
SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA 1

0 500 1000 1500 2000 2500 3000

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

Frame

M
ed

ia
n

flu
or

es
ce

nc
e

of
 p

ix
el

s

Fig S1. For the example calcium imaging video, we plot the median fluorescence of the pixels within each frame, along
with the smoothing spline fit () that is used to correct for the bleaching effect.

Supplemental Materials for SCALPEL: Extracting Neurons from Calcium
Imaging Data

9. Data Pre-Processing. To begin, we perform three pre-processing steps on the raw data.
These are briefly described in Step 0 of Section 4. First, we smooth the raw P × T data matrix
spatially and temporally using a Gaussian kernel smoother with a bandwidth of one pixel (Hastie
et al., 2009). Second, we adjust for any bleaching effect over time. Specifically, we fit a smoothing
spline with 10 degrees of freedom to the median fluorescence for each frame over time, and subtract
the frame-specific smoothed median from the corresponding frame. The smoothing spline fit for the
example calcium imaging video is shown in Figure S1.

Finally, we apply a slight variation of the often-used ∆f/f transformation (Ahrens et al., 2013;
Grewe et al., 2010; Grienberger and Konnerth, 2012). For the ith pixel in the jth frame, the
standardized fluorescence is equal to

yi,j ≡
y0i,j −mediant=1,...,T (y0i,t)

mediant=1,...,T (y0i,t) + quantile10%(Y 0)
,

where y0i,j is the fluorescence (after smoothing and bleaching correction) of the ith pixel in the jth
frame. This differs from the typical ∆f/f transformation in that (i) we standardize using the median
across image frames instead of the mean; and (ii) we add a small number to the denominator. This
adjustment in the denominator prevents small fluctuations in the amount of fluorescence at pixels
with very little overall fluorescence from resulting in extremely high standardized fluorescences. In
Figure S2, we show the resulting images after each stage of pre-processing for a sample frame.

10. Rationale for the Value of ω Used. In Section 4.2.1 of the main text, we suggested
using a default value of ω = 0.2 in Step 2 of SCALPEL. Here, we provide a justification for that
choice of default value. To do this, we will derive the spatial and temporal dissimilarities for a pair of
neurons. First, we make a couple of simplifying assumptions. We consider two neurons of the same
size that share a fraction k of their pixels. We assume that the neurons fire in distinct frames and

2 A. PETERSEN ET AL.

Fig S2. In (a), we show a sample frame from the raw example calcium imaging video. In (b), we show the same
frame after spatial and temporal smoothing has been done and the bleaching effect has been removed. In (c), we show
the frame after the ∆f/f transformation has been performed, which is the final result of the pre-processing in Step 0
of SCALPEL.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction of Neurons That Overlap

Di
ss

im
ila

rit
y

Spatial
Temporal

Fig S3. We compare the spatial and temporal dissimilarities, which are derived in Section 10, for a pair of neurons
sharing a certain percent of pixels.

have the same overall activity (i.e., the `2 norm of their calcium concentration over time is equal).
Under these assumptions, the spatial dissimilarity will be 1− k and the temporal dissimilarity will
be 1 − 2k

1+k2
. These results follow directly from the definitions given in equations (3) and (4). In

Figure S3, we plot the spatial and temporal dissimilarities over the range of possible k values. We
see that the spatial dissimilarity will always be larger than the temporal dissimilarity. Therefore,
to put the spatial and temporal dissimilarities on equal footing, we should use ω < 0.5. While the
exact value of ω needed to balance the temporal and spatial information equally depends on the
amount of overlap, we chose ω = 0.2 as this corresponds to an intermediate amount of overlap
(65%). Indeed, the exact choice of ω is not incredibly important: we show that values of ω between
0.1 and 0.4 perform similarly well for simulated data (Section 7.3) and real data (Section 14).

11. Example of a Cluster in Step 2. To see how the preliminary dictionary element in a
cluster relates to the other preliminary dictionary elements assigned to that cluster, we give an
example in Figure S4.

12. Filtering Dictionary Elements Prior to Fitting the Sparse Group Lasso. Option-
ally, at the beginning of Step 3, the elements in the refined dictionary from Step 2 may be filtered

SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA 3

Fig S4. We focus on a single cluster of preliminary dictionary elements from Step 2. The representative dictionary
element for this cluster is highlighted in (a). The spatial maps for a random subset of the 36 preliminary dictionary
elements in this cluster are shown in (b), along with a spatial map containing all 36 dictionary elements, in which
the hue intensity at a given pixel indicates the number of elements containing that pixel. In (c), we plot the average
thresholded fluorescence for each of the dictionary elements from (b). Finally, in (d), we show the representative
element for that cluster. The gray coloring indicates the union of all preliminary dictionary elements in the cluster.

prior to fitting the sparse group lasso in (6). One way to filter the dictionary elements is on the
basis of the number of members in the clusters. That is, we can discard any dictionary elements rep-
resenting clusters containing fewer than some minimum number of members. This number should
be chosen based on the goals of the analysis. If we retain all clusters, regardless of size, then we
may include some non-neuronal dictionary elements in the sparse group lasso problem. In contrast,
if we discard small clusters (e.g., those with fewer than five members), then we may erroneously
filter out some true neurons. In Figure S5, we illustrate the sensitivity of the results to the choice
of minimum cluster size, on the example video considered in Sections 4 and 6.2.

13. Further Discussion of Step 3. We now elaborate on issues related to solving the sparse
group lasso problem (6) in Step 3. This discussion is somewhat technical, and can be skipped by
readers interested in only the practical use of SCALPEL. We discuss the solution to (6) when
Kf = 1 in Section 13.1, our algorithm for solving (6) for any value of Kf in Section 13.2, the
justification for the scaling of Af in Section 13.3, a result about the tuning parameters α and λ
that lead to a sparse solution in Section 13.4, and the ability of the group lasso penalty in (6) to
zero out unwanted dictionary elements in Section 13.5.

13.1. Single Component Problem. We first consider solving (6) in the setting with a single
spatial component (Kf = 1). While calcium imaging data will not have only a single neuron, this
setting provides intuition, and will prove useful when we later solve (6) for Kf > 1 in Section 13.2.

Lemma 13.1. The solution to

(S1) minimize
z∈RT ,z≥0

1

2

∥∥∥Y − ãfz>∥∥∥2
F

+ λα ‖z‖1 + λ(1− α) ‖z‖2

is

(S2) ẑ =

(
1− λ(1− α)∥∥(Y >ãf − λα1)+

∥∥
2

)
+

(
Y >ãf − λα1

(ãf)>ãf

)
+

,

where (a)+ = max(0, a) is applied element-wise.

4 A. PETERSEN ET AL.

2 4 6 8 10
0

20
40

60
80

10
0

Minimum Cluster Size for Retention

P
er

ce
nt

 C
or

re
ct

ly
 C

la
ss

ifi
ed

●
●

●
● ●

●
● ● ● ●

Fig S5. On the example video considered in Sections 4 and 6.2, we manually inspected each dictionary element
resulting from Step 2 of SCALPEL, by examining the frames from which each dictionary element was derived. Based
on this manual inspection, we classified each of the 50 dictionary elements as a “neuron” or a “non-neuron”. Next, we
considered whether simply filtering each dictionary element based on the number of elements in its cluster (as described
at the beginning of Step 3 of SCALPEL) would accurately distinguish between “neurons” and “non-neurons”. In the
figure, the y-axis shows the percentage of “neurons” that would remain after filtering (), and the percentage of
“non-neurons” that would be eliminated via filtering (), as a function of the filtering threshold (shown on the x-
axis). We find that in this video, a careful manual analysis of each dictionary element yields very similar results to
simply filtering each dictionary element based on the number of elements in its cluster.

The proof of Lemma 13.1 is in Section 15.1. We can inspect the solution (S2) to gain intuition.

Recall that ãf·,k ≡ af·,k/‖a
f
·,k‖

2
2, where af·,k has binary elements. Therefore, Y >ãf ∈ RT is the

average fluorescence of pixels in the filtered dictionary element at each of the frames and 1
(ãf)>ãf

equals the number of pixels in the dictionary element. When λ = 0, ẑ =
(
Y >ãf

(ãf)>ãf

)
+

, which is

simply the positive part of the total fluorescence at all pixels in the dictionary element over time.
We now consider the impact of λ for three different settings of α:

• α = 1: In this setting, ẑ is the positive part of the soft-thresholded total fluorescence. This
soft-thresholding encourages elements of ẑ to be exactly zero for frames in which the dictionary
element has low fluorescence.
• α = 0: In this setting, ẑ is found by scaling all elements of the total fluorescence by the same

amount. Thus, individual elements of ẑ are not encouraged to be 0, though ẑ = 0 if the
dictionary element has a low amount of fluorescence across all frames (i.e., ‖Y >ãf‖2 small)
or λ is very large.
• α ∈ (0, 1): Both soft-thresholding and soft-scaling are performed, which encourages sparsity

of individual elements of ẑ and the entire vector ẑ, respectively.

In Figure S6, we illustrate the values of ẑ for the three scenarios described above.

13.2. Algorithm. We now consider how to solve (6) for Kf > 1. While generalized gradient
descent (Beck and Teboulle, 2009) can be used to solve concurrently for z1,·, . . . ,zKf ,· in (6), the
problem is solved more efficiently by noting that (6) is decomposable into groups of overlapping
spatial components.

SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA 5

0 500 1500 2500

(a)

Frame

1.18

0.138

0.116

0.098

0.082

0.069

0.058

0.049

0.041

0

αλ

0 500 1500 2500

(b)

Frame

1.18

0.138

0.116

0.098

0.082

0.069

0.058

0.049

0.041

0

αλ = (1−α)λ

0 500 1500 2500

(c)

Frame

1.18

0.138

0.116

0.098

0.082

0.069

0.058

0.049

0.041

0

(1−α)λ

Fig S6. For a single dictionary element in the example video, we plot the solution ẑ, as given in (S2), for a range of
λ when (a) only a lasso penalty is used (α = 1), (b) a mixture of penalties is used (α = 0.5), and (c) only a group
lasso penalty is used (α = 0).

Let N1, . . . ,NS denote a partition of the Kf elements of the filtered dictionary, such that Ns ∩
Ns′ = ∅ for s 6= s′, and ∪Ss=1Ns = {1, . . . ,Kf}. Define the mapping

(S3) M(Ns) = {p ∈ (1, . . . , P) : (Ãf
p,Ns)

>1 > 0}.

That is, M(Ns) indexes the set of pixels that are active in that subset of neurons.

Lemma 13.2. Suppose that M(Ns) ∩ M(Ns′) = ∅ for all s 6= s′, so that there is no spatial
overlap between the sets of filtered dictionary elements N1, . . . ,NS. Then solving (6) gives the same
solution as solving

(S4) minimize
ZNs,·∈R

|Ns|×T
+

1

2

∥∥∥YM(Ns),· − Ã
f
M(Ns),NsZNs,·

∥∥∥2
F

+ λα
∑
n∈Ns

‖zn,·‖1 + λ(1− α)
∑
n∈Ns

‖zn,·‖2 ,

for s = 1, 2, . . . , S.

The proof of Lemma 13.2 is in Section 15.2.
Our approach to solving (S4) depends on the size of Ns. For |Ns| = 1, we can simply use the

closed-form solution for zNs,· given by Lemma 13.1. This is advantageous as the calcium imaging
data sets that we have analyzed often have some dictionary elements that do not overlap with any
others. For |Ns| > 1, we use generalized gradient descent to solve for the global optimum of (S4)
(Beck and Teboulle, 2009).

In light of Lemma 13.2, in order to solve (6), we first partition the filtered dictionary elements
into S sets, N1, . . . ,NS , such that there is no overlap between the pixels in the S sets, and so that
no set can be partitioned further. This can be done quickly, as outlined in Step 1 of Algorithm 1.
Then, we solve (S4) for s = 1, . . . , S. Details are provided in Algorithm 1.

We typically solve (6) for a sequence of exponentially decreasing λ values. To improve compu-
tational performance, Step 2(b) of Algorithm 1 can be implemented using warm starts, in which

Z
(0)
Ns,· is initialized as the solution for ZNs,· for the previous value of λ. Additional details regarding

the derivation of the generalized gradient descent algorithm used in Step 2(b) of Algorithm 1 are
given in Section 15.3.

6 A. PETERSEN ET AL.

Algorithm 1 — Algorithm for Solving Equation (6)

1. Construct the adjacency matrix N ∈ RKf×Kf with ni,j =

{
1 if (af·,i)

>af·,j > 0

0 if (af·,i)
>af·,j = 0

. Let N1,N2, . . . ,NS denote

the connected components of the graph corresponding to N . That is,Ns indexes the filtered dictionary elements
in the sth connected component. Define the mapping M(Ns) = {p ∈ (1, . . . , P) : (Ãf

p,Ns
)>1 > 0}.

2. For s = 1, 2, . . . , S, solve

(S5) minimize
ZNs,·≥0

1

2

∥∥∥YM(Ns),· − Ãf
M(Ns),Ns

ZNs,·

∥∥∥2
F

+ λα
∑
n∈Ns

‖zn,·‖1 + λ(1− α)
∑
n∈Ns

‖zn,·‖2 ,

using one of the two following approaches:

(a) By Lemma 13.1, if |Ns| = 1, the closed-form solution for zNs,· in (S5) is

(S6) ẑNs,· =

1− λ(1− α)∥∥∥∥((YM(Ns),·)
>ãfM(Ns),Ns

− λα1
)
+

∥∥∥∥
2

+

(
(YM(Ns),·)

>ãfM(Ns),Ns
− λα1

(ãfM(Ns),Ns
)>ãfM(Ns),Ns

)
+

.

(b) If |Ns| > 1, use generalized gradient descent to solve (S5) for ZNs,·:

i. Let f (ZNs,·) = 1
2

∥∥∥YM(Ns),· − Ãf
M(Ns),Ns

ZNs,·

∥∥∥2
F

+ λα1>ZNs,·1. Initialize Z
(0)
Ns,· := 0 and let

t := (maxn∈Ns

∑
j∈Ns

(ãfM(Ns),j
)>ãfM(Ns),n

)−1.

ii. For b = 1, 2, . . ., until convergence, iterate:

∇f
(
Z

(b−1)
Ns,·

)
:= −(Ãf

M(Ns),Ns
)>
(
YM(Ns),· − Ãf

M(Ns),Ns
Z

(b−1)
Ns,·

)
+ λα11>,

ỸNs,· := Z
(b−1)
Ns,· − t∇f

(
Z

(b−1)
Ns,·

)
, and

z
(b)
n,· :=

(
1− λ(1−α)t∥∥∥(ỹn,·)+

∥∥∥
2

)
+

(ỹn,·)+ for n ∈ Ns.

SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA 7

5 10 20 50

50
10

0
15

0
20

0
25

0
30

0
(a)

λ at which dictionary element entered

S
iz

e
of

 d
ic

tio
na

ry
 e

le
m

en
t (

pi
xe

ls
)

0.5 1.0 2.0

50
10

0
15

0
20

0
25

0
30

0

(b)

λ at which dictionary element entered
S

iz
e

of
 d

ic
tio

na
ry

 e
le

m
en

t (
pi

xe
ls

)

0.10 0.15 0.20 0.30

50
10

0
15

0
20

0
25

0
30

0

(c)

λ at which dictionary element entered

S
iz

e
of

 d
ic

tio
na

ry
 e

le
m

en
t (

pi
xe

ls
)

Fig S7. We solve (6) for different scalings of Ãf . For each spatial component, we note the value of λ at which the
spatial component enters the model (i.e., the largest λ for which ẑk,· 6= 0). We plot the size of each spatial component
versus the value of λ at which the spatial component enters for (a) ãf·,k = af·,k, (b) ãf·,k = af·,k/‖a

f
·,k‖2, and (c)

ãf·,k = af·,k/‖a
f
·,k‖

2
2. There is a high correlation in the scatterplots in panels (a) and (b), but little correlation in (c).

This lack of correlation motivates us to use the scaling ãf·,k = af·,k/‖a
f
·,k‖

2
2 in Step 3, so that dictionary elements

receive a fair shot of selection by the sparse group lasso (6), regardless of their size.

13.3. Scaling of Af . In (6), the kth column of the matrix Ãf encodes the spatial mapping of
the kth filtered dictionary element, after scaling. To obtain Ãf , we divide the kth column of Af

by ‖af·,k‖
2
2, the number of pixels in the kth filtered dictionary element. This scaling is performed

so that the sizes of the dictionary elements do not impact when the components enter the model.
That is, we would like ‖af·,k‖

2
2 to be independent of the largest value of λ for which ẑk,· 6= 0. The

following lemma supports this particular scaling of the columns of Af .

Lemma 13.3. Suppose Y = AfZ∗ where the following conditions hold:

(i) Af ∈ RP×Kf with (af·,1)
>af·,2 = 0, (af·,1)

>af·,k = 0 for k = 3, . . . ,Kf , and (af·,2)
>af·,k = 0 for

k = 3, . . . ,Kf and
(ii) Z∗ ∈ RKf×T with z∗1,· = Pz∗2,· for some T × T permutation matrix P .

If we solve (6) for Z with Ãf such that ãf·,k = af·,k/‖a
f
·,k‖

2
2, then ẑ1,· = 0 if and only if ẑ2,· = 0.

The proof of Lemma 13.3 is in Section 15.4. Lemma 13.3 indicates that two non-overlapping
spatial components, possibly of different sizes, whose temporal components are identical up to
a permutation, will enter the model at the same value of λ. In Figure S7, we provide empirical
evidence for the chosen scaling of Af .

13.4. Sparsity of the Solution. We now consider the range of λ for which the solution to (6) is
completely sparse (i.e., Ẑ = 0) for a fixed value of α.

Lemma 13.4. For any α ∈ [0, 1], the solution to (6) is completely sparse if and only if

(S7) λ(1− α) ≥
∥∥∥∥([(Ãf)>Y

]
k,·
− λα1

)
+

∥∥∥∥
2

for k = 1, . . . ,Kf .

8 A. PETERSEN ET AL.

0.05 0.10 0.20

40
00

42
00

44
00

46
00

λ
O

bj
ec

tiv
e

va
lu

e
at

 Z
(λ

)

Fig S8. We plot the value of the objective of (6) at Ẑ(λ), the minimizer of (6) at λ, for a replicate of data as λ
varies. We compare two ways of finding a λ large enough such that Ẑ(λ) = 0, which results in the objective shown
as . We take λ that satisfies Lemma 13.4 () or λ as defined in Corollary 13.5 (). The former () gives
the smallest λ such that Ẑ(λ) = 0. We can see this from the fact that the line () is on the boundary of the shaded
box, which indicates the range of λ for which the objective value at Ẑ(λ) equals the objective value at 0, i.e., the range
of λ for which Ẑ(λ) = 0.

Unfortunately, when α ∈ (0, 1), λ is on both sides of the inequality in (S7). Though we can
solve for λ in (S7) using a root finder when α ∈ (0, 1), the following corollary provides a simple
alternative.

Corollary 13.5. For any α ∈ (0, 1), if

λ ≥ max
k=1,...,Kf

min

 max
l=1,...,T

([
(Ãf)>Y

]
k,l

)
+

α
,

∥∥∥∥([(Ãf)>Y
]
k,·

)
+

∥∥∥∥
2

1− α

 ,

then the solution to (6) is completely sparse.

The condition in Corollary 13.5 is sufficient, but not necessary. Proofs of Lemma 13.4 and Corol-
lary 13.5 can be found in Sections 15.5 and 15.6, respectively. An illustration of Lemma 13.4 and
Corollary 13.5 is provided in Figure S8.

13.5. Zeroing Out of Double Neurons. Some of the elements in the preliminary dictionary ob-
tained in Step 1 may be double neurons, i.e., elements that are a combination of two separate
neurons. This occurs when two neighboring neurons are active during the same frame. In Step 2
of SCALPEL, these double neurons are unlikely to cluster with elements representing either of
the individual neurons they combine, and thus there may be double neurons that remain in the
filtered set of dictionary elements, Af , used in Step 3 of SCALPEL. Fortunately, as detailed in the
following lemma, the group lasso penalty in (6) filters out these double neurons by estimating their
temporal components to be the zero vector.

Lemma 13.6. Suppose that the following conditions hold on Af ∈ RP×Kf :

(i) af·,3 = af·,1 + af·,2,

(ii) (af·,1)
>af·,2 = 0,

SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA 9

(iii) (af·,1)
>af·,k = 0 for k = 4, . . . ,Kf , and

(iv) (af·,2)
>af·,k = 0 for k = 4, . . . ,Kf .

Then, define ãf·,k ≡ a
f
·,k/‖a

f
·,k‖2, and consider solving (6) for Z with α < 1. Then, ẑ3,· = 0.

The proof of Lemma 13.6 is in Section 15.7. Note that Lemma 13.6 assumes that the individual
elements for the neighboring neurons, af·,1 and af·,2, do not overlap at all. The group lasso penalty
can also be effective at zeroing out double neurons resulting from overlapping neurons, though this
depends on the amount of overlap, among other factors.

13.6. Selecting λ in (6) in Step 3. To choose λ for (6) via a validation set approach, we perform
the following steps:

1. Obtain Ãf ∈ RP×Kf by dividing the kth column of Af by ‖af·,k‖
2
2, which ensures that the

sizes of the dictionary elements do not impact when the components enter the model.
2. Construct a training set T by sampling 60% of the pixels in each overlapping group of neurons.

That is, we sample 60% of the elements in M(N1),M(N2), . . . ,M(NS), which were defined
in (S3). Assign the remaining pixels to the validation set, V = {v ∈ (1, . . . , P) : v /∈ T }.

3. Using Algorithm 1, solve (6) on the training set of pixels for a decreasing sequence of 20 λ
values, λ1, . . . , λ20:

Ẑ(λi) = argmin
Z∈RKf×T ,Z≥0

1

2

∥∥∥YT ,· − Ãf
T ,·Z

∥∥∥2
F

+ λiα

Kf∑
k=1

‖zk,·‖1 + λi(1− α)

Kf∑
k=1

‖zk,·‖2 .

4. For each λi, calculate the validation error,

errV(λi) =
1

|V|

∥∥∥Y B
V,· − Ã

f
V,·Ẑ(λi)

∥∥∥2
F
,

where
[
Y B
V,·

]
j,k

=

{
[YV,·]j,k if [YV,·]j,k > −quantile0.1%(Y)

0 otherwise
. We use a thresholded version

of Y when calculating the validation error, as we only care about the reconstruction error on
the brightest parts of the video. Select the optimal value of λ as

λ∗ = argmax
λi

{
λi :

errV(λi)−minλj errV(λj)

minλj errV(λj)
≤ 0.05

}
;

this is the largest value of λ that results in a validation error within 5% of the minimum
validation error achieved by any value of λ considered.

5. Solve (6) on all pixels:

minimize
Z∈RKf×T ,Z≥0

1

2

∥∥∥Y − ÃfZ
∥∥∥2
F

+
λ∗

|T |/P
α

Kf∑
k=1

‖zk,·‖1 +
λ∗

|T |/P
(1− α)

Kf∑
k=1

‖zk,·‖2 ,

where we have scaled the tuning parameter by the percent of pixels in the training set, to
account for the fact that the sum of squared errors in the loss function is not scaled by the
number of pixels.

This process can be done separately for each group of overlapping neurons N1, . . . ,NS to select a
different value of λ for each group, or for all groups at once to select a single value of λ. By following
steps similar to those described above, λ can alternatively be selected via cross-validation.

10 A. PETERSEN ET AL.

0.06 0.08 0.10 0.12 0.14

0
10

20
30

40
(a)

Quantile threshold

N
um

be
r

of
 p

ot
en

tia
l n

eu
ro

ns
 id

en
tif

ie
d

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

(c)

ω

N
um

be
r

of
 p

ot
en

tia
l n

eu
ro

ns
 id

en
tif

ie
d

Cut−point of 0.8ω
Cut−point of 0.85ω
Cut−point of 0.9ω
Cut−point of 0.95ω

(d)

Fig S9. We present the results of analyzing the one-photon data from Section 6.2 using non-default values of the
tuning parameters. In (a), we plot the number of potential neurons identified as a function of the quantile threshold
in Step 1. The dashed line indicates the default value for the quantile threshold. In (b), we plot the outlines of the
neurons identified using the default value () and the non-default values () for the quantile threshold. In (c), we
plot the number of potential neurons identified as a function of the dendrogram cut-point and ω in Step 2. The dashed
line indicates the default value for ω. In (d), we plot the outlines of the neurons identified using the default values
() and the non-default values () for the dendrogram cut-point and ω values that produced the same number of
neurons as the default values.

14. Sensitivity of Results to Changes in the Tuning Parameters. In analyzing the
one-photon data in Section 6.2, we utilized default values for all of the tuning parameters. We now
consider what impact varying these default values has on the results of our analysis. In particular,
we consider the effect of modifying the quantile threshold in Step 1, the dissimilarity weight ω in
Step 2, and the dendrogram cut-point in Step 2. In Figure S9(a), we see that varying the quantile
threshold used for producing the preliminary dictionary in Step 1 results in a small variation in
the final number of neurons identified, producing between 28 and 33 neurons, compared to the 29
neurons identified using the default value. Additionally, the shapes of the neurons identified using
different quantile thresholds are quite similar (Figure S9(b)). In Figure S9(c), we see that a large
range of values of ω and the dendrogram cut-point produce the exact same number of neurons
as the default values of these parameters. Indeed, in Figure S9(d), we see that there is very little
change in the neurons identified. These results illustrate the performance of SCALPEL does not
diminish with modest variations in the values of the tuning parameters.

Similar analyses for the simulated calcium imaging data are provided in Section 7.3.

15. Technical Proofs Related to Section 13.

15.1. Proof of Lemma 13.1. We first prove a result that we will use later.

Lemma 15.1. The following holds: argmin
β≥0

1
2 ‖y − β‖

2
2 + λ ‖β‖2 =

(
1− λ

‖(y)+‖2

)
+

(y)+.

Proof. Let β̂ = argmin
β≥0

1
2 ‖y − β‖

2
2 + λ ‖β‖2 and C = {i : yi ≥ 0}. First, we show β̂−C = 0.

In anticipation of contradiction, assume there exists j such that j /∈ C and β̂j > 0. Define β̃ as

β̃i =

{
β̂i if i 6= j

0 if i = j
. Then

1

2

∥∥∥y − β̃∥∥∥2
2

+ λ
∥∥∥β̃∥∥∥

2
<

1

2

∥∥∥y − β̂∥∥∥2
2

+ λ
∥∥∥β̂∥∥∥

2
.

SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA 11

This is a contradiction, so we conclude that β̂i = 0 for all i /∈ C. It remains to solve

(S8) minimize
βC≥0

1

2
‖yC − βC‖22 + λ ‖βC‖2 .

By a result in Section 3.1 of Simon et al. (2013), the solution to (S8) without the non-negativity

constraint on βC is
(

1− λ
‖yC‖2

)
+
yC , which has all non-negative elements. Therefore, it is also the

solution to (S8).

We now proceed to prove Lemma 13.1.

Proof. Our goal is to solve

(S9) minimize
z∈RT ,z≥0

1

2

∥∥∥Y − ãfz>∥∥∥2
F

+ λα1>z + λ(1− α) ‖z‖2 .

Note that solving (S9) is equivalent to solving (S1), as ‖z‖1 = 1>z when z ≥ 0. By algebraic
manipulation, we can show that

∥∥∥Y − ãfz>∥∥∥2
F

+ λα1>z =

∥∥∥∥∥Y >ãf − λα1√
(ãf)>ãf

−
√

(ãf)>ãfz

∥∥∥∥∥
2

2

+ C,

where C is a constant that does not depend on z. Therefore, the solution to (S9) is the same as
the solution to

(S10) minimize
z≥0

1

2

∥∥∥∥Y >ãf − λα1(ãf)>ãf
− z

∥∥∥∥2
2

+
λ(1− α)

(ãf)>ãf
‖z‖2 .

We solve (S10) by applying Lemma 15.1.

15.2. Proof of Lemma 13.2.

Proof. Recall the definition M(Ns) of in (S3). Then, the result follows simply from observing
that ∥∥∥Y − ÃfZ

∥∥∥2
F

=
S∑
s=1

∥∥∥YM(Ns),· − ÃfM(Ns),·Z
∥∥∥2
F

=

S∑
s=1

∥∥∥∥∥YM(Ns),· −
S∑

s′=1

ÃfM(Ns),Ns′ZNs′ ,·

∥∥∥∥∥
2

F

=

S∑
s=1

∥∥∥YM(Ns),· − ÃfM(Ns),NsZNs,·

∥∥∥2
F
.

The last equality follows from the condition of the lemma, which guarantees that ÃfM(Ns),Ns′ = 0
for all s 6= s′.

12 A. PETERSEN ET AL.

15.3. Details of Step 2(b) of Algorithm 1. Note that minimizing the objective in (S5) subject
to ZNs,· ≥ 0 is equivalent to minimizing

(S11)
1

2

∥∥∥YM(Ns),· − Ã
f
M(Ns),NsZNs,·

∥∥∥2
F

+ λα1>ZNs,·1 + λ(1− α)
∑
n∈Ns

‖zn,·‖2

subject to ZNs,· ≥ 0, since 1>ZNs,·1 =
∑

n∈Ns ‖zn,·‖1 when ZNs,· ≥ 0.

Let f (ZNs,·) = 1
2

∥∥∥YM(Ns),· − Ã
f
M(Ns),NsZNs,·

∥∥∥2
F

+ λα1>ZNs,·1, which is the differentiable part

of (S11), and let g (ZNs,·) = λ(1− α)
∑

n∈Ns ‖zn,·‖2, the non-differentiable part.
Generalized gradient descent (Beck and Teboulle, 2009; Parikh and Boyd, 2014) is a majorization-

minimization scheme. First, we find a quadratic approximation to f (ZNs,·) centered at our previous
estimate for ZNs,·, Z

0
Ns,·, that majorizes f (ZNs,·). That is,

f (ZNs,·) ≤ f
(
Z0
Ns,·
)

+ Tr
[(
ZNs,· −Z0

Ns,·
)>∇f (Z0

Ns,·
)]

+
1

2t

∥∥ZNs,· −Z0
Ns,·
∥∥2
F
,

where t is the step size such that ∇2f(·) � 1
t I. After completing the square, we can see that

minimizing the quadratic approximation to f (ZNs,·) gives the same solution as solving

minimize
ZNs,·

1

2t

∥∥ZNs,· − (Z0
Ns,· − t∇f

(
Z0
Ns,·
))∥∥2

F
.

Thus we perform this minimization with g (ZNs,·) added to the objective function, which gives the
proximal problem

(S12) minimize
ZNs,·≥0

1

2

∥∥∥ZNs,· − ỸNs,·∥∥∥2
F

+ λ(1− α)t
∑
n∈Ns

‖zn,·‖2 ,

where ỸNs,· = Z0
Ns,· − t

(
−(Ãf

M(Ns),Ns)
>
(
YM(Ns),· − Ã

f
M(Ns),NsZ

0
Ns,·

)
+ λα11>

)
. The minimiza-

tion in (S12) is separable in zn,·, so for n ∈ Ns, we solve

(S13) minimize
zn,·≥0

1

2
‖zn,· − ỹn,·‖22 + λ(1− α)t ‖zn,·‖2 .

By Lemma 15.1 in Section 15.1, the solution to (S13) is ẑn,· =

(
1− λ(1−α)t
‖(ỹn,·)+‖2

)
+

(ỹn,·)+.

It only remains to derive a suitable step size t so that ∇2f(·) = (Ãf
M(Ns),Ns)

>Ãf
M(Ns),Ns �

1
t I. A sufficient condition for 1

t I − (Ãf
M(Ns),Ns)

>Ãf
M(Ns),Ns to be positive semi-definite is that

1
t I − (Ãf

M(Ns),Ns)
>Ãf
M(Ns),Ns be diagonally dominant. That is,

1

t
− (ãfM(Ns),n)>ãfM(Ns),n ≥

∑
j∈Ns,j 6=n

(ãfM(Ns),j)
>ãfM(Ns),n

for all n ∈ Ns. Thus we choose t = (maxn∈Ns
∑

j∈Ns(ã
f
M(Ns),j)

>ãfM(Ns),n)−1.

SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA 13

15.4. Proof of Lemma 13.3.

Proof. Since af·,1 does not overlap any other spatial components (i.e., (af·,1)
>af·,k = 0 for k =

2, . . . ,Kf), we know by the results in Lemmas 13.1 and 13.2 that

ẑ1,· =

(
1− λ(1− α)

‖(Y >ãf·,1 − λα1)+‖2

)
+

(
Y >ãf·,1 − λα1

(ãf·,1)
>ãf·,1

)
+

.

Note that Y >ãf·,1 = (Z∗)>(Af)>af·,1/‖a
f
·,1‖22, so Y >ãf·,1 = z∗1,· since (af·,1)

>af·,k = 0 for k =
2, . . . ,Kf . Thus ẑ1,· = 0 if and only if λ(1− α) ≥ ‖(z∗1,· − λα1)+‖2. Similarly, ẑ2,· = 0 if and only
if λ(1−α) ≥ ‖(z∗2,·−λα1)+‖2. Thus, it remains to show that ‖(z∗1,·−λα1)+‖2 = ‖(z∗2,·−λα1)+‖2.
Using the properties of permutation matrices that 1 = P1 and P>P = I, we see

‖(z∗1,· − λα1)+‖2 = ‖(Pz∗2,· − λαP1)+‖2
= ‖P (z∗2,· − λα1)+‖2
= ‖(z∗2,· − λα1)+‖2,

and therefore, ẑ1,· = 0 if and only if ẑ2,· = 0 .

15.5. Proof of Lemma 13.4.

Proof. Recall that solving (6) gives the same solution as solving (S4). Thus we focus on deriving
a condition on λ that guarantees that ẐNs,·, the solution to (S4), equals zero for s = 1, . . . , S. If
|Ns| = 1, we see from (S6) that ẑNs,· = 0 if and only if

(S14) λ(1− α) ≥
∥∥∥∥((YM(Ns),·)

>ãfM(Ns),Ns − λα1
)
+

∥∥∥∥
2

.

Recall that if |Ns| > 1, we iteratively solve for ẐNs,· using Step 2(b) of Algorithm 1. We initialize

at the sparse solution Z
(0)
Ns,· = 0 and thus for n ∈ Ns

z
(1)
n,· =

(
1− λ(1− α)t∥∥(ỹn,·)+

∥∥
2

)
+

(ỹn,·)+ ,

where ỸNs,· = t(Ãf
M(Ns),Ns)

>YM(Ns),·− tλα11>. We will have ẐNs,· = 0 if z
(1)
n,· = 0 for all n ∈ Ns.

Note that z
(1)
n,· = 0 if

(S15) λ(1− α)t ≥
∥∥∥∥(t [(Ãf

M(Ns),Ns)
>YM(Ns),·

]
n,·
− tλα1

)
+

∥∥∥∥
2

.

By algebraic manipulation, the sparsity conditions given in (S14) and (S15) can be shown to be
equivalent to the condition given in Lemma 13.4. Alternatively, this lemma’s result also follows
from inspection of the optimality condition for (6).

15.6. Proof of Corollary 13.5.

Proof. The sufficient condition given in Corollary 13.5 follows from noting that (S15) is satisfied

if λ(1 − α) ≥
∥∥∥∥([(Ãf)>Y

]
k,·

)
+

∥∥∥∥
2

or if λα ≥
([

(Ãf)>Y
]
k,l

)
+

for l = 1, . . . , T . Thus, when at

least one of these two conditions is satisfied for all k = 1, . . . ,Kf , then the solution to (6) will be
sparse.

14 A. PETERSEN ET AL.

15.7. Proof of Lemma 13.6.

Proof. Let Ẑ be the solution to (6). In anticipation of contradiction, assume there exists

j ∈ {1, . . . , T} such that ẑ3,j > 0. Define Z̃ as z̃1,· = ẑ1,· +

(
1>af·,1

1>(af·,1+a
f
·,2)

)
ẑ3,·, z̃2,· = ẑ2,· +(

1>af·,2

1>(af·,1+a
f
·,2)

)
ẑ3,·, z̃3,· = 0, and z̃k,· = ẑk,· for k = 4, . . . ,Kf . Let obj(Z) be the value of the

objective function of (6) at Z for some fixed λ and α. We have

obj(Z̃)− obj(Ẑ) = λ(1− α)
3∑

k=1

(‖z̃k,·‖2 − ‖ẑk,·‖2)

= λ(1− α)[‖ẑ1,· + (1>af·,1)/(1
>(af·,1 + af·,2))ẑ3,·‖2

+ ‖ẑ2,· + (1>af·,2)/(1
>(af·,1 + af·,2))ẑ3,·‖2 − (‖ẑ1,·‖2 + ‖ẑ2,·‖2 + ‖ẑ3,·‖2)]

< λ(1− α)[‖ẑ1,·‖2 + (1>af·,1)/(1
>(af·,1 + af·,2))‖ẑ3,·‖2 + ‖ẑ2,·‖2

+ (1>af·,2)/(1
>(af·,1 + af·,2))‖ẑ3,·‖2 − (‖ẑ1,·‖2 + ‖ẑ2,·‖2 + ‖ẑ3,·‖2)]

= 0.

This is a contradiction, so we conclude ẑ3,· = 0.

Division of Biostatistics
University of Minnesota
Minneapolis, MN 55455
E-mail: pete6459@umn.edu

Department of Biostatistics
University of Washington
Seattle, WA 98195
E-mail: nrsimon@uw.edu

Departments of Biostatistics and Statistics
University of Washington
Seattle, WA 98195
E-mail: dwitten@uw.edu

