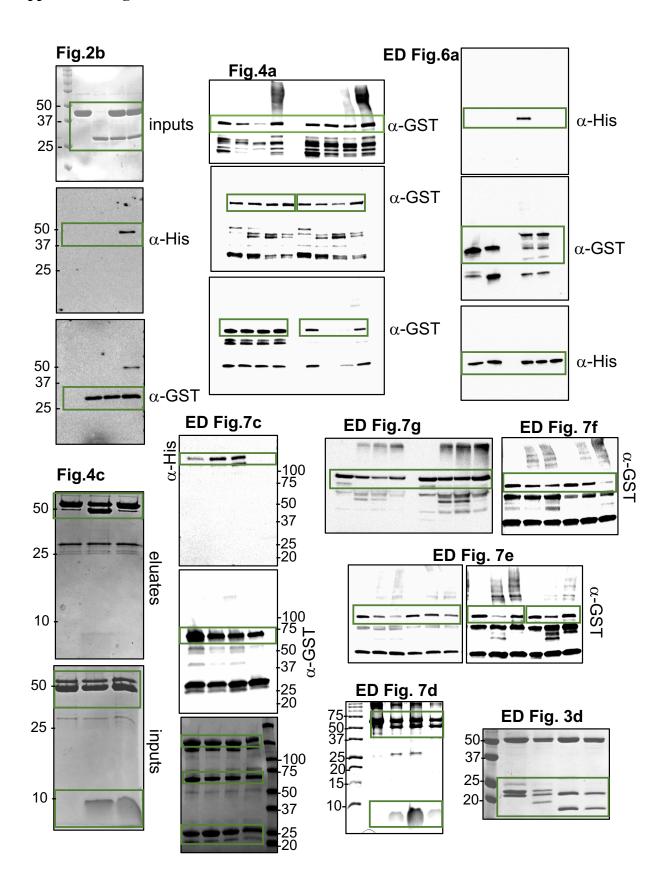
SCF^{D3-D14} Ubiquitin Ligase Exploits Structural Plasticity to Coordinate Strigolactone Perception and Signaling

Nitzan Shabek^{1,2,‡}, Fabrizio Ticchiarelli³, Haibin Mao^{1,2}, Thomas R. Hinds¹, Ottoline Leyser³ & Ning Zheng¹,2,*

¹Department of Pharmacology and ²Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195.

³The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, United Kingdom


‡ Department of Plant biology, University of California-Davis, Davis CA 95616

*Correspondence should be addressed to: nzheng@uw.edu

Supplementary Information

- 1. Uncropped SDS-PAGE gel scans: Supplementary Figure 1
- 2. Supplementary Discussion

Supplemental Figure 1.

Supplementary Figure 1. Gel source data. Uncropped gel scans for Figure 2b, Figure 4a, Figure 4c, Extended Data Figure 3d, Extended Data Figure 6a, Extended Data Figure 7c-g. Where indicated, size marker represents molecular weight in kDa. Green box indicates gel region used for figures.

Supplementary Discussion

- 1. Our analysis of YLG-induced assembly of the SCF D3-D14-D53-D2 complex and its stalled D14 activity suggest that the inactive CLIM-bound form of D14 stabilized by D3-ASK1 might be able to engage D53 (Extend Data Figure 7i). While we cannot rule out the possibility that CLIM-bound D14 in its closed conformation represents another signaling-competent form of the hydrolase, its binding mode to D53 is most likely to be distinct from that of D3-CTH-bound D14 in its open conformation. This is expected because D53-D14 interaction depends on SL and a mutant D14 defective in adopting the closed conformation has an intact hormone-dependent D53 binding activity¹. Structural analysis of D53-loaded SCF D3-D14 complexes induced by both hydrolysable and non-hydrolyzable SL mimetics will shed a light on the mechanism of action of natural hormone. Of note, mutual stabilization of CLIM-bound D14 and D3 with its retrieved CTH might also convert the SCF D3-D14 complex into an inactivated state, which is able to present D14 for poly-ubiquitination and degradation^{2,3}.
- 2. The C-terminal residue of an LRR-type F-box protein is rarely conserved among different orthologs, unless it is critically involved in the regulation of the SCF substrate receptor function⁴. The unique pocket on D3-ASK1 that anchors the invariant D3 extreme C-terminal Asp residue hints at a regulatory site, where a putative second signaling molecule could bind and modulate the topology of D3-CTH (Extended Data Fig. 1a-c). Such a regulatory mechanism of the SCF D3-D14 E3 would be analogous to the potentiation of SCF^{TIR1} and SCF^{COI1} by inositol polyphosphate cofactors for perceiving the phytohormones auxin and jasmonate^{5,6}.

Supplemetary References

- Yao, R. *et al.* DWARF14 is a non-canonical hormone receptor for strigolactone. *Nature* **536**, 469-473, doi:10.1038/nature19073 (2016).
- Chevalier, F. *et al.* Strigolactone promotes degradation of DWARF14, an alpha/beta hydrolase essential for strigolactone signaling in Arabidopsis. *Plant Cell* **26**, 1134-1150, doi:10.1105/tpc.114.122903 (2014).
- Hu, Q. *et al.* DWARF14, A Receptor Covalently Linked with the Active Form of Strigolactones, Undergoes Strigolactone-Dependent Degradation in Rice. *Front Plant Sci* **8**, 1935, doi:10.3389/fpls.2017.01935 (2017).
- 4 Xing, W. *et al.* SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. *Nature* **496**, 64-68.
- 5 Tan, X. *et al.* Mechanism of auxin perception by the TIR1 ubiquitin ligase. *Nature* **446**, 640-645, doi:10.1038/nature05731 (2007).
- 6 Sheard, L. B. *et al.* Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ coreceptor. *Nature* **468**, 400-405, doi:10.1038/nature09430 (2010).