immunology.sciencemag.org/cgi/content/full/2/18/eaan3796/DC1

Supplementary Materials for

Core-binding factor β and Runx transcription factors promote adaptive natural killer cell responses

Moritz Rapp, Colleen M. Lau, Nicholas M. Adams, Orr-El Weizman, Timothy E. O'Sullivan, Clair D. Geary, Joseph C. Sun*

*Corresponding author. Email: sunj@mskcc.org

Published 8 December 2017, *Sci. Immunol.* **2**, eaan3796 (2017) DOI: 10.1126/sciimmunol.aan3796

The PDF file includes:

Fig. S1. Epigenetic regulation by STAT4 in cytokine-stimulated NK cells. Fig. S2. Cell-intrinsic requirement of CBF- β for the development of mature NK cells. Fig. S3. CBF- β is critical for NK cell survival after homeostatic proliferation. Fig. S4. Runx1- or Runx3-deficient mice have normal NK cell numbers.

Other Supplementary Material for this manuscript includes the following: (available at immunology.sciencemag.org/cgi/content/full/2/18/eaan3796/DC1)

Table S1 (Microsoft Excel format). Raw data for Figs. 3 to 6 and figs. S3 and S4.

Supplementary Figures:

Fig. S1. Epigenetic regulation by STAT4 in cytokine-stimulated NK cells. Splenic NK cells (TCRβ⁻CD19⁻CD3ε⁻Ly6G⁻TER119⁻TCRγδ⁻NK1.1⁺) were isolated from either WT or *Stat4^{-/-}* mice and stimulated with IL-12 and IL-18, or media alone as a control (unstimulated). STAT4 and H3K4me3 chromatin immunoprecipitation were performed, followed by high-throughput DNA sequencing. RNA-seq was performed on splenic Ly49H⁺ WT NK cells and *Stat4^{-/-}* NK cells sorted from mixed chimeras two days following MCMV infection. (A) Top 20 genes bound by STAT4 and differentially expressed in RNA-seq data (padj < 0.05), ranked on fold change over input calculated by MACS2. (B) Meta-peak of all H3K4me3 non-promoter regions. Overlap of midpoints of ChIP fragments (defined as regions between properly paired sequence reads) for each

peak region were counted for each base pair +/- 1kb from the annotated peak center. Line plot depicts average signal for all regions for each base pair. (C) H3K4me3 signals from *Tcf7* and *Ltb* loci plotted as normalized fragment counts binned at 200bp across a 10kb window centered on the transcriptional start site.

Fig. S2. Cell-intrinsic requirement of CBF-β for the development of mature NK cells. *Rag2^{-/-} x Il2rg^{-/-}* mice were lethally irradiated and reconstituted with an equal number of bone marrow cells from WT (CD45.1) and *Cbfb^{fl/fl} x NKp46^{iCre}* (CD45.2) mice. Representative flow cytometric plots show ratio of CD45.1 and CD45.2 cells before and 28 days post transfer in the blood of recipient mice. Indicated cell types are identified as CD8⁺ T cells (TCRβ⁺CD3ε⁺CD3ε⁺CD3⁺), NKT cells (TCRβ⁺CD3ε⁺NK1.1⁺) and NK cells (TCRβ⁻CD3ε⁻NK1.1⁺). Data are representative of two independent experiments, with n=5 mice.

Fig. S3. CBF-β is critical for NK cell survival following homeostatic proliferation. (A) NK cells of WT:*Cbfb^{fl/fl}* x *Ubc*^{ERT2-Cre} mixed bone marrow chimeras were adoptively transferred into $Rag2^{-/-}$ x $Il2rg^{-/-}$ hosts which were treated with 1 mg of tamoxifen daily for 5 days. **(B)** Percentages of adoptively transferred WT or *Cbfb^{fl/fl}* x *Ubc*^{ERT2-Cre} NK cells in the blood are shown for indicated time points after transfer. **(C)** Normalized counts of *Runx1* and *Runx3* in unstimulated or IL-15 treated splenic NK cells (16 hour stimulation), as assessed by RNA sequencing (n=2 biological replicates per group). **(D)** FLICA incorporation is shown as mean fluorescence intensity (MFI) of FLICA⁺ WT and *Cbfb^{fl/fl}* x *Ubc*^{ERT2-Cre} NK cells at indicated time points after transfer. Data are mean ± s.e.m. and representative of two independent experiments with n=5-6 mice per group (**P* < 0.05, ***P* < 0.01, ****P* < 0.001).

Fig. S4. Runx1- or Runx3-deficient mice have normal NK cell numbers. $Runx1^{fl/fl}$ x $NKp46^{iCre}$ and $Runx3^{fl/fl}$ x $NKp46^{iCre}$ mice were generated. Percentages of NK cells in mice with specific deletion of Runx1 or Runx3 are compared to Cre-negative littermate controls.