
p18UTu1.R		amplification for
		pUC18-
		tRNA(UTu1)
18UTu1.F	cactataggaggggaacttctatctgg	tRNA(Utu1)
		amplification for
18UTu1.R	tgcctggcggaggggaagg	pUC18-
		tRNA(UTu1)
p18supD.F	ctccggcatctctcctatagtgagtcgtattaggatccccg	pUC18
p18supD.R	ctctctccgccaggcataagcttggcgtaatc	backbone

Table S1. Oligonucleotides used in this study.

		amplification for
		pUC18-supD
18supD.F	ctataggagagatgccggagcggc	supD
18eupD R	cttatacctaacaaaaaaaa	amplification for
TOSUPD.IX		pUC18-supD
p18UTuX.F	gcaccatcttcctatagtgagtcgtattaggatccccg	pUC18
		backbone
n18UTuX R	acatettecaceagacataacettaacataate	amplification for
prooraxit	goalolloogoolaggoalaagollggoglaalo	pUC18-
		tRNA(UTuX)
18UTuX.F	cactataggaagatggtgccgtcc	tRNA(UtuX)
		amplification for
18UTuX.R	tatgcctggcggaagatgcagg	pUC18-
		tRNA(UTuX)
p18SecUX.F	cgaccatcttcctatagtgagtcgtattaggatccccg	pUC18
		backbone
n18SecI IX R	cttacatettecaccagacataagettaacataate	amplification for
procecox.iv		pUC18-
		tRNA(SecUX)
18SecUX.F	ctcactataggaagatggtcgtctccg	tRNA(SecUX)
		amplification for
18SecUX.R	gcctggcggaagatgcaaggag	pUC18-
		tRNA(SecUX)
tRNA_184_FW	caacatgaatggtcttcgggaaagcaaattcgacccgggcg	lpp-tRNA-rrnC
		cassette
tRNA_184_RV	gtttaccggtttattgactacgatcgtgctcctgtcgttg	amplification for
		pXF113/114/115
inV184_FW	gtagtcaataaaccggtaaaccag	pACYC184
		backbone
inV184_RV	ccgaagaccattcatgttgttg	amplification for
		pXF113/114/115
Linker FW	ggtggtggtggcagcggtaaagacgaaaatgacaac	add GGGGS
Linker RV		linker before
		G114 of SerRS
S55A FW	gcggagcgtaactcccgagcgaaatccattggccaggcg	mutate Ser55 of
S55A RV	cgcctggccaatggatttcgctcgggagttacgctccgc	SerRS to Ala
tRNA_426_FW	tccccgaaaagtgccaccgccaccctggcgccgcttcttt	lpp-tRNA-rrnC
		cassette
		amplification for
tRNA_426_RV	catttgacaggcacattatgttgaggacccggctaggctagatc	pBAD-SerRS
		plasmids
inV426_FW	cataatgtgcctgtcaaatggacgaagc	pACYC184
in\//26_D\/		backbone
11V420_KV		amplification

pTRC_R	catggtctgtttcctgtgtg	pTrc99A
pTRC_F	tgttttggcggatgagaag	backbone amplification
Ser_pTRC_F	caggaaacagaccatgctcgatcccaatctgctgc	serS gene amplification for
Ser_pTRC_R	ctcatccgccaaaacattagccaatatattccagtccgttc	pTrc99A
Frag1 FW	gtgtctataatcacggcagaaaagtccac	
Frag1 RV	cgatatcgcgaatttcagcctgtaaagcmnncagctcmnnmnntgctgcatccagctcttcgcc	
Frag2 FW	gctttacaggctgaaattcgcgatatcg	
Frag2-1 RV	caatctgccctttcattaccacaaagcgAHNaccagtcagcttaactgcagctgc	
Frag2-2 RV	caatctgccctttcattaccacaaagcgCDBaccagtcagcttaactgcagctgc	
Frag2-3 RV	caatctgccctttcattaccacaaagcgCCAaccagtcagcttaactgcagctgc	To generate SerRS inserts fully randomized at given positions (residues K86, A87, D90, S160 and D228 and
Frag3 FW	cgctttgtggtaatgaaagggcagattg	
Frag3-1 RV	ccgttgggatcagcgcatagttactAHNAHNtgcttcttcttccagcggacgag	
Frag3-2 RV	ccgttgggatcagcgcatagttactCDBCDBtgcttcttcttccagcggacgag	
Frag3-3 RV	ccgttgggatcagcgcatagttactCCACCAtgcttcttcttccagcggacgag	
Frag3-4 RV	ccgttgggatcagcgcatagttactCDBAHNtgcttcttcttccagcggacgag	
Frag3-5 RV	ccgttgggatcagcgcatagttactCCAAHNtgcttcttcttccagcggacgag	
Frag3-6 RV	ccgttgggatcagcgcatagttactCCACDBtgcttcttcttccagcggacgag	1229)
Frag3-7 RV	ccgttgggatcagcgcatagttactAHNCDBtgcttcttcttccagcggacgag	
Frag3-8 RV	ccgttgggatcagcgcatagttactAHNCCAtgcttcttcttccagcggacgag	
Frag3-9 RV	ccgttgggatcagcgcatagttactCDBCCAtgcttcttcttccagcggacgag	
Frag4 FW	agtaactatgcgctgatcccaacgg	
Frag4 RV	ctgtgccgggatccatacttcc	
EM7-zeo FW	ggcttgatgcgcgatatgtcctcctgacccatctcacgttacaatccgtgcggatctgatcagcacgtgttgac	EM7-zeocin
EM7-zeo RV	ccttatttttccggaaataataatgcgtcgcgcaataaatgatcatttcctcagtcctgctcctcggcc	cassette amplification for DH10B Δ <i>selAB</i> ::zeo strain
EcSerSf	cagaccatggaaatgctcgatcccaatctgctgc	amplification of
EcSerSr	agccggtaccttagccaatatattccagtccgttcatatacg	the serS gene to generate pBAD- serS plasmids
supF 113 FW	ctctaaatctgccgtcatcgacttcgaaggttcgaatccttcccccaccacggatcctctagagtcgacctg	Replace
supF 113 RV	ctttgtgtaatacttgtaacgctgaattcggtggggttcccgagcggccaaagggagcagactctaaatctgccgtcat	tRNA ^{UTUX} in pXF113 by supF

Table 2. Steady-state kinetic parameters for SupD in case of wild-type SerRS and SerRS variants V8 and V20. All reactions were performed at 37 °C. Concentration of SupD was corrected for plateau charging (29.7 %). In aminoacylation with SupD enzyme concentrations were: 30 nM wild-type SerRS, 15 nM SerRS V8, 15 nM SerRS V20.

enzyme	<i>Κ</i> _M (μΜ)	k _{cat} (min⁻¹)	<i>k</i> _{cat} / <i>K</i> _M (min⁻¹ μM⁻ ¹)	relative loss
wt	0.76	95	130	1
V8	1.6	47	29	4.3
V20	1.3	31	23	5.5

Supplementary references:

[1] Wang, C., Guo, Y., Tian, Q., Jia, Q., Gao, Y., Zhang, Q., Zhou, C. and Xie, W. (2015). SerRS-tRNA^{Sec} complex structures reveal mechanism of the first step in selenocysteine biosynthesis. Nucleic Acids Res 43, 10534-45.

[2] Baron, C. and Böck, A. (1991). The length of the aminoacyl-acceptor stem of the selenocysteine-specific tRNA^{Sec} of *Escherichia coli* is the determinant for binding to elongation factors SELB or Tu. J Biol Chem 266, 20375-9.

[3] Holman, K.M., Puppala, A.K., Lee, J.W., Lee, H. and Simonović, M. (2017). Insights into substrate promiscuity of human seryl-tRNA synthetase. RNA 23, 1685-1699.

[4] Schleif, R. (2010). AraC protein, regulation of the *L*-arabinose operon in *Escherichia coli*, and the light switch mechanism of AraC action. FEMS Microbiol Rev 34, 779-96.

[5] Ross, J.J., Gryczynski, U. and Schleif, R. (2003). Mutational analysis of residue roles in AraC function. J Mol Biol 328, 85-93.

[6] Leinfelder, W., Forchhammer, K., Zinoni, F., Sawers, G., Mandrand-Berthelot, M.A. and Böck, A. (1988). *Escherichia coli* genes whose products are involved in selenium metabolism. J Bacteriol 170, 540-6.