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Supplementary Figure 1. (A) ELISA analysis of IL-33 in lysates of B16-Vec and B16-
IL33 tumors. (B) Serum levels of IL-33 in B16-Vec and B16-IL.33 tumor-bearing mice.
(C) Flow cytometric analysis of splenic ILC2s in Ragl~~ mice with B16-Vec and B16-I1L33
tumors demonstrating the gating strategy used to identify ILC2s. Cells were gated on Lin-
or lineage negative population, indicating CD11b"CD11c"Gr1'NK1.1". (D) Presence of
ILC2s in EL4 tumors following 1L-33 treatment in Ragl”~ mice. (E) Representative flow
panels demonstrate antibody depletion of CD90" cells as a means of eliminating ILC2s
from spleens (lower panels) and B16-F10 tumors (upper panels). Anti-CD90 treatment was
compared to rat [gG treatment as an isotype control. ILC2s were pregated on CD11bFceRI
NK1.1- population. Experiment was performed in Rag1”~ mice. Data are shown as mean +

SEM. * P<0.05; ** P<0.01 as determined using a Student’s -test.
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Supplementary Figure 2. (A) IL-33 preferentially expands ILC2s over other ILC subsets.
Measurement of B16-Vec and B16-IL33 tumors for ILC1 and ILC2 presence based on
IFN-y and IL-5 production respectively. ILCs were pregated on CD45"CD90" cells and
excluded NK1.17 NK cells. (B) ILC2 and ILC3 measurement based on IL-5 and IL-17
secretion respectively. ILCs were pregated on CD45°CD90" cells. (C) A subset of IL-5-
secreting ILC2s co-express IL-10. Measurement of IL-5 and IL-10 production among
ILC2s by flow cytometry. Data are shown as mean + SEM. * P< 0.05; ** P< 0.01 as

determined using a Student’s #-test.
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Supplementary Figure 3. (A) WT ILC2s, but not CD73”- ILC2s, catabolize AMP into
adenosine. AMP-Glo assay was used to quantify consumption of AMP by WT and CD73"
= ILC2 cultures. (B) CD73-deficient ILC2s display similar IL-5 production as CD73-
competant ILC2s. Flow cytometric analysis of IL-5 production by WT and CD73”~ ILC2s

generated from bone marrow. Data are shown as mean + SEM. *** P<(0.001 as determined

using a Student’s -test.
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Supplementary Figure 4. NK cells do not express CD73 nor is their cytolytic capacity
directly affected by its loss. (A) Flow cytometric analysis of spleens of WT and CD73"-
mice. (B) B16F10 cell death was assessed by annexin V and 7-AAD following coculture
with WT and CD73”* NK cells. BI6F10 and NK cells cultured at a ratio of 1:20. Data are

shown as mean + SEM. *** P<(.001 as determined using a Student’s ¢-test.



