

Supplementary Figure 1. (A) ELISA analysis of IL-33 in lysates of B16-Vec and B16-IL33 tumors. (B) Serum levels of IL-33 in B16-Vec and B16-IL33 tumor-bearing mice. (C) Flow cytometric analysis of splenic ILC2s in Rag1^{-/-} mice with B16-Vec and B16-IL33 tumors demonstrating the gating strategy used to identify ILC2s. Cells were gated on Lin⁻ or lineage negative population, indicating CD11b⁻CD11c⁻Gr1⁻NK1.1⁻. (D) Presence of ILC2s in EL4 tumors following IL-33 treatment in Rag1^{-/-} mice. (E) Representative flow panels demonstrate antibody depletion of CD90⁺ cells as a means of eliminating ILC2s from spleens (lower panels) and B16-F10 tumors (upper panels). Anti-CD90 treatment was compared to rat IgG treatment as an isotype control. ILC2s were pregated on CD11b⁻FceRI⁻ NK1.1⁻ population. Experiment was performed in Rag1^{-/-} mice. Data are shown as mean \pm SEM. * *P*< 0.05; ** *P*< 0.01 as determined using a Student's *t*-test.

Supplementary Figure 2. (A) IL-33 preferentially expands ILC2s over other ILC subsets. Measurement of B16-Vec and B16-IL33 tumors for ILC1 and ILC2 presence based on IFN- γ and IL-5 production respectively. ILCs were pregated on CD45⁺CD90⁺ cells and excluded NK1.1⁺ NK cells. (B) ILC2 and ILC3 measurement based on IL-5 and IL-17 secretion respectively. ILCs were pregated on CD45⁺CD90⁺ cells. (C) A subset of IL-5-secreting ILC2s co-express IL-10. Measurement of IL-5 and IL-10 production among ILC2s by flow cytometry. Data are shown as mean \pm SEM. * *P*< 0.05; ** *P*< 0.01 as determined using a Student's *t*-test.

Supplementary Figure 3. (A) WT ILC2s, but not CD73^{-/-} ILC2s, catabolize AMP into adenosine. AMP-Glo assay was used to quantify consumption of AMP by WT and CD73^{-/-} ILC2 cultures. (B) CD73-deficient ILC2s display similar IL-5 production as CD73- competant ILC2s. Flow cytometric analysis of IL-5 production by WT and CD73^{-/-} ILC2s generated from bone marrow. Data are shown as mean \pm SEM. *** *P*< 0.001 as determined using a Student's *t*-test.

Supplementary Figure 4. NK cells do not express CD73 nor is their cytolytic capacity directly affected by its loss. (A) Flow cytometric analysis of spleens of WT and CD73^{-/-} mice. (B) B16F10 cell death was assessed by annexin V and 7-AAD following coculture with WT and CD73^{-/-} NK cells. B16F10 and NK cells cultured at a ratio of 1:20. Data are shown as mean \pm SEM. *** *P*< 0.001 as determined using a Student's *t*-test.