
Incorporating Breast Anatomy in Computational Phenotyping of Mammographic 

Parenchymal Patterns for Breast Cancer Risk Estimation 

 

Aimilia Gastounioti PhD, Meng-Kang Hsieh MS, Eric Cohen MS, Lauren Pantalone BS, Emily 

F. Conant MD, Despina Kontos PhD* 

Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 

Philadelphia, PA, 19104 

 

*Corresponding author: University of Pennsylvania, Department of Radiology 

3700 Hamilton Walk, Rm D702 Richards Bldg. 

    Philadelphia, PA 19104 

    Ph: 215-746-4064, fx: 215-573-1811     

    Email: Despina.Kontos@uphs.upenn.edu 

 

Supplementary Notes  

N1. Descriptions of texture descriptors 

Gray-level histogram features are 13 well-established first-order statistics1, which were 

calculated from the gray-level intensity histogram of the image using 128 histogram bins2, 3. 

The co-occurrence features reflect the spatial relationship between pixels and summarize the 

information encoded by the gray-level co-occurrence matrix (GLCM)4 which corresponds to the 

relative frequency with which two neighboring pixels, one with gray level 𝑖 and the other with 

gray level 𝑗, occur in the image. Such matrices are a function of the distance (𝑑) and the 

orientation (𝜗) between the neighboring pixels. In this study, the 𝑀 ×𝑀 GLCM matrices were 

estimated using 𝑀 = 128 gray levels to balance computational precision with efficiency, 𝑑 =

1.1 mm2, 3, and the co-occurrence features  were computed by averaging over four polar-grid-

driven orientations. Specifically, for each region defined by the polar grid, the four orientations 

corresponded to offsets, 0°, 45°, 90° and 135°, from the angle between the center of the region 



and the x-axis, i.e., the axis starting from the breast nipple posteriorly and extending 

perpendicular to the pectoralis muscle. 

Run-length features capture the coarseness of a texture in specified directions5, 6. A run is 

defined as a string of consecutive pixels with the same gray-level intensity along a specific linear 

orientation. Fine textures tend to contain more short runs with similar gray-level intensities, 

while coarse textures have more long runs with different gray-level intensities. Similarly to the 

GLCM, a 𝑀 ×𝑁 run-length matrix is defined, representing the number of runs with pixels of 

gray-level intensity equal to 𝑖 in [1, M] and length of run equal to 𝑗 in [1, N] along a specific 

orientation, where N is the size of the region. In correspondence with the co-occurrence features, 

the run-length statistics were estimated for 𝑀 = 128 gray levels2, 3, and averaged over the same 

four polar-grid-driven orientations. 

The structural features include (a) the edge-enhancing index, which is based on edge 

enhancing diffusion and it describes the directionality of flow-like structures within the image7, 

(b) the local binary pattern (LBP), which captures intensity variations between central and 

neighboring pixels8 and (c) the fractal dimension (FD), which reflects the degree of complexity 

and was estimated using the box-counting method9.  

The edge-enhancing index of an image I is defined as: 

Eσ(I) = (
λ1 − λ2

λ1 + λ2 + η
)
2

 

where λ1and λ2 (λ1 > λ2) are eigenvalues of the diffusion tension matrix of I and 𝜂 is a 

normalizing factor which was set equal to 5 for this application2, 3. 

The LBP at pixel (𝑥𝑐 , 𝑦𝑐) is estimated as: 

𝐿𝐵𝑃(𝑥𝑐, 𝑦𝑐) = ∑𝑞(𝐼𝑝 − 𝐼𝑐)2
𝑃,

𝑃−1

𝑝=0

 (𝑥𝑝, 𝑦𝑝) = [𝑥𝑐 + 𝑄 cos (
2𝜋𝑝

𝑃
) , 𝑦𝑐 − 𝑄 𝑠𝑖𝑛(

2𝜋𝑝

𝑃
)] 

where 𝐼𝑐 and 𝐼𝑝 are the gray level values for pixels (𝑥𝑐, 𝑦𝑐) and (𝑥𝑝, 𝑦𝑝), respectively, and 𝑞 is a 

function which attributes values zero and one for negative and non-negative inputs, respectively. 

The neighborhood of each pixel is defined in terms of size and number of neighborhood pixels by 



the parameters 𝑄 and 𝑃, respectively, which were set equal to 𝑄 = 1 and 𝑃 = 8 following previous 

optimization experiments2, 3. 

The FD estimation relies on the concept of self-similarity. The fractal dimension of a bounded 

set S in Euclidean n-space is defined as:  

𝐹𝐷 = lim
𝑟→0

log(𝑁𝑟)

log (
1
𝑟)

 

where 𝑁𝑟 is the least number of distinct copies of S in the scale 𝑟. In case of an image, where 

fractals are not deterministic, the FD is approximated by the box-counting dimension as follows. 

We consider a three-dimensional spatial surface, with (𝑥, 𝑦) denoting pixel position on the image 

plane and the third coordinate, z, denoting the pixel gray level. The image plane is partitioned 

into non-overlapping blocks of size 𝑠 × 𝑠, with 𝑠 being an integer corresponding to the scale of 

the block. On each block, there is a column of boxes of size 𝑠 × 𝑠 × 𝑠′, where 𝑠′ is the height of 

each box and it is determined by 𝑠, the size of the image and the total number of gray levels. If 

we assign numbers to the boxes of a block and the minimum and maximum gray levels fall into 

the 𝑚th and 𝑙th boxes, respectively, then the boxes covering the block are counted in the number 

as 𝑛𝐵 = 𝑙 − 𝑚 + 1. By considering the contributions of all blocks, 𝑁𝑟 is counted as the sum of 

𝑛𝑟 over all blocks. Following this process for different values of 𝑟, FD can, then, be estimated 

from the least-squares linear fit of log(𝑁𝑟) versus log (
1

𝑟
). 

N2. Mathematical definition of the weight map  

For a region with center p, we calculate the weight S based on the distance from the center of the 

region to the CBA (rCB) and UOA (rUO) centroids: 

𝐷𝑖(𝑝) = 𝑎
𝑟𝐶𝐵𝑚𝑎𝑥 − 𝑟𝐶𝐵(𝑝)

𝑟𝐶𝐵𝑚𝑎𝑥
+ (1 − 𝑎)

𝑟𝑈𝑂𝑚𝑎𝑥 − 𝑟𝑈𝑂(𝑝)

𝑟𝑈𝑂𝑚𝑎𝑥

 
→  𝑆(𝑝) =

𝐷𝑖(𝑝)

𝐷𝑖𝑚𝑎𝑥
 ∈ [0,1]     (1) 

where 𝑟CBmax and 𝑟UOmax are the maximum values of 𝑟𝐶𝐵 and 𝑟𝑈𝑂 over all regions, and 𝑎 is a 

parameter which tunes the role of CBA versus UOA. For T, we utilize the density cluster (DC) 

map generated by LIBRA, with the binary parameter b indicating whether the weight map will 

weigh more heavily areas of dense or areas of fatty tissue: 



𝑇(𝑝) =

{
 
 

 
 𝐷𝐶(𝑝)

𝐷𝐶𝑚𝑎𝑥
, 𝑏 = 1

𝐷𝐶𝑚𝑎𝑥 − 𝐷𝐶(𝑝)

𝐷𝐶𝑚𝑎𝑥
, 𝑏 = 0

         ∈ [0,1]                                        (2)  

where 𝐷𝐶𝑚𝑎𝑥 is the maximum value of DC over all regions. These two components are merged 

into the final weight map using equation (3), where parameter c tunes the relative importance of 

weights S and T: 

𝑀(𝑝) = 𝑐 ∗ 𝑆(𝑝) + (1 − 𝑐) ∗ 𝑇(𝑝) →  𝑊(𝑝) =
𝑀(𝑝)

𝑀𝑚𝑎𝑥
  ∈ [0,1]                        (3) 

Essentially, this weight map allows our methodology to code for the location, i.e. anatomical 

position, and the underlying tissue composition, i.e. dense versus fatty tissue, of each region of 

the breast. The how much each area is weighted in our final model was determined by the 

optimization process itself, as described in the next section. 

N3. Optimization of breast-anatomy-driven feature parameterization 

For all optimization steps, the following analysis was applied to the z-scored, averaged bilateral 

texture measurements. First, we identified pairs of features with absolute Pearson correlation 

greater than 0.90 and for each pair we removed the feature with the lowest variability in terms of 

its interquartile range (IQR)10. Starting from the remaining features, we built a logistic regression 

model using elastic net regression11, a regularized technique suitable for correlated features 

which mixes penalization of the L2 and L1 norms and performs feature selection during model 

construction by assigning zero coefficients to weak covariates. To limit potential over-fitting, 

nested cross validation12 was applied; first, the tuning hyper-parameters λ, that controls the 

penalty aggressiveness, and alpha, that controls the mixing of the L2 versus L1regularization, 

were chosen with ten-fold cross-validation (inner loop). The optimal combination of alpha and λ 

was selected as the one with deviance within one standard error of the model with minimum 

cross-validation deviance, and corresponded to the most parsimonious model13. With these 

optimal model hyper-parameters fixed, the performance of the model was then evaluated with 

leave-one-out cross validation (outer loop). 

Using the statistical analysis described above, the first optimization step was to find an 

optimal value for D. We fixed the other four tunable parameters at f = 0.8, a = 0.5, b = 1, and c = 

0.5, which is a combination of medium values balancing the roles of the anatomical components. 



Using these fixed values we evaluated values D = 6.3 mm, 9.5 mm, 12.7 mm, 15.9 mm, 19.1 

mm, 22.3 mm, and 25.5 mm, a range previously also investigated for the optimization of a 

square grid for parenchymal texture analysis2, 14. Fixing D at the value resulting in the highest 

AUC, we then performed a grid search optimization for all possible combinations of parameters f 

in [0.5, 1], a in [0, 1], b = 0 or 1, and c in [0, 1]. At each search round, the parameter 

combination being evaluated was the same across all images. 

Case-control discriminatory performance increased with the polar grid’s spatial density, 

giving an optimum value of D = 6.3 mm with AUC = 0.60, 95% CI [0.56, 0.63]. The grid search 

optimization for the remaining parameters using the optimal value of D = 6.3 mm showed that 

performance of the anatomy-driven framework varied substantially (with AUCs from 0.57 to 

0.63) over different parameter combinations. The relation of discriminatory capacity to 

parameter values was consistent: stronger for f = 0.8, 0.7 ≤ a ≤ 0.8, b = 1, and c ≤ 0.4. Optimal 

performance (AUC=0.63, 95% CI [0.59 0.69]) was observed for f = 0.9, a = 0.8, b = 1, and c = 

0.4, where elastic net regression (alpha = 1 and λ = 0.16) selected 30 textural features.  



Supplementary Table 

Supplemental Table S1. Associations with breast cancer risk and case-control discriminatory 

capacity. Odds ratios (ORs) per standard deviation increase in the standard risk factors and optimized 

breast-anatomy-driven texture features. Features shown reflect the ones selected by elastic net regression. 

Also shown: p-values, 95% confidence intervals (CIs), cross-validated discriminatory capacity (AUC). 

 OR p-value       95% CI AUC 

Model based only on breast-anatomy-driven texture features 

TF1_mean 0.62 0.165 [0.32 1.22] 

0.63 

95% CI [0.59 0.69] 

p-value = 0.041a  

TF6_mean 7.95 <0.001 [2.62 24.12] 

TF11_mean 0.39 0.052 [0.15 1.01] 

TF12_mean 1.32 0.412 [0.68 2.54] 

TF14_mean 0.41 0.112 [0.13 1.23] 

TF15_mean 1.57 0.374 [0.58 4.26] 

TF17_mean 0.56 0.090 [0.29 1.09] 

TF19_mean 1.09 0.853 [0.44 2.72] 

TF20_mean 1.62 0.090 [0.93 2.81] 

TF27_mean 0.92 0.788 [0.48 1.74] 

TF28_mean 1.05 0.927 [0.35 3.16] 

TF29_mean 0.42 0.128 [0.14 1.28] 

TF32_mean 1.09 0.637 [0.75 1.58] 

TF34_mean 0.93 0.796 [0.54 1.61] 

TF1_std 1.81 0.013 [1.13 2.89] 

TF3_std 0.30 0.022 [0.11 0.84] 

TF5_std 0.66 0.074 [0.43 1.04] 

TF7_std 1.11 0.858 [0.36 3.46] 

TF11_std 0.26 0.003 [0.11 0.64] 

TF14_std 1.98 0.010 [1.18 3.32] 

TF15_std 0.92 0.652 [0.65 1.31] 

TF16_std 1.44 0.344 [0.68 3.04] 

TF20_std 1.97 0.015 [1.14 3.40] 

TF23_std 0.32 0.068 [0.10 1.09] 

TF26_std 1.85 0.055 [0.99 3.47] 

TF27_std 3.30 0.000 [1.73 6.32] 

TF28_std 1.57 0.196 [0.79 3.10] 

TF31_std 0.53 0.019 [0.31 0.90] 

TF33_std 0.45 <0.001 [0.29 0.70] 

TF34_std 1.01 0.960 [0.60 1.72] 

Model based on breast-anatomy-driven texture features, adjusted for standard risk factors 

Quantra VPD  1.03 0.378 [0.96 1.10] 

0.67 

95% CI [0.60 0.72] 

BMI 0.99 0.695 [0.94 1.04] 

Age 1.04 0.003 [1.01 1.06] 

TF1_mean 0.59 0.142 [0.29 1.19] 

TF6_mean 8.74 <0.001 [2.63 29.09] 

TF11_mean 0.47 0.135 [0.17 1.27] 

TF12_mean 1.35 0.379 [0.69 2.64] 

TF14_mean 0.46 0.186 [0.15 1.45] 

TF15_mean 2.18 0.151 [0.75 6.32] 

TF17_mean 0.57 0.099 [0.30 1.11] 



TF19_mean 1.03 0.951 [0.40 2.63] 

TF20_mean 1.59 0.114 [0.90 2.82] 

TF27_mean 0.86 0.645 [0.44 1.65] 

TF28_mean 1.00 0.996 [0.33 3.05] 

TF29_mean 0.47 0.180 [0.15 1.42] 

TF32_mean 1.09 0.669 [0.73 1.62] 

TF34_mean 0.98 0.933 [0.56 1.70] 

TF1_std 1.90 0.009 [1.17 3.10] 

TF3_std 0.33 0.036 [0.11 0.93] 

TF5_std 0.70 0.133 [0.44 1.12] 

TF7_std 0.93 0.902 [0.28 3.03] 

TF11_std 0.24 0.003 [0.09 0.60] 

TF14_std 1.91 0.016 [1.13 3.24] 

TF15_std 0.92 0.663 [0.65 1.32] 

TF16_std 1.47 0.321 [0.69 3.15] 

TF20_std 2.04 0.012 [1.17 3.55] 

TF23_std 0.33 0.086 [0.09 1.17] 

TF26_std 1.85 0.056 [0.98 3.48] 

TF27_std 3.32 <0.001 [1.71 6.45] 

TF28_std 1.54 0.226 [0.77 3.09] 

TF31_std 0.51 0.016 [0.30 0.88] 

TF33_std 0.46 0.001 [0.29 0.72] 

TF34_std 0.99 0.966 [0.58 1.69] 
a For difference in AUC from the augmented model, including breast-anatomy-driven texture features and 

standard risk factors, by DeLong’s test. 
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Supplemental Figure S1. Optimization parameters and their roles in breast-anatomy-driven 

texture analysis. 
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