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Supplementary Methods

Taxon sampling

Since 2004, Bruno Le Ru has conducted extensive fieldwork surveys to collect Sesamiina
stemborers. Sampling trips were carried out in the following 17 sub-Saharan countries:
Benin, Botswana, Burkina Faso, Cameroon, Democratic Republic of Congo, Eritrea,
Ethiopia, Kenya, Lesotho, Madagascar, Mozambique, Republic of Congo, Republic of South
Africa, Rwanda, Tanzania, Uganda and Zambia. Additional specimens were sampled in
Ghana and Togo by Philippe Le Gall (IRD) and eight specimens from Swaziland and
Zimbabwe were loaned by Martin Kriiger (Transvaal Museum of South Africa; TMSA).
Jérdme Barbut also conducted fieldwork in France and Portugal, mostly to collect Palearctic
members of the closely related tribe Apameina and other noctuid species to be used as
outgroups for the phylogenetic analyses. Regarding the latter we were careful to include
several key genera (Amphipyra, Apamea, Condica, Cryphia and Pyrrhia) that were sampled
in the study of Wahlberg ez al.".

Both larvae and adults were collected. For larvae, sampling of visually damaged
monocotyledonous plants (mostly Poales: grasses and sedges) was conducted to collect larval
stages of noctuid stemborers within their wild host-plants (**; see also Supplementary Figure
11). In a given locality, though there are usually dozens of potential grass host-plants, but
only a subset of them infested, and those usually attacked consistently by particular stemborer
species (some localities were sampled several times at different seasons over several years,
and many plant species were never found infested). Larvae were then reared on artificial diet
until pupation and emergence of adults*. For adults, light traps set in open habitats were used
in almost every locality. Over the years, a total of 80,000+ specimens was obtained, of which

more than 52,000+ larvae were reared from 220 identified species of monocotyledon plants.



Most of the plant material was identified by Kathleen Gordon-Gray (Pietermaritzburg
University, Republic of South Africa) and Simon Mathenge (Botany Department, University

of Nairobi, Kenya).

Morphological studies

Morphological studies were carried out by Bruno Le Ru who is an expert on stemborer
taxonomy and systematics. Both external and internal (i.e., genitalia) morphological
characters were examined for species determination. Genitalia were dissected after
immersion of the end of the abdomen in a boiling 10% potash bath for a few minutes, then
cleaned, immersed in absolute alcohol for a few minutes and mounted on slides in Euparal
(after separating the aedeagus from the rest of the genitalia in the male). Collected insects
were identified by comparison with types and specimens housed in the I1ziko Museums (Cape
Town, South Africa), the Musée Royal d’Afrique Centrale (MRAC; Tervuren, Belgium), the
Museo Civico di Storia Naturale di Milano (MCSN; Milan, Italy), the Muséum national
d’Histoire naturelle (MNHN; Paris, France), the Natural History Museum (NHM; London,
United Kingdom), the Swedish Museum of Natural History (NRM, Stockholm, Sweden) and
the Transvaal Museum of South Africa (TMSA; Pretoria, South Africa).

All specimens were either assigned to a known species or assigned to putative
morphospecies (with ‘sp.’ suffixes). It is noteworthy that several major taxonomic revisions
(relying on integrative taxonomy approaches) are currently being developed; parts of these
studies have been already published, such as for genera Acrapex™®’®, Conicofrontia’ and

.10
Sesamia .



Molecular datasets

For this study, we first assembled a six locus molecular dataset for 1,393 specimens
(specimen-level dataset; see Supplementary Data 1). Most individuals were extracted and
sequenced by our team totaling 1,389 specimens, which represent 181 Sesamiina species, 36
Apameina species and 24 noctuid outgroups species. Sequences for the four remaining
species were downloaded from GenBank (i.e. Amphipyra pyramidoides Guenée, Condica
videns (Guenée), Cryphia raptricula (Denis & Schiffermiiller) and Pyrrhia exprimens
(Walker)) (see Supplementary Data 1 for accession numbers). For every DNA extraction, we
only used a posterior leg to preserve most of the morphological integrity of the specimen; all
corresponding voucher specimens are housed in the collection hosted in the IRD-CNRS
UMR EGCE (Gif-sur-Yvette, France).

Total genomic DNA was extracted using the Qiagen DNeasy Kit (Hilden, Germany).
Polymerase chain reaction (PCR) amplifications were conducted for four mitochondrial gene
fragments: cytochrome c oxidase subunit [ (COI; 657 bp), cytochrome b (CYTB; 991 bp),
ribosomal 12§ (128§; 381 bp), ribosomal 16S (16S; 547 bp). Two nuclear gene regions were
also sequenced: ribosomal 28S (28S; 865 bp) and elongation factor 1 alpha (EFla; 1,239 bp).
We used the primers and settings detailed by Kergoat et al."'. Individual gene fragments were
aligned using MAFFT 7 using the Auto option'” and the reading frames of all protein-coding
genes were checked using Mesquite 3.2"°. The gene fragment alignments were then
concatenated using Mesquite. All newly generated sequences were deposited on GenBank

(accession numbers MH847792-MH853351).

Phylogenetic analyses
Phylogenetic analyses were conducted using maximum likelihood (ML). Bayesian inference

(BI) analyses were only implemented for the species-level dataset because of convergence



issues with the larger specimen-level dataset (average split-frequencies of the runs above
5%). In both ML and BI, partitioned analyses were carried out to improve resolution'*. For
both datasets (specimen-level and species-level) partitions and substitution models were
determined using PartitionFinder 1.1.1"°, with the greedy algorithm, the unlinked option for
branch lengths, and the corresponding set of models (beast, mrbayes or raxml). The corrected
Akaike information criterion (AICc) was used as a metric for ML analyses whereas the
Bayesian information criterion (BIC) was used for BI analyses'®.

To assess the monophyly of Sesamiina species, phylogenetic relationships for the
specimen-level dataset were inferred with maximum likelihood using RAXML 8.2'7. Based
on the AICc results we used three partitions with either a General time reversible (GTR)+G+1
model or a GTR+G model. The best-scoring ML tree was obtained using a heuristic search
implementing 10 random-addition replicates. Clade support was approximated using a non-
parametric bootstrap procedure (500 replicates were used). RAXML analyses were performed
on the CIPRES Science Gateway 3.3'*. Nodes supported by bootstrap support values (BS) >
70% were considered strongly supported following Hillis and Bull'’. The 245 putative
species (i.e., morphospecies determined by Bruno Le Ru) were recovered monophyletic in
the resulting tree (Supplementary Figure 1).

Based on the results of the specimen-level dataset, we generated a 245-terminal
species-level dataset (including 181 Sesamiina species, 36 Apameina species and 28 noctuid
outgroups species), to properly conduct all subsequent analyses (i.e., dating analyses,
historical biogeography, character optimization and diversification analyses). To better assess
the phylogenetic relationships and clade support of the species-level tree, in addition to
RAXML, we carried out ML analyses with IQ-TREE 1.5.5%°, and BI analyses with MrBayes
3.2.6”". For the ML analyses under RAXML, we used three partitions based on the AICc

results with either a General time reversible (GTR)+G+I model or a GTR+G model. The best



ML tree was obtained using a heuristic search implementing 100 random-addition replicates.
Clade support was then assessed using a non-parametric bootstrap procedure (500 replicates
were used). For the IQ-TREE analyses under IQ-TREE, the same partitions were used, and
the runs were performed using a dedicated web server””. IQ-TREE searches were conducted
with default settings (auto substitution model option) and clade support assessed using 1,000
ultrafast bootstrap replicates™. Instead of using the standard threshold of 70% for BS, a
higher threshold of 95% was used for ultrafast bootstrap support values (uBS), following
authors’ recommendations (http://www.igtree.org/doc/Frequently-Asked-Questions#how-do-
i-interpret-ultrafast-bootstrap-ufboot-support-values). The MrBayes analyses were performed
with two partitions based on the BIC results. We conducted two independent runs with eight
Markov chain Monte Carlo (MCMC): one cold and seven incrementally heated that ran for
50 million generations with trees sampled every 5,000 generations. MrBayes analyses were
performed on the CIPRES Science Gateway 3.3'® using BEAGLE to improve and speed up
the likelihood calculation®. A conservative burn-in of 25% was then applied after checking
for stability on the log-likelihood curves and the split-frequencies of the runs. Support of
nodes for MrBayes analyses was provided by clade posterior probabilities (PP) as directly
estimated from the majority-rule consensus topology. Nodes supported by PP > 0.95 were

considered strongly supported following Erixon ef al.>.

Bayesian divergence times estimation

Divergence times were estimated using Bayesian relaxed clocks as implemented in BEAST
1.8.2°°. The partitions and substitution models were selected under PartitionFinder 1.1.1
following the settings above but with the beast set of models. We thus unlinked the partitions
for the substitution models, but we linked the partitions for the clock models such that we

worked with two molecular clocks (one for the mitochondrial compartment and one for the



nuclear part). We assigned a Bayesian lognormal relaxed clock with uncorrelated rates to
each clock model”’. The Tree Model was set to either a birth-death process or a Yule model®.

In order to improve the convergence of runs we fixed the topology as inferred by the
analysis of the species-level dataset with RAXML where 78% of the nodes are well-supported
within the Sesamiina (70% when considering the whole tree). Therefore in the Operators
panel of BEAUti, we unchecked the tree operators that usually modify the topology to ensure
a fixed topology and a better convergence for the estimates of divergence times.

The fossil record of Lepidoptera is scarce, and the family Noctuidae is no exception to
this pattern®. Indeed, only two fossils are considered to belong to Noctuidae, although these
are ambiguous™. Besides, these two fossils are too young (late Pleistocene) to be useful for
molecular dating of an old group like the Noctuidae'. Since there is no available described
fossil for the tribe Apameini or closely related tribes, we relied on secondary calibrations
derived from the comprehensive study of Wahlberg ef al.' on Lepidoptera. In this study the
authors used multiple fossil calibrations to infer divergence time estimates within

1.°. We chose to

Lepidoptera based on the phylogenetic dataset developed by Mutanen et a
constrain nodes in our tree that are shared with the tree of Wahlberg ef al'. We thus
constrained the root as well as the stems of the genera Condica and Cryphia with uniform
distributions encompassing the 95% credibility intervals estimated in Wahlberg ez al.'. Note
that the age estimates of these nodes largely overlap with the age estimates recovered in a
previous study including the tribe Apameini (both Apameina and Sesamiina) and closely
related lineages’'.

We designed two analyses by using either a birth-death process or a Yule model for
the branching process prior in combination with a uniform prior distribution for the

secondary calibrations. We then compared the fit of each analysis by performing a marginal

likelihood (MLE) estimation using stepping-stone sampling®” for each run, using 100 path



steps, and chains running for 500,000 generation with a log likelihood sampling every 5,000
cycles. The convergence of the runs was investigated using ESS.

BEAST analyses consisted of 50 million generations of MCMC with the parameters
and trees sampled every 5,000 generations. A burn-in of 25% was applied after checking the
log-likelihood curves. The maximum credibility trees, median ages and their 95% highest
posterior density (HPD) were generated with TreeAnnotator 1.8.2°°. BEAST analyses were
performed on the CIPRES Science Gateway 3.3'® using BEAGLE to improve and speed up

the likelihood calculation®”.

Estimation of ancestral character states: Host-plant associations and ecological
preferences

Host-plant associations were categorized at the family level for plants belonging to
Cyperaceae and Typhaceae, the monophyly of which are not in question. To improve
resolution of our analyses, and because Poaceae is the dominant host-plant family of
Sesamiina, we coded Poaceae at the subfamily level. Host-plant associations were thus scored
with the following six states: (i) Cyperaceae, (ii) Typhaceae, (iii) Poaceae: Arundinoideae,
(iv) Poaceae: Chloridoideae, (v) Poaceae: Panicoideae, and (vi) Poaceae: Pooideae. A lower
taxonomic level for the coding of Poaceae (such as tribes) was not envisioned as host-plants
have not been confidently assigned to a specific genus for several stemborer species (see
Supplementary Data 2). In addition, because our knowledge of the full host-range of each
sesamiine species is likely incomplete, using a finer-scale level of character coding could
potentially introduce biases in the corresponding analyses. Of 181 Sesamiina, we were unable
to assign a host-plant state for seven; these were coded as unknown. The few species that use
multiple host families/subfamilies (10 species feed on several family and eight species feed

on several Poaceae subfamilies) were coded as polymorphic with multistate characters.



To account for multistate characters we analyzed the host-plant data under the
dispersal-extinction-cladogenesis (DEC) model®, as implemented in the ML framework of
Lagrange C++*. We preferred the DEC model over the DEC+J model (as implemented in
BioGeoBEARS35), because the latter often infers null or extremely low extinction rates’’, an
effect of the model favoring direct dispersal over widespread ranges, which might not be
adequate for reconstructing the history of ancient groups (founder-event speciation is more
appropriate for island clades™). This argument is valid for any ancestral state estimation.
Ancestral states for host-plant association were reconstructed using a simple unconstrained
transition matrix (one rate for all transitions between states) allowing any host shift to be
equally probable. To estimate the support of a given character state relative to another, the
more likely state was selected according to a decision threshold, such that if the log-
likelihoods between two states differ by two log-likelihood units, the one with the lower
likelihood score is rejected.

The best ML tree obtained under RAXML was used in all ASE analyses. This tree was
modified under Mesquite (Prune clade tool), by removing all species outside the Sesamiina;
this in no way altered or mis-represented relationships within the subtribe. We also carried
out an analysis of a truncated data set removing all Sesamiina species without genus- or
species-specific host-plant data. The results support the same pattern of conserved of host-use
on Panicoideae (Supplementary Figure 6). The results of ASE analyses allowed us to discuss
the relevancy of the oscillation hypothesis (OH) and musical chairs hypothesis (MCH) in the
context of Sesamiina diversification. Here we would like to emphasis that the taxonomic
level (family/subfamily) used in our ASE analyses is similar with the one used in the
reference studies on OH and MCH (see the introduction in the main text).

We also conducted two supplementary analyses with binary traits: In the first we

explored the evolution of host-plant preference in relation to photosynthetic pathways (Cs or



C4); in the second we inferred the evolution of ecological preferences in relation to dry versus
wet environments. To determine the photosynthetic pathways of plants we relied on several

. .37,38,39,40,41
studies

. Preferences for dry or wet habitats were based on the fieldwork surveys
conducted by Bruno Le Ru, in which habitats are classified following White* (see e.g., ref.
19). Because of the binary nature of these two traits, ancestral character state estimations were
carried out under ML using a one-parameter Markov k-state model with symmetrical rates®,
as implemented in Mesquite. We also used the same pruned ML tree as the guide tree (see

above). The support of one state versus another (at a given node) was considered significant

if the difference between their log-likelihoods was greater than or equal to 2.0**.

Dated phylogeny and historical biogeography of the Panicoideae

The Sesamiina originated in the Afrotropics ca. 21 Ma’' and feed primarily on panicoid
grasses (Supplementary Data 2). Based on the results of optimization analyses described
above, we had concluded that Sesamiina are phylogenetically strongly constrained on feeding
on the subfamily Panicoideae (see the results of the multistate ASE), and this led us to
investigate the pattern of diversification of Panicoideae. We obtained the dated phylogeny of
Panicoideae from the global dated phylogeny of Poaceae™ (stored in the Dryad Respository

at: http://datadryad.org/resource/doi:10.5061/dryad.74b5d/5). Spriggs et al.® have estimated

divergence times in Poaceae using two sets of fossil calibrations: the first includes only
macrofossils (Hypothesis 1) and the second includes macrofossils plus phytoliths (Hypothesis
2). Phytoliths are rigid, microscopic structures made of silica, found in some plant tissues and
persisting after the decay of the plant. Phytolith characters are usually phylogenetically
unreliable®® and their use in a molecular dating analysis is controversial’’, making the dating
based on Hypothesis 2 less conservative than that based on Hypothesis 1. As underlined in the

main text of this study, age estimates for C4 grass lineages inferred under Hypothesis 2 are



also questionable because they significantly predate the fossil record of open grasslands. For
this study, we selected the dated tree as estimated by Hypothesis I (only macrofossils). The
Prune clade tool of Mesquite was used to isolate the Panicoideae from the rest of dated tree
of the Poaceae; the resulting pruned tree contains 805 species out of 3,500 known species.
We inferred global historical biogeography of Panicoideae using the DEC model® as
implemented in the ML framework of Lagrange C++*. Global species distributions were
divided into seven categories: WP = Western Palearctic (Europe), EP = Eastern Palearctic
(Asia), NEA = Nearctic (North America), NT = Neotropics (South and Central America, and
the Caribbean Islands), AF = Afrotropics, OR = Oriental (India and Indomalayan
Archipelago), and AU = Australasia. For each biogeographic region, we categorized the
presence or absence of the 805 species included in the dated tree of the Panicoideae
(Supplementary Data 3). The occurrence data were compiled from different sources in the

48,49,50,51,52

literature and through the use of online databases, such as the global invasive

species  database  (GISD;  http://www.iucngisd.org/gisd/), the FAO  database

(http://www.fao.org/ag/agp/AGPC/doc/Gbase/), the Kew Royal botanic garden database

(https://www kew.org/data/grasses-db.html), the IUCN red list (http://www.iucnredlist.org/),

the Tropicos database (http://www.tropicos.org/), the USDA database

(https://plants.usda.gov/java/). We also used the global biodiversity information facility

(GBIF; https://demo.gbif.org/) where we systematically checked for the most ancient records

to better infer native ranges (tentatively limiting biases linked to intentional or unintentional

introductions). Following the views of several authors®>~**

, taxa that overlapped a given
area only marginally were not assigned to it. The species with the largest current native range
is assigned four of the seven areas. Consequently, we set a maximum of four areas per

ancestral range at each node. While DEC allows the building of dispersal rate matrices, we

did not use them because grasses are very good dispersers (for example, by wind’®) with

10



dynamic biogeographical patterns’’. Because the log-likelihood of a time-stratified
biogeographical DEC model was substantially lower than those of the DEC model without
time slices (log-L ynconstrained DEC = -1755.97 vs. 10g-L time-stratified DEC = -2123.45), we did not
used a time-stratified biogeographical model. Therefore, the historical biogeography of
Panicoideaec was estimated with an unconstrained DEC model with only one time slice
(Supplementary Figure 7). Our aim was not to study the fine-scale history of geographic
diversification, but rather to identify when Panicoideae colonized the Afrotropics and

whether this estimate coincided with the temporal Afrotropical origin of Sesamiina.

Diversification of both clades
We wished to investigate whether the modes of species diversification were similar between
the Sesamiina and their ancestral host-plants, the Panicoideae, and to this end we used a
stepwise procedure that took the best time-calibrated phylogenies as the basis for the
analyses. When it was possible to run the models on multiple phylogenetic trees we took into
account age uncertainties by sampling randomly 100 dated trees from the posterior
distribution of the BEAST dating analyses. Unfortunately, for the Panicoideae, we only had
the consensus tree and therefore could not address the effect of age uncertainties on the
inference of diversification.

The procedure was as follows: (i) using three complementary approaches (BAMM
2.558; RPANDA 1.359; TreePar 3.360) we first estimated whether the clade diversification
deviated from a constant birth-death model and if shifts in speciation and extinction rates
occurred; (ii) we then tested if past temperature changes had similar impacts on the
diversification of both clades; (iii) we tested whether diversification had been influenced by
the role of fluctuations of atmospheric carbon concentrations for plants, while simultaneously

testing the role of grassland expansion through time for the Sesamiina; and (iv) we tested the
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role of diversity-dependence processes on the diversification of the moths only (not on the
plants because we had found that speciation rates increased through time, which contradicts
diversity-dependence).

First, we used BAMM 2.5 to estimate speciation and extinction rates through time and
among/within clades’®. BAMM was constructed to study complex evolutionary processes on
phylogenetic trees, potentially shaped by a heterogeneous mixture of distinct evolutionary
dynamics of speciation and extinction across clades. BAMM can automatically detect rate
shifts and sample distinct evolutionary dynamics that explain the diversification dynamics of
a clade without a priori hypotheses on how many and where these shifts might occur.
Evolutionary dynamics can involve time-variable diversification rates; BAMM allows for
speciation to vary exponentially through time while extinction is maintained at a constant
rate: clades are allowed to vary independently in rates of diversification, which is useful for
testing the hypotheses of diversification shifts associated with putative key innovations.

We ran BAMM by setting four MCMC running for 20 million generations and
sampled every 2,000 generations. In this procedure, a compound Poisson process is
implemented for the prior probability of a rate shift along any branch. We used a gradient of
prior values ranging from 0.1 to 10 to test the sensitivity to the prior, thereby taking into
consideration recent concerns raised on the reliability of BAMM estimates®', but see ref. .
For the stemborer moths, we set a global sampling fraction for the tree (= 0.905) because we
cannot assign missing species to specific clades even with morphological data (given the
polyphyletic nature of several genera such as Acrapex and Sesamia). For the panicoid
grasses, we set clade-specific sampling fractions for each tribe based on the most recent
taxonomic estimates (see ref. **). We performed independent runs (with a 15% burn-in) using
different seeds to assess the convergence of the runs with effective sample size. The MCMC

output data was processed using BAMMtools 2.1.6” by estimating (i) mean global rates of
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diversification through time, (ii) the configuration of diversification rate shifts evaluating
alternative diversification models as compared by posterior probabilities, and (iii) clade-
specific rates through time whenever a distinct macroevolutionary regime is identified.

Second, the ML approach of Morlon er al.®* was used to corroborate the BAMM
results. This approach is a birth-death method that extends previous birth-death methods by
liberalizing the variability of speciation and/or extinction rates through time, and subclades
may have different speciation and extinction rates. This method reduces assumptions of
extinction rate constancy (unlike BAMM™), and allows negative diversification rates in
clades where diversity decreases because extinction exceeds speciation®. We identified six
nested diversification models to test with this approach: (i) a Yule model, where speciation is
constant and extinction is null; (i1) a constant birth-death model, where speciation and
extinction rates are constant; (iii) a variable speciation rate model without extinction; (iv) a
variable speciation rate model with constant extinction; (v) a rate-constant speciation and
variable extinction rate model; and (vi) a model in which both speciation and extinction rates
vary. Models were compared by computing the ML score of each model and the resulting
AICc®.

Third, we estimated whether potential shifts in speciation and extinction rates
occurred in the phylogeny using TreePar® and the function ‘bd.shifts.optim’. We compared
several birth-death models including zero (constant-rate model) to four diversification rate
shifts during the lineage evolution while taking into account age uncertainties (100 randomly
selected posterior trees from the BEAST posterior distribution). All analyses were carried out
with the following non-default settings: taxon sampling set to 181/200, start = 0, end = crown
age, and grid = 0.1 million years (Myr) for a fine-scale estimation of rate shifts. We

calculated AICc scores and computed Likelihood Ratio Tests (LRT) to select the best-fit
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between the different models allowing incrementally more shifts during the evolution of the
clade.

We further tested the impact of past environmental changes on the diversification of
both clades to assess whether they responded similarly to changing abiotic conditions. An
environmental-dependent model was used in which speciation and/or extinction could vary as
a function of temporal variation of the environment®®. Thus, for the paleoenvironment-
dependent models, we needed to incorporate the temporal variations of a given environmental
proxy (e.g., temperature through time). Here we compiled paleodata for variables associated
with macroevolutionary hypotheses of diversification and that best represent paleoclimatic
changes: temperature data (inferred from §'*0 measurements) taken from Zachos et al.®’ (see
also Figure 2d), atmospheric CO, data retrieved from Beerling & Royer® (see also Figure 2f,

970 (see also Figure 2f, black

red curve), and &" Corganic for organic carbon sequestration
curve). Temperature is considered an important driver of biodiversity patterns and
evolutionary processes’', and therefore, we tested the role of warming and cooling events on
the diversification of both clades. Levels of atmospheric CO, are thought to impact

72,73,74,75

photosynthetic organisms , and were therefore used to test their impact on the

diversification of plants. The 813C0rganic, estimated from tooth enamel, reflects global changes

69,70

in organic carbon sequestration®’”’. In the Cenozoic, 5'"°C is the best proxy for reconstructing

0,73,76 :
707376 “and is

ancient C,4 grasslands since it represents the proportion of C4 and Cs grasses
therefore likely to be crucial to the evolution of both grasses and the herbivores that feed on
them. To confirm the effect C4 grasslands had on moth diversification, we also performed
additional diversification analyses using the recently estimated proportion of C4 plants in
eastern Africa through time’” instead of the global 813C0rganic. Using the data and phylogenies

for both clades, we compared constant-rate models, time-dependent models (see above), and

paleoenvironment-dependent models in a single framework using AICc. For stemborer moths
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we fitted paleoenvironment-dependent models of diversification in which speciation and/or
extinction may vary according to a dependence with temperature and 813C0rganic. For
Panicoideae grasses we fitted models with temperature- and CO,-dependence.

We also tested the hypothesis that diversity is bounded or at equilibrium, meaning that
diversity expanded rapidly in early diversification, occupying available extrinsic niches early
and appearing saturated toward the present. We explored the effect of diversity-dependence
on speciation and extinction rates using the method of Etienne et al.”® implemented in the R-
package DDD 2.7, applying five different models: (i) speciation is a linear function of
diversity, without extinction; (ii) speciation is a linear function off diversity, with extinction;
(ii1) speciation depends exponentially on diversity, with extinction; (iv) speciation does not
depend on diversity and extinction is a linear function of diversity and; (v) speciation does
not depend on diversity and extinction depends exponentially on diversity. For each model,
the initial carrying capacity was set to the current number of described species. We did not
perform DDD analyses on panicoid grasses (or on the subclades) because the speciation rates
of all groups increase through time and thus contradict the expected pattern under the
hypothesis of diversity dependence.

Finally we also performed supplementary analyses using the Binary State Speciation
Extinction (BiSSE) model” to estimate whether the respective diversification rates of
Afrotropical and non-Afrotropical panicoid species are comparable. To do so, first we
estimated the number of native Afrotropical panicoid species. We determined the number of
African panicoid species by extracting species distributions from the GRASSWORLD database
(http://grassworld.myspecies.info/en), using its curated checklist of African grasses

(http://grassworld.myspecies.info/sites/erassworld.myspecies.info/files/Africa.doc). An

estimated total of 1,131 African panicoid species was determined using this checklist in

combination with the list of panicoid genera published in the worldwide phylogenetic
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classification of the Poaceae by Soreng et al*™, which also relies on the GRASSWORLD
database. Although the African GRASSWORLD species checklist aims at only including native
species it is still a work in progress so we used additional filters to better account for the
occurrence of non-native species. First, we removed the 29 species belonging to genera that
are known to be non-native to the Afrotropical region®. Second, as a way to detect
potentially non-native species, we removed the 67 most widespread species (hereby defined
as distributed in more than 20 African countries). Finally we removed seven species that were
exclusively found in North Africa (which is part of the Palearctic biogeographic realm). As a
result we ended up with an estimate of 1,034 native panicoid species for the Afrotropical
region, to be compared with a total species richness of 3,560 species for the whole
subfamily®. Because several non-native species are still potentially included in our list
(native distributions are sometime ambiguous) we think that the number of native panicoid
species is actually comprised between 900 (conservative low boundary) and 1,034 species.
We then carried out eight BiSSE models, from the null model (no variation of rates) to the
most complex model in which all parameters of speciation, extinction and transition are
estimated. We considered a conservative Afrotropical species number sampled in the
phylogeny (i.e., 155 species) by excluding all species not exclusively distributed in the
Afrotropics. The most complex model (all.free) was defined as the best-fit model by the
AlICc comparisons (see the table below). Whatever the total Afrotropical diversity estimates
are (900 vs. 1034), for both groups we found very similar net diversification rates (r =
lambda - mu) comprised between 0.24 and 0.28 events/Myr/lineage (0.24-0.25 for the
Afrotropical native Panicoideae, vs. 0.28 for the remaining panicoid species). These analyses
support the hypothesis that the Afrotropical diversity of Panicoideae increased at the same

pace as the overall diversity of other members of the subfamily.
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BiSSE analyses with an estimated diversity of 900 species for the Afrotropical panicoid species

Model NP loglL

Null model 3 -2355.263
lambda.free 4 -2346.041
mu.free 4 -2345.351
q.free 4  -2345.377
lambda.mu.free 5 -2345.296
lambda.q.free 5 -2341.706
mu.q.free 5 -2342.989
all.free 6 -2340.138

AlCc

4716.556
4700.131
4698.751
4698.804
4700.668
4693.487
4696.053
4692.382

lambda0
NA
0.7454
NA

NA
0.7225
0.7546
NA
0.8147

lambdal

0.7692
0.5909
0.7192
0.7734
0.6876
0.6576
0.7463
0.5028

muO
NA

NA
0.3891
NA
0.3907
NA
0.4482
0.5312

mul
0.5099
0.414
0.5523
0.5154
0.5193
0.4516
0.5453
0.2454

BiSSE analyses with an estimated diversity of 1,034 species for the Afrotropical panicoid species

Model NP loglL

Null model 3 -2350.249
lambda.free 4 -2343.462
mu.free 4 -2342.66
q.free 4 -2343.125
lambda.mu.free 5 -2342.658
lambda.q.free 5 -2340.63
mu.q.free 5 -2341.275
all.free 6 -2340.196

AlCc
4706.527
4694.973
4693.37
4694.3
4695.391
4691.336
4692.625
4692.498

lambdaO
NA
0.7348
NA

NA
0.7135
0.7445
NA
0.7754

lambdal

0.7544
0.6017
0.7097
0.7593
0.7102
0.6627
0.7317
0.5745

muO
NA

NA
0.3842
NA
0.3888
NA
0.4334
0.4872

mul
0.4924
0.409
0.526
0.4991
0527
0.4453
0.521
0.3309

To provide more support to this hypothesis regarding the similarity of the diversification

dynamics of both Afrotropical and non-Afrotropical lineages, we also present several

additional lines of evidence.

1.

The first is related to the fact that speciation rates of both Afrotropical and non-

Afrotropical lineages largely overlap as illustrated by the following output from BiSSE.
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The fact that within Afrotropical or within non-Afrotropical lineages speciation rates are
overlapping is also consistent with results of BAMM analyses that highlighted that
Afrotropical and non-Afrotropical lineages have similar diversification regimes (please see
below).

2. Another points worth underlining surrounds the results of BAMM analyses in the light of
the BioGeoBEARS analyses. Three distinct net diversification rate (DR) regimes are
inferred under BAMM (please see below, on the left). When visualizing these distinct DR
regimes on the results of BioGeoBEARS analyses (please see below, on the right) two
interesting conclusions can be made:

First, for the three distinct diversification regimes (labelled 1, 2 and 3) there is a mix of
Afrotropical (with nodes circled in red on the tree at the right) and non-Afrotropical lineages
(other variously coloured nodes of the same tree). Afrotropical lineages are definitely not
associated exclusively with any one diversification regime. Here it is worth mentioning that
the lack of Afrotropical lineages for the diversification regime labelled 2 (a subset of the
Paspaleae) can be accounted for by the fact that Afrotropical Paspaleae lineages (Afrotropical
Axonopus, Hymenachne, Ichnanthus and Paspalum spp. plus Afrotropical endemic Paspaleae
genera such as Baptorachis or Lecomtella) are not represented in the phylogeny.

Second, the two shifts in diversification rates (leading to diversification regimes labelled
2 and 3) are not apparently associated with shifts in distribution. The first shift (labelled 2)
occurs for a subset of an existing mostly Neotropical clade, and not linked to a change of
distribution or biogeographic event (ancestral lineages before and after the DR shift stayed in
the Neotropical region). Likewise, the second shift (labelled 3) occurs within a widespread
group, and it is not linked to a change of distribution (ancestral lineages before and after the

DR shift stayed in the Oriental region).
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@ -0.16

3. Finally we conducted additional analyses under BiSSE to infer the pattern of species
accumulation through time. Based on the most likely BiSSE model, we generated
lineages-through-time (LTT) plots for both Afrotropical and non-Afrotropical lineages.
Based on the most likely BiSSE model, we generated lineages-through-time (LTT) plots
using an estimated diversity of 900 and 1,034 Afrotropical panicoid species
(Supplementary Figure 9a-b). Both Afrotropical and non-Afrotropical lineages show
increasing patterns of species accumulation, with no distinct up-shifts and more
importantly no plateau of diversity. It is also worth mentioning that the slopes would be
steeper if we used a complete species-level phylogeny; though ca. 3,500 species panicoid
are known, only 805 panicoid species were sampled in the Timetree from Spriggs et al.*.

We also generated a LTT plot for the Sesamiina (Supplementary Figure 9¢), which relied

on a more comprehensive sampling for the stemborers (181 species to be compared with

ca. 200 known species). It is worth underlining that due to differences in sampling

completeness between the Panicoideae (805 sampled species vs. ca. 3,500 known species)

19



and the Sesamiina (181 sampled species vs. ca. 200 known species), it would be

misleading to directly compare both LTT plots.

Overall, the extent of the analyses performed (BAMM, BiSSE and BioGeoBEARS)
corroborate our conclusions that (i) diversification is similar between Afrotropical and non-
Afrotropical lineages and (ii) changes in diversification rates through time are not restricted
to a specific area (i.e., continent), and can thus be more readily attributed to trait acquisition
or global abiotic events than to ecological opportunity mediated by the geographic

colonization of a novel area (continent).
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Busseola

Sesamia

[Sesamiina]

[outgroups]

[Apameina]

Supplementary Figure 1. Maximum likelihood tree for the moths (specimen-level dataset). Best-fit
maximum likelihood tree (L = -127162.57) resulting from the analysis of the specimen-level dataset
(245 species) carried out under RAXML. Bootstrap support values are only provided for major nodes.
Noctuid outgroup taxa (38 individuals from 28 species) are highlighted using black branches and a
grey filter while Apameina taxa (47 individuals from 36 species) are highlighted using green branches
and a green filter. Sesamiina (1,308 individuals from 181 species) are highlighted using red branches.
Within Sesamiina, the most diverse genera are highlighted using yellow, green and blue filters (for
Acrapex, Busseola and Sesamia, respectively); please note that species with a sl. (sensu lato) tag are
putatively assigned to extant genera pending the publication of ongoing comprehensive taxonomic
revisions. Habitus of adults belonging to the species Acrapex rubona Le Ru, Busseola fusca (Fuller)
and Sesamia nonagrioides (Lefebvre) are presented for illustrative purpose. Copyright notes: all
pictures were taken by B. Le Ru (last author of the paper).
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Supplementary Figure 2. Maximum likelihood tree for the moths (species-level dataset). Best-fit
maximum likelihood tree (L = -88365.60) resulting from the analysis of the species-level dataset (245
species) carried out under RAXML. Support values are provided on nodes (BS from the RAxML
analyses, uBS from the IQ-TREE analyses and PP from the MrBayes analyses, in that order). We used
the abbreviation ‘-’ either for low support values (below 50% for BS/uBS or below 0.50 for PP) or
whenever a particular node was not recovered by a given method. Noctuid outgroups, Apameina and
Sesamiina taxa are highlighted using either a grey, green, or orange filter (in that order). Within
Sesamiina, distinct genera are highlighted using various filters; please note that species with a sl.
(sensu lato) tag are putatively assigned to extant genera pending the publication of ongoing
comprehensive taxonomic revisions. On the left, pictures of representatives from all Sesamiina
genera are presented for illustrative purpose. Copyright notes: all pictures were taken by B. Le Ru
(last author of the paper).
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Supplementary Figure 3. Timetree for the moths with birth-death tree speciation priors. Dated
phylogeny resulting from BEAST analyses of the species-level dataset, using birth-death tree
speciation priors. Median age estimates are presented on nodes; horizontal bars on nodes are also

used to provide the 95% highest posterior density interval of age estimates. Sesamiina species are
highlighted using red branches.
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Supplementary Figure 4. Timetree for the moths with Yule tree speciation priors. Dated phylogeny
resulting from BEAST analyses of the species-level dataset, using Yule tree speciation priors. Median
age estimates are presented on nodes; horizontal bars on nodes are also used to provide the 95%

highest posterior density interval of age estimates. Sesamiina species are highlighted using red
branches.
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Supplementary Figure 5. Results of the character optimizations of host-plant associations. (a) On the
left: results of the character optimization of host-plant associations, carried out under maximum
likelihood with a DEC model. Host-plants were either categorized at the family level (for plants
belonging to Cyperaceae and Typhaceae) or at the subfamily level (for plants belonging to Poaceae).
(b) On the right: results of the character optimization of host-plant preferences, where host-plants
were categorized based on the nature (C; or C,) of their photosynthetic pathway. Corresponding
analyses were carried out with Mesquite; for each node, the most likely character state (or
combination of character states) is figured; if the corresponding character state (or combination of
character states) is not statistically supported the abbreviation ‘ns’ (for ‘not supported’) is added.
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Supplementary Figure 6. Comparison of character optimizations of host-plant associations. (a) On
the left: results of the character optimization of host-plant associations, with all host-plant data. (b)
On the right: results of the character optimizations of host-plant associations, where only Sesamiina
species with accurate host-plant assignations (genus or species level) are included. For both analyses,
character optimizations of host-plant associations were carried out under maximum likelihood with a
DEC model. Host-plants were either categorized at the family level (for plants belonging to
Cyperaceae and Typhaceae) or at the subfamily level (for plants belonging to Poaceae).
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Supplementary Figure 7. Historical biogeography of Panicoideae, inferred using the DEC model. For
each node, the most likely ancestral area (or combination of ancestral areas) is figured using a
coloured circle. Major biogeographic areas are abbreviated as follow: Afrotropics (AF), Australasia
(AU), East Palearctic (EP), Nearctic (NEA), Neotropics (NT), Oriental region (OR), and West Palearctic
(WP). On the bottom right a picture of Cymbopogon sp. is presented for illustrative purpose.
Copyright notes: the picture was taken by B. Le Ru (last author of the paper).
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Supplementary Figure 8. BAMM analyses. Results of BAMM analyses relying on a model with a
Poisson prior of 0.5 (see Supplementary Table S3 for more details). For all phylorate plots, speciation
rates are indicated using a gradual scale (cool colours = slow; warm colours = fast). (a) On the top:
phylorate plot for the Sesamiina dataset, which support a single diversification regime showing
elevated speciation rates in the early stages of the insect lineage evolution, followed by a progressive
slowdown but no drastic downward shift in speciation. (b) On the bottom: phylorate plot for the
Panicoideae dataset, which support an opposite pattern with lower rates close to the origin of the
group and increasing rates of speciation over time, accompanied by two significantly supported
increases in speciation with the crown tribes Andropogoneae and Paspaleae (highlighted by red
circles on the Figure). A picture of a larva of Sesamia nonagrioides (Lefébvre) (top left) and a picture
of Cymbopogon sp. is presented for illustrative purpose. Copyright notes: all pictures were taken by
B. Le Ru (last author of the paper).
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Supplementary Figure 9. Lineages-through-time plots for panicoid grasses and Sesamiina moths. (a)
LTT plots for panicoid grasses, based on a timetree of 805 species; estimates for both Afrotropical
and non-Afrotropical panicoid grass lineages rely on the most likely BiSSE model with a conservative
estimate of 900 Afrotropical panicoid species. (b) LTT plots for panicoid grasses, based on a timetree
of 805 species; estimates for both Afrotropical and non-Afrotropical panicoid grass lineages rely on
the most likely BiSSE model with an estimate of 1,034 Afrotropical panicoid species. (c) LTT plot for
the Sesamiina moths, based on a timetree of 181 species. Copyright notes: the grass and plant
symbols rely on pictures taken by G.J. Kergoat and B. Le Ru (first and last authors of the study,
respectively).
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Supplementary Figure 10. Ancestral state estimations of ecological preferences. Results of the
character optimization of ecological preferences, carried out under maximum likelihood with
Mesquite. For each node, the most likely character state (or combination of character states) is
figured; if the corresponding character state (or combination of character states) is not statistically
supported the abbreviation ‘ns’ (for ‘not supported’) is added. Pictures of representative habitats are
presented for illustrative purpose. Copyright notes: all pictures were taken by B. Le Ru (last author of
the paper).



Supplementary Figure 11. Sampling of infested host-plants in the field following by the rearing of
larvae on artificial diet. (a) Top left: typical open grassland habitat in Kenya. (b) Top right: open
grasslands in the Ethiopian highlands. (c) Middle left: freshly cut stems of Panicum maximum Jacq.

(Kenya). (d) & (e) Bottom: rearing rooms at icipe (Kenya). Copyright notes: all pictures were taken by
B. Le Ru (last author of the paper).




Supplementary Note 1

Host-records
Based on the extant host-records listed above we have generated two graphs (see below) that
underline the high level of host-specialization of Sesamiina stemborers. Based on our extant

knowledge, most species are associated with three or less plant genera (94%) or species (88%).
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A few species are associated with a higher number of host-plant genera and species; although

it is tempting to label them as polyphagous it is worth highlighting that they only feed on up to



three distinct plant families. The later has to be compared with truly polyphagous noctuid moths
such as species in the genus Spodoptera that may feed on more than 25 plant families. Though
future field studies on stemborers will likely unravel new host-plants and thus expand the host-
range of several Sesamiina species, we think that the observed pattern of monophagy /

oligophagy will remain still.

Ecological preferences and distribution

Sesamiina are unquestionably adapted to the main grassland habitat as attested by the fact that
the great majority of stemborer species were collected with light-traps set in open habitats.
Sesamiina stemborers also constitute one of the most abundant and conspicuous moth group in
Afrotropical grasslands (Le Ru pers. obs.; based on more than 15 years of light trapping and
grass sampling in Africa). The categorization made in Supplementary Data 2 reflects the
preferences of species for contact zones between open grasslands and wetlands / marshes / wet
forests. It is especially the case in low altitude areas; though most species exhibit preferences
for wet habitats, a non-negligible portion of them (34 species; see above) are also adapted to
drier conditions. It worth underlining that at mid-higher elevation stemborer species are only
found in open grassland habitats, such as the Veld in South Africa or mountain grasslands in
the East African mountain ranges. The later echoes that fact that the vast majority of Sesamiina
species have a restricted geographic range, with species being generally associated with a
specific bioregion or specific mountain ranges (e.g., Uzungwa mountains, Drakensberg range,
Kipengere range). Species that supposedly had large distribution areas also generally

correspond to species complexes.



Supplementary Note 2

We would like to thank several people for assistance with collection permits, field work and
rearing of larvae: Michel Sezonlin and Georg Georgen for Benin, Casper Nyakumondiwa,
Reyard Mutamisha and Eva Moeng for Botswana, Rose Ndemah and Philippe Le Gall for
Cameroon, Onésime Mubenga Kandonda and Benjamin Dudu Akaibe for the Democratic
Republic of Congo, Adugna Haile for Eritrea, Belay Defafachew and Mukuken Goftishu for
Ethiopia, Boaz Musyoka, Leonard Ngala, Antony Kibe, Gerphas Okuku and George Ong’amo
for Kenya, Jeannette Ravolonandrianina for Madagascar, Amelia Sidumo and Domingos
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Johnnie Van den Berg, Jurie Moolman, Mxolisi A. Stemele and Yoseph Assefa for the Republic
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