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S1 SIR Model Construction and Lumpability of CTMCs

In this section, we outline why the SIR model of Section ?? is equivalent to the canonical SIR
model (Kermack and McKendrick, 1927, Andersson and Britton, 2000) via a property called lumpa-
bility. The following discussion is not meant to be a comprehensive presentation of the theoretical
details behind the connection between the two models. We refer readers seeking a more thorough
presentation to Tian and Kannan (2006).

Given a Markov process, X with state space S “ ts1, . . . , sP u and initial probability vector π, we
define a new process, X on state space S “ tS1, . . . , SLu, a partition of S. The jump chain of this
new chain is obtained by taking the sequence of subsets of S that contain the corresponding states
of the original jump chain. The initial probability distribution of Xptq is

PrpXpt0q “ Siq “ PrπpXpt0q P Siq

and its transition probabilities are given by

PrpXpt`∆tq “ Sj|Xptq “ xpt1q, t1 ď tq “ PrpXpt`∆tq P Sj|Xptq “ xpt1q, t1 ď tq,

where xpt1q and xpt1q denote the paths of the original process and the new process. The new process
is called the lumped process. We say that the original process is lumpable with respect to a partition
S of S, and that Xptq is the lumped Markov process corresponding to Xptq, if for every choice of
π we have that Xptq is Markov and the transition probabilities do not depend on π. A necessary
and sufficient condition for a CTMC to be lumpable is that its rate matrix, Λ “ pλa,bq, where λa,b
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Figure S1: Complete and lumped representations of SIR dynamics in a population of five
individuals. The per–contact infectivity rate, β, and the recovery rate, µ, parameterize ex-
ponential waiting time distributions between transition events. The complete Markov jump
process evolves on the state space of subject state labels, S “ tS, I,RuN , with dynamics de-
termined by the subject–level transition rates. Each susceptible may contact two infected
individuals, while each infected individual recovers independently. The lumped process
evolves on the state space of compartment counts, sS “ tNS , NI , NR : NS`NI `NR “ Nu,
with dynamics determined by lumped transition rates. The waiting time distributions
between transitions are derived by noting that if τ1 „ exppλ1q and τ2 „ exppλ2q, then
τmin “ minpτ1, τ2q „ exppλ1 ` λ2q.

being the rate of transition from sa to sb, satisfies

ÿ

sbPSB

λa,b “
ÿ

sbPSB

λc,b

for any pair of sets SA and SB and for any pair of states psa, scq in SA P S.

In Section ??, we defined the latent process, Xpτq “ pX1, . . . ,XNq, with state space S “ tS, I, RuN .
Let cu “ px1, . . . , xNq denote a configuration of the state labels (e.g. cu “ pS, I, S,R, Iq), and denote
the set of configurations that correspond to a vector of compartment counts by

Clmn “

#

cu : l “
N
ÿ

i“1

I pxi “ Sq ,m “

N
ÿ

i“1

I pxi “ Iq , n “
N
ÿ

i“1

I pxi “ Rq , l `m` n “ N

+

.

The state space of count vectors,

S “ tClmn : l,m, n P t1, . . . , Nu, l `m` n “ Nu ,

defines a partition of S that is obtained by stripping away the subject labels and summing the
number of individuals in each disease state.

Given the partition S of S, we may define the CTMC for the canonical SIR model, X “ pNS, NI , NRq,
where NS `NI `NR “ N and NS, NI , NR P t0, . . . , Nu, on the state space of compartment counts,
depicted in Figure S1. This construction is usually presented for computational reasons since dis-
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carding the subject labels for infection and recovery events substantially reduces the computational
overhead. When the sojourn times are exponentially distributed, the transition rates for the time-
homogeneous CTMC are

Transition Rate
pNS, NI , NRq ÝÑ pNS ´ 1, NI ` 1, NRq βNSNI ,
pNS, NI , NRq ÝÑ pNS, NI ´ 1, NR ` 1q µNI .

The state space S partitions the state space S into groups of configurations for which the triple of
compartment counts are the same. The CTMC X trivially satisfies the condition for lumpability,
and thus is the lumped Markov chain of X with respect to this partition.
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S2 Computing the matrix exponential

The transition probability matrix (TPM), Pptq, for a time–homogeneous CTMC over an interval of
length t, solves the matrix differential equation

d

dt
Pptq “ ΛPptq, s.t. Pp0q “ I,

where Λ is the transition rate matrix for the CTMC and I is an identity matrix of the same size as
Λ (Wilkinson, 2011). Therefore, P is computed using the matrix exponential solution of the above
differential equation, P “ expptΛq. This is the most intensive step in our algorithm. However, we
may lessen the computational burden to a large extent by leveraging the fact that we are computing
the matrix exponential for the same rate matrix for possibly many values of t. Therefore, computing
the matrix exponential using the eigen decomposition of Λ and caching the resulting eigenvalues and
eigenvectors will be relatively efficient (Moler and Van Loan, 2003). We outline this computation
in the following two cases: when the eigenvalues of Λ are all real (e.g. as with the SIR and SEIR
models), and when Λ has complex eigenvalues (e.g. as is possibly the case with the SIRS model).

S2.1 Case 1: Λ has real eigenvalues

Suppose that Λnˆn “ UVU´1, where V is a diagonal matrix of eigenvalues, v1, . . . , vn, and U is
the matrix whose columns are the corresponding right eigenvectors. Then,

etV “ diagpev1t, . . . , evntq.

That U is nonsingular yields
etΛ “ UetVU´1.

S2.2 Case 2: Λ has complex eigenvalues

In the event that Λ has complex eigenvalues, we may obtain a real-valued TPM by transforming Λ
into its real canonical form (Hirsch et al., 2013). Suppose that Λ has r real eigenvalues, v1, . . . , vr,
with corresponding real eigenvectors, u1, . . . ,ur, and n´ r pairs of complex conjugate eigenvalues.
Let puj|wjq denote the real and imaginary parts of the eigenvector corresponding to the jth eigen-
value, αj`iβj, for j “ r`1, . . . , n, and define the matrix T “ pu1| . . . |ur|ur`1|wr`1| . . . |un|wnq. The
real canonical form for a rate matrix with complex eigenvalues can now be written as V “ T´1ΛT,
where V “ diagpv1, . . . , vr,Br`1, . . . ,Bnq, and each Bj, j “ r ` 1, . . . , n is given by

Bj “

ˆ

αj βj
´βj αj

˙

,
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which implies that

etBj “ eαjt
ˆ

cospβjtq sinpβjtq
´ sinpβjtq cospαjq

˙

,

and hence etV “ diagpev1t, . . . , evrt, etBr`1 , . . . , etBnq. Therefore, we can compute the matrix expo-
nential of tΛ as etΛ “ TetVT´1.
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S3 Forward-Backward Algorithm for Sampling the Disease

State at Observation Times

The stochastic forward-backward algorithm (Scott, 2002) enables us to efficiently sample from
π
`

X | Y,Xp´jq,θ
˘

by recursively accumulating, in a “forward” pass, information about the prob-
ability of various paths through S, conditional on the data, and then recursively sampling a tra-
jectory in a “backwards” pass. Let Yt`

t1 “ pY1, . . . , Y`q denote the observations made at times
t1, . . . , t`, and similarly, let XtL

j,tL´``1
“ pXjptL´``1q, . . . ,XjptLqq denote the state of Xj at times

tL´``1, . . . , tL. In the forward recursion, we construct a sequence of matrices Q
pt2q
j , . . . ,Q

ptLq
j ,

where Q
pt`q
j “

´

q
pt`q
j,r,s

¯

, and q
pt`q
j,r,s “ Pr

`

Xjpt`q “ s,Xjpt`´1q “ r | Yt`
t1 ,Xp´jq,θ

˘

. Let P
pjq
r,spt`´1, t`q “

Pr
`

Xjpt`q “ s | Xpt`´1q “ r,θ; Xp´jq

˘

. If there are changes in the numbers of infected individuals
in interval I`, we construct the transition probability matrix for that interval as in (??). Then,

q
pt`q
j,r,s9π

pt`q
j

`

r | Xp´jq,θ
˘

ˆPpjq
r,s pt`´1, t`q ˆ f

`

Yt` | Xjpt`q,Xp´jqpt`q, ρ,pt1
˘

, (1)

where π
pt`q
j

`

r | Xp´jq,θ, ρ
˘

“
ř

r q
ptjq
j,r,s and with proportionality reconciled via

ř

r

ř

s q
ptjq
j,r,s “ 1.

In the backwards pass, we sample the sequence of states at times t1, . . . , tL from the distribution
π
`

X | Y,Xp´jq,θ, ρ,pt1
˘

. To do this, we first note that

π
`

X | Y,Xp´jq,θ, ρ,pt1

˘

“ π
`

XjptLq | Y
tL
t1 ,Xp´jq,θ, ρ,pt1

˘

L´1
ź

`“1

π
´

XjptL´`q | X
tL
j,tL´``1

,Xp´jq,Y
tL
t1 ,θ, ρ,pt1

¯

“ π
`

XjptLq | Y
tL
t1 ,Xp´jq,θ, ρ,pt1

˘

L´1
ź

`“1

π
´

XjptL´`q | Xj,tL´``1
,Xp´jq,Y

tL´``1

t1 ,θ, ρ,pt1

¯

,

where the second equality follows from the conditional independence of the HMM. We proceed by
first drawing XjptLq from π

ptLq
j

`

¨ | Xp´jq,θ, ρ
˘

, and then drawing Xjpt`q, ` “ L ´ 1, . . . , 1, each in

turn from the categorical distribution with masses proportional to column xjpt``1q of Q
pt``1q

j .
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S4 Simulating endpoint Conditioned Time–Homogeneous

CTMC Paths

In this section, we briefly summarize the modified rejection sampling and uniformization algorithms
for simulating a path from an endpoint-conditioned time-homogeneous CTMC. The following dis-
cussion is not meant to be comprehensive, and we refer the reader to the excellent paper by Hobolth
and Stone (2009) for a more thorough discussion. We also refer the reader to the ECctmc R pack-
age for a fast implementation of these algorithms which we relied upon in implementing our data
augmentation algorithm (Fintzi, 2016).

Our goal is to simulate a path for a time–homogeneous CTMC, X, in the interval r0, T s, conditional
on Xp0q “ a and XpT q “ b. Let Λ be the rate matrix for the process. Let Λa denote the a, a diagonal
element of Λ, and similarly let Λa,b denote the rate given by the a, b element. We also denote
by PpT q the transition probability matrix for the CTMC over r0, T s, and PabpT q the probability of
beginning in state a and ending in state b.

S4.1 Modified rejection sampling

The modified rejection algorithm proposes paths by explicitly sampling the first transition time
when it is known that at least one transition occurred (i.e. when a ‰ b). The remainder of the
path is proposed by forward sampling, for instance, via Gillespie’s direct algorithm. The proposed
path is then accepted if XpT q “ b. When it is not known whether a transition occurred (i.e. when
a “ b), a path is proposed via ordinary forward simulation and accepted if XpT q “ b.

We sample the first transition time via the inverse–CDF method, sampling u „ Unifp0, 1q and
applying the inverse-CDF function

F´1
puq “

´log
“

1´ uˆ
`

1´ e´TΛa
˘‰

Λa

. (2)

We found that the modified rejection algorithm worked well in fitting the SIR and SIRS models. In
the examples we studied in which these models were fit, subject–paths over intervals where the end-
points required multiple jumps (S Ñ R, or I Ñ S) were almost never considered. Therefore, usually
only a single transition time was required to be sampled in a given interval, and accomplishing this
using the inverse–CDF method was quite fast.

S4.2 Uniformization

The uniformization algorithm samples the path for a time–homogeneous CTMC conditional on the
state at the interval endpoints by coupling the original process to a Markov chain determined by
an auxilliary Poisson point process. State transitions, including virtual transition where the state
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does not change, occur at points of this auxilliary process, and the sequence of state labels is drawn
from the corresponding Markov chain.

We construct the transition rate matrix of the auxilliary Markov chain, Y, as R “ I ` 1
µ
Λ, where

µ “ maxa Λa. Then number of state transitions, N , conditional on Xp0q “ a, XpT q “ b, can be
shown to be

P pN “ n|Xp0q “ a,XpT q “ bq “ e´µT
pµT qn

n!
Rn
ab{PabpT q. (3)

The algorithm proceeds by first sampling the number of state transitions from this distribution. If
there are no transitions, or if there is one transition and the states at the endpoints are the same,
the algorithm terminates. Otherwise, we drawn n independent uniform values in r0, T s and sort
them to obtain the times of state transitions. The state labels at the sorted sequence of times, τi,
i “ 1, . . . , n´ 1, is then drawn from the discrete distribution with masses given by

P pXpτiq|Xpτi´1,XpT q “ bq “
Rxi´1,xipR

n´iqxib

pRn´i`1qxi´1bq
. (4)

We found that uniformization was preferable to modified rejection sampling when fitting the SEIR
model. In this case, modified rejection sampling tended to get hung up when sampling paths in
intervals where the endpoints suggested that at least two state transitions occured (which though it
seldom occured, significantly slowed down the MCMC). We also note that the transition probability,
PabpT q, is computed and cached in carrying out the HMM step of our algorithm. Therefore, there are
no additional eigen–decompositions or matrix exponentiations required in using the uniformization
algorithm to sample the exact times of state transition.
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S5 Metropolis-Hastings Ratio Details

Our target distribution is πpX|Yq9πpY|XqπpXq. Note that xnew and xcur differ only in the path of
the jth subject, so Λp´jqpxcurq “ Λp´jqpxnewq “ Λp´jq. Suppressing the dependence on θ for clarity,
the acceptance ratio is

axcurÝÑxnew “ min

"

πpxnew|yq

πpxcur|yq

qpxcur|xnewq

qpxnew|xcurq
, 1

*

Now,

πpxnew
|yq 9 Prpy|xnew

qπpxnew
q,

πpxcur
|yq 9 Prpy|xcur

qπpxcur
q,

where Prpy|xnewq and Prpy|xcurq are binomial probabilities for the measurement process, and
πpxnewq and πpxcurq are the time–homogenous CTMC densities of the current and the proposed
population–level paths that appear in Equation (??). Let πpxnew

j |Λp´jq; Iq and πpxcur
j |Λ

p´jq; Iq
denote the time–inhomogeneous subject–level CTMC proposal densities given by (??). Then,

qpxnew
|xcur

q “ Prpxnew
|y; Λp´jq

pxcur
q, Iq

“
πpxnew,y; Λp´jq

pxcurq, Iq
Prpy; Λp´jq, Iq

“
Prpy|xnewqπpxnew

j |Λp´jq; Iq
Prpy; Λp´jq

pxnewq, Iq
and similarly,

qpxcur
|xnew

q “
Prpy|xcurqπpxcur

j |Λ
p´jq; Iq

Prpy; Λp´jq
pxcurq, Iq

.

Therefore,

πpxnew|yq

πpxcur|yq

qpxcur|xnewq

qpxnew|xcurq
“

Prpy|xnewqπpxnewq

Prpy|xcurqπpxcurq

Prpy|xcurqπpxcur
j ; Λp´jq

q

Prpy|xnewqπpxnew
j ; Λp´jq

q

“
πpxnewq

πpxcurq

πpxcur
j |Λ

p´jq; Iq
πpxnew

j |Λp´jq; Iq
.

Hence,

axcurÝÑxnew “ min

#

πpxnewq

πpxcurq

πpxcur
j |Λ

p´jq; Iq
πpxnew

j |Λp´jq; Iq
, 1

+

.

S9



S6 Fitting SEIR and SIRS models via Bayesian data aug-

mentation

S6.1 SEIR model formulation

The Susceptible–Exposed–Infectious–Recovered (SEIR) model adds an additional latent state to the
SIR model in which subjects who are exposed to an infected individual incubate before becoming
infectious. As with the SIR model, recovery is assumed to confer lifelong immunity. The structure
of this model does not affect any of the machinery involved in the subject–path proposal mechanism,
but rather merely redefines the population–level time–homogeneous CMTC for the epidemic process,
and the subject–level time–inhomogeneous CTMC used in the subject–path proposals.

Under this model, we suppose that the data are sampled from a latent epidemic process, X “

tX1, . . . ,XNu, that evolves in continuous–time as individuals become exposed, infectious, and re-
cover. The state space of this process is S “ tS,E, I, RuN , the Cartesian product of N state labels
taking values in tS,E, I, Ru. The state space of a single subject, Xj, is Sj “ tS,E, I, Ru, and a

realized subject–path is of the form xjpτq “
´

S, τ ă τ
pjq
E ;E, τ

pjq
E ď τ ă τ

pjq
I ; I, τ

pjq
I ď τ ă τ

pjq
R ;R , τ

pjq
R ď τ

¯

where τ
pjq
E , τ

pjq
I , and τ

pjq
R are the times at which subject J becomes exposed, infectious, and recovers.

As with the SIR model, some or all of these events may not transpire in the observation period
rt1, tLs, or at all. We let β be the per–contact infectivity rate, γ be the rate at which an exposed
individual becomes infectious, and µ be the rate at which an infectious individual recovers. Further-
more, we write the vector of disease state probabilities as pt1 “ ppS, pE, pI , pRq. The latent epidemic
process evolves according to a time–homogeneous CTMC, with transition rate from configuration
x to x1 that differ only in the state of one subject j is given by Λ “ βI if Xj “ S and X1

j “ E, γ if
Xj “ E and X1

j “ I, and µ if Xj “ I and X1
j “ R. Finally, the time–inhomogeneous CTMC rate

matrices used in the subject–path proposal distribution have the form

Λp´jq
m pθq “

¨

˚

˚

˝

S E I R

S ´βI
p´jq
τm βI

p´jq
τm 0 0

E 0 ´γ γ 0
I 0 0 ´µ µ
R 0 0 0 0

˛

‹

‹

‚

. (5)

As is the case with the SIR model, the eigen–values of the CTMC rate matrices for the SEIR model
are always real valued. The only computational modification, relative to the SIR model, that we
suggest is that times of state transition in inter–event intervals be sampled conditional on the state
at the endpoints via uniformization (see Section S4 of the supplement).

S6.2 SIRS model formulation

The Susceptible–Infected–Recovered–Susceptible (SIRS) model modifies the SIR model to allow
for loss of immunity. Again, fitting this model using our Bayesian data augmentation algorithm
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does not affect any of the machinery involved in the subject–path proposal mechanism, although
the recurrent nature of the disease dynamics increase the computational burden of the algorithm
since the disease state at the interval endpoints does absolve us of sampling the path within each
inter–event interval where the states at the endpoints are the same.

Under the SIRS model, we suppose that the data are sampled from a latent epidemic process,
X “ tX1, . . . ,XNu, that evolves in continuous–time as individuals become exposed, infectious, and
recover. The state space of this process is S “ tS, I, RuN , the Cartesian product of N state labels
taking values in tS, I, Ru. The state space of a single subject, Xj, is Sj “ tS, I, Ru, and a realized
subject–path is of the form

xjpτq “
´

S, τ ă τ
pjq
I1

; I, τ
pjq
I1
ď τ ă τ

pjq
R1

;R , τ
pjq
R1
ď τ ă τ

pjq
L1

;S , τ
pjq
L1
ď τ ă τ

pjq
I2

; . . .
¯

,

where τ
pjq
Ik

, τ
pjq
Rk

, and τ
pjq
Lk

are times at which subject J becomes infected, recovers, and loses immunity,
and are ennumerated by the subscript k as the process may revisit each state multiple time. As
with the SIR and SEIR models, some or all of these events may not transpire in the observation
period rt1, tLs, or at all. We let β be the per–contact infectivity rate, µ be the rate at which an
infectious individual recovers, and γ be the rate at which immunity is lost. Furthermore, we write
the vector of disease state probabilities as pt1 “ ppS, pI , pRq. The latent epidemic process evolves
according to a time–homogeneous CTMC, with transition rate from configuration x to x1 that differ
only in the state of one subject j is given by Λ “ βI if Xj “ S and X1

j “ E, µ if Xj “ I and
X1
j “ R, and γ if Xj “ R and X1

j “ S. Finally, the time–inhomogeneous CTMC rate matrices used
in the subject–path proposal distribution have the form

Λp´jq
m pθq “

¨

˝

S I R

S ´βI
p´jq
τm βI

p´jq
τm 0

I 0 ´µ µ
R γ 0 ´γ

˛

‚. (6)

Unlike the SIR and SEIR models, eigenvalues of each CTMC rate matrix may be complex. In order
to obtain a real valued transition probability matrix over an interval for which eigen–values of the
rate matrix are complex, we must rotate that rate matrix to obtain its real canonical form. This is
further discussed in Section S2 of the Supplement.
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S7 Selecting the Number of Subject–Paths to Update per

MCMC Iteration

There is no need to re–sample the path of every subject within each MCMC iteration. Indeed,
we might suspect that the efficiency of our MCMC could be improved by sampling only a few
subject–paths between parameter updates. Successive subject–path proposal tend to be highly au-
tocorrelated, as is the case for traditional DA methods (Roberts and Stramer, 2001), and frequently
updating model parameters may help to break this correlation. Although parameter updates tend
to also be highly autocorrelated, subject–path proposals are costly compared to updates of model
parameters. Therefore, it is reasonable to suspect that the effective sample size (ESS) per CPU
time might be improved by sampling only a handful of subject–paths per MCMC iteration.

Many factors, including the SEM dynamics, population size, efficiency of the implementation, and
the degree of model misspecification could affect the optimal number subject–path updates per
MCMC iteration. It is clearly impossible to disentangle the effects of all of the possible factors that
could affect the optimal number of subject–path updates per iteration. In the main paper, we set
the number of subject–paths per iteration on the basis of log–posterior effective sample size (ESS)
per CPU time in an initial run of 5,000–10,000 iterations (depending on the simulation).
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S8 Prior and Full–Conditional Distributions of SEM pa-

rameters

Parameter
Conjugate
Prior Dist.

Prior
Hyperparameters Full Conditional Hyperparameters

R0 Beta1 aβ, aµ, 1,
bµN
bβ

—

β Gamma aβ, bβ aβ `
řM
j“1 I pτj fl Iq , bβ `

řM
j“1 Sτj´1Iτj´1pτj ´ τj´1q

µ Gamma aµ, bµ aµ `
řM
j“1 I pτj fl Rq , bµ `

řM
j“1 Iτj´1pτj ´ τj´1q

ρ Beta aρ, bρ aρ `
řL
j“1 Ytj , bρ `

řL
j“1pItj ´ Ytj q

pt1 Dirichlet aS , bI , cR aS ` St1 , bI ` It1 , cR `Rt1

Table S1: Prior and full conditional distributions for SIR model parameters. β is the
per–contact infectivity rate, µ is the recovery rate, ρ is the binomial sampling probability,
and pt1 is the vector of initial state probabilities. Gamma priors are parameterized with
rates, so a Gamma(a, b) distribution has mean a{b. The Beta prime prior for R0 “ βN{µ is
the implied prior induced by the prior distributions for β and µ. The indicators I pτj fl Iq
and I pτj fl Rq equal 1 if τj corresponds to a time when an individual becomes infected or
recovers.

Parameter
Conjugate
Prior Dist.

Prior
Hyperparameters Full Conditional Hyperparameters

R0 Beta1 aβ, aµ, 1,
bµN
bβ

—

β Gamma aβ, bβ aβ `
řM
j“1 I pτj fl Eq , bβ `

řM
j“1 Sτj´1Iτj´1pτj ´ τj´1q

γ Gamma aγ , bγ aγ `
řM
j“1 I pτj fl Iq , bγ `

řM
j“1Eτj´1pτj ´ τj´1q

µ Gamma aµ, bµ aµ `
řM
j“1 I pτj fl Rq , bµ `

řM
j“1 Iτj´1pτj ´ τj´1q

ρ Beta aρ, bρ aρ `
řL
j“1 Ytj , bρ `

řL
j“1pItj ´ Ytj q

pt1 Dirichlet aS , bI , cR aS ` St1 , bI ` It1 , cR `Rt1

Table S2: Prior and full conditional distributions for SEIR model parameters. β is the per–
contact infectivity rate, γ is the rate at which an exposed individual becomes infectious, µ is
the recovery rate, ρ is the binomial sampling probability, and pt1 is the vector of initial state
probabilities. Gamma priors are parameterized with rates, so a Gamma(a, b) distribution
has mean a{b. The Beta prime prior for R0 “ βN{µ is the implied prior induced by the
prior distributions for β and µ. The indicators I pτj fl Eq, I pτj fl Iq and I pτj fl Rq equal
1 if τj corresponds to a time when an individual becomes exposed, becomes infectious, or
recovers.
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Parameter
Conjugate
Prior Dist.

Prior
Hyperparameters Full Conditional Hyperparameters

R0 Beta1 aβ, aµ, 1,
bµN
bβ

—

β Gamma aβ, bβ aβ `
řM
j“1 I pτj fl Eq , bβ `

řM
j“1 Sτj´1Iτj´1pτj ´ τj´1q

µ Gamma aµ, bµ aµ `
řM
j“1 I pτj fl Rq , bµ `

řM
j“1 Iτj´1pτj ´ τj´1q

γ Gamma aγ , bγ aγ `
řM
j“1 I pτj fl Lq , bγ `

řM
j“1Rτj´1pτj ´ τj´1q

ρ Beta aρ, bρ aρ `
řL
j“1 Ytj , bρ `

řL
j“1pItj ´ Ytj q

pt1 Dirichlet aS , bI , cR aS ` St1 , bI ` It1 , cR `Rt1

Table S3: Prior and full conditional distributions for SIRS model parameters. β is the per–
contact infectivity rate, µ is the recovery rate, γ is the rate at which a recovered individual
loses immunity, ρ is the binomial sampling probability, and pt1 is the vector of initial state
probabilities. Gamma priors are parameterized with rates, so a Gamma(a, b) distribution
has mean a{b. The Beta prime prior for R0 “ βN{µ is the implied prior induced by the
prior distributions for β and µ. The indicators I pτj fl Iq, I pτj fl Rq, and I pτj fl Lq equal 1
if τj corresponds to a time when an individual becomes infected, recovers, or loses immunity.

S9 Simulation 1 — Inference Under Various Epidemic

Dynamics — Setup and Additional Results

S9.1 Simulation details for the SIR model

We simulated an epidemic in a population of 750 individuals, 90% of whom were initially susceptible
and 3% of whom were initially infected. Prevalence was observed with detection probability ρ “ 0.2
at weekly intervals over a four month period which captured both the exponential growth and decline
of the epidemic. The mean infectious period was 1{µ “ 7 days and the per-contact infectivity rate
was 0.00035, which combined to give a basic reproductive number was R0 “ βN{µ « 1.8.

We ran three chains for 100,000 iterations each, sampling the paths for 75 subjects, chosen uniformly
at random, per MCMC iteration. We discarded the first 10 iterations from each chain as burn-in.
Priors for the rate parameters (summarized in Table S4) were scaled so that the prior mass spanned
a reasonable range of values, but were otherwise mild. Similarly, the prior for the binomial sampling
probability reflected a general prior belief that fewer than 40% of cases were detected. The prior for
the initial distribution parameters was informative, and was chosen as such because of the paucity
of data available for estimation of the initial distribution parameters.

We also fit the SIR model to the data using PMMH. We ran two sets of three MCMC chains with
the PMMH algorithm for 50,000 iterations each with 100 particles per chain, and discarded the first
100 iterations as burn-in. The first set of chains simulated particle paths approximately using τ–
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Param. True Value Prior distribution
R0 1.8 Beta1(0.3, 1, 1, 6)
β 0.00035 Gammap0.3, 1000q
µ 0.14 Gamma(1, 8)
pt1 (0.9, 0.03, 0.07) Dirichlet(90, 2, 5)
ρ 0.2 Beta(2, 7)

Table S4: Prior distributions for SIR model and measurement process parameters. The
prior for R0 is the induced prior implied by β and µ. The per–contact infectivity rate
is β, the recovery rate is µ, the binomial sampling probability is ρ, and the initial state
probabilities are pt1 .

leaping with a time step of two hours, while the second chain simulated paths exactly via Gillespie’s
direct algorithm. Parameters were updated using random walk Metropolis–Hastings (RWMH) with
a proposal covariance matrix estimated from an initial run of 5,000 iterations using an adaptive
RWMH algorithm with a target acceptance rate of 23.4%. We updated parameters on transformed
scales in order to remove restrictions on the parameter space, applying a log transformation to β
and µ, a logit transformation to ρ, and a generalized logit transformation to pt1 .
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S9.2 Additional results and MCMC diagnostics for the SIR model

Method Chain Hours ESS ESS per CPU time
BDA 1 9.9 87.7 8.8
BDA 2 8.7 67.9 7.8
BDA 3 8.5 63.8 7.5
PMMH–A 1 0.6 1847.4 2871.6
PMMH–A 2 0.6 1942.2 2995.7
PMMH–A 3 0.7 1876.6 2615.9
PMMH–E 1 26.1 1568.3 60.1
PMMH–E 2 20.4 2123.7 104.0
PMMH–E 3 20.5 1849.4 90.2

Table S5: Log–posterior run times, effective sample sizes (ESSs), and effective sample sizes
per CPU time measure in hours (ESS.per.CPU.time). BDA indicates our Bayesian data
augmentation algorithm, PMMH–A indicates PMMH with paths simulated approximately
via τ–leaping algorithm, and PMMH–E indicates PMMH with paths simulated exactly using
Gillespie’s direct algorithm. The BDA chains were run for 100,000 iterations each, while
the PMMH chains were run for 50,000 iterations following a tuning run of 5,000 iterations.
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Figure S2: Traceplots of the log–posterior and model parameters for the SIR model fit
using Bayesian data augmentation following an initial burn–in of 10 iterations. β denotes the
per–contact infectivity rate, µ is the recovery rate, ρ is the binomial sampling probability.
Traceplots are thinned to display every 50th iteration.
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Figure S3: Traceplots of the log–posterior and model parameters for the SIR model fit
using PMMH with 100 particles and a time step of 8 hours, following a tuning run of 5,000
iterations used to estimate the covariance matrix for the RWMH and an initial burn–in of
100 iterations. β denotes the per–contact infectivity rate, µ is the recovery rate, ρ is the
binomial sampling probability. Traceplots are thinned to display every 50th iteration.
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Figure S4: Traceplots of the log–posterior and model parameters for the SIR model fit
using PMMH with 100 particles, following a tuning run of 5,000 iterations used to estimate
the covariance matrix for the RWMH and an initial burn–in of 100 iterations. β denotes the
per–contact infectivity rate, µ is the recovery rate, ρ is the binomial sampling probability.
Traceplots are thinned to display every 50th iteration.
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S9.3 Simulation details for the SEIR model

We simulated an outbreak under near-endemic SEIR dynamics, with R0 “ βN{µ “ 1.05, in a
population of 500 individuals. The outbreak was initiated by a single infected individual in an
otherwise susceptible population, 121 of whom eventually became infected. The mean sojourn time
in the exposed state was 1{γ “ 14 days, while the mean infectious period duration was 1{µ “ 28
days. Prevalence was observed at weekly intervals, with detection probability ρ “ 0.3, over a two
year period.

We ran three chains for 100,000 iterations each, sampling the paths for 100 subjects, chosen uni-
formly at random, per MCMC iteration. We discarded the first 10 iterations from each chain as
burn-in. Priors for the rate parameters (summarized in Table S6) were scaled so that the prior
mass spanned a reasonable range of values, but were otherwise mild. The prior for the binomial
sampling probability was chosen so that 80% of the mass was between roughly 15 and 55 percent.
The prior for the initial distribution parameters was informative.

Param. True Value Prior distribution
R0 1.05 Beta1(1, 3.2, 1, 5)
β 0.000075 Gammap1, 10000q
γ 0.071 Gammap1, 11q
µ 0.036 Gamma(3.2, 100)
pt1 (0.998, 0.006, 0.002, 0, 0) Dirichlet(100, 0.1, 0.4, 0.01)
ρ 0.3 Beta(3.5, 6.5)

Table S6: Prior distributions for SEIR model and measurement process parameters. The
prior for R0 is the induced prior implied by β and µ. The per–contact infectivity rate is β,
the rate at which an exposed individual becomes infectious is γ, the recovery rate is µ, the
binomial sampling probability is ρ, and the initial state probabilities are pt1 .

We also fit the SEIR model to the data using PMMH. We ran two sets of three MCMC chains with
the PMMH algorithm for 50,000 iterations each with 200 particles per chain, and discarded the
first 100 iterations as burn-in. The first set of chains simulated particle paths approximately using
τ–leaping with a time step of 8 hours, while the second chain simulated paths exactly via Gillespie’s
direct algorithm. Parameters were updated using random walk Metropolis–Hastings (RWMH) with
a proposal covariance matrix estimated from an initial run of 5,000 iterations using an adaptive
RWMH algorithm with a target acceptance rate of 23.4%. We updated parameters on transformed
scales in order to remove restrictions on the parameter space, applying a log transformation to β,
γ, and µ, a logit transformation to ρ, and a generalized logit transformation to pt1 .

S9.4 Additional results and MCMC diagnostics for the SEIR model
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Figure S5: Traceplots of the log–posterior and model parameters for the SIR model fit
using Bayesian data augmentation following an initial burn–in of 10 iterations. β denotes
the per–contact infectivity rate, γ is the rate at which exposed individuals become infectious,
µ is the recovery rate, ρ is the binomial sampling probability. Traceplots are thinned to
display every 50th iteration.
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Figure S6: Traceplots of the log–posterior and model parameters for the SIR model fit
using PMMH with 200 particles and a time step of 8 hours, following a tuning run of 5,000
iterations used to estimate the covariance matrix for the RWMH and an initial burn–in of
100 iterations. β denotes the per–contact infectivity rate, γ is the rate at which exposed
individuals become infectious, µ is the recovery rate, ρ is the binomial sampling probability.
Traceplots are thinned to display every 50th iteration.
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Figure S7: Traceplots of the log–posterior and model parameters for the SIR model fit
using PMMH with 200 particles, following a tuning run of 5,000 iterations used to estimate
the covariance matrix for the RWMH and an initial burn–in of 100 iterations. β denotes the
per–contact infectivity rate, γ is the rate at which exposed individuals become infectious,
µ is the recovery rate, ρ is the binomial sampling probability. Traceplots are thinned to
display every 50th iteration.
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Model Method Chain Time ESS ESS per CPU time
SEIR BDA 1 9.2 149.9 16.2
SEIR BDA 2 9.2 146.0 15.9
SEIR BDA 3 9.0 143.9 16.0
SEIR PMMH - A 1 8.1 483.6 59.5
SEIR PMMH - A 2 8.3 684.8 82.2
SEIR PMMH - A 3 8.4 570.5 67.9
SEIR PMMH - E 1 15.8 411.9 26.1
SEIR PMMH - E 2 15.9 589.8 37.1
SEIR PMMH - E 3 14.1 466.3 33.1

Table S7: Log–posterior run times, effective sample sizes (ESSs), and effective sample sizes
per CPU time measure in hours (ESS.per.CPU.time). BDA indicates our Bayesian data
augmentation algorithm, PMMH–A indicates PMMH with paths simulated approximately
via τ–leaping algorithm, and PMMH–E indicates PMMH with paths simulated exactly using
Gillespie’s direct algorithm. The BDA chains were run for 100,000 iterations each, while
the PMMH chains were run for 50,000 iterations following a tuning run of 5,000 iterations.

S9.5 Simulation details for the SIRS model

The final outbreak was simulated under SIRS dynamics in a population of 200 individuals, in which
R0 “ βN{µ “ 2.52, the mean infectious period was 1{µ “ 14 days, and the mean time until loss
of immunity was 1{γ “ 150 days. One percent of of the population was initially at the time of the
first observation and the rest of the individuals were susceptible. Prevalence was observed weekly,
with detection probability ρ “ 0.95, over a one year period that spanned the initial wave of the
epidemic as well as most of the second wave of the epidemic.

We ran three chains for 300,000 iterations each, sampling the paths for 3 subjects, chosen uniformly
at random, per MCMC iteration. We discarded the first 2,000 iterations from each chain as burn-
in. Priors for the rate parameters (summarized in Table S8) were scaled so that the prior mass
spanned a reasonable range of values, but were otherwise mild. Similarly, the prior for the binomial
sampling probability reflected a general prior belief that more than 60% of cases were detected, but
was not otherwise particularly informative. The prior for the initial distribution parameters was
informative.

We also fit the SIRS model to the data using PMMH. We ran three MCMC chains with the PMMH
algorithm for 50,000 iterations each with 500 particles per chain, and discarded the first 100 itera-
tions as burn-in. We also ran a set of chains with 200 particles but mixing was poor and not all of
the chains converged. We attempted to exactly simulate particle paths but ultimately failed due to
degeneracies in the algorithm. The time step for the τ–leaping algorithm was 8 hours. Parameters
were updated using random walk Metropolis–Hastings (RWMH) with a proposal covariance matrix
estimated from an initial run of 5,000 iterations using an adaptive RWMH algorithm with a target
acceptance rate of 23.4%. We updated parameters on transformed scales in order to remove restric-
tions on the parameter space, applying a log transformation to β, µ, and γ, a logit transformation
to ρ, and a generalized logit transformation to pt1 .

S24



Param. True Value Prior distribution
R0 2.52 Beta1(0.1, 1.5, 1, 28)
β 0.1 Gammap0.1, 100q
µ 0.036 Gamma(1.8, 14)
γ 0.071 Gammap0.0625, 10q
pt1 (0.99, 0.01, 0) Dirichlet(90, 1.5, 0.01)
ρ 0.95 Beta(5, 1)

Table S8: Prior distributions for SIRS model and measurement process parameters. The
prior for R0 is the induced prior implied by β and µ. The per–contact infectivity rate is
β, the recovery rate is µ, the rate at which immunity is lost is γ, the binomial sampling
probability is ρ, and the initial state probabilities are pt1 .

S9.6 Additional results and MCMC diagnostics for the SIRS model

Model Method Chain Time ESS ESS per CPU time
SIRS BDA 1 14.2 167.7 11.8
SIRS BDA 2 10.9 194.8 17.8
SIRS BDA 3 10.8 243.0 22.6
SIRS PMMH - A 1 3.1 670.8 214.1
SIRS PMMH - A 2 3.0 799.5 267.3
SIRS PMMH - A 3 3.5 766.2 217.1
SIRS PMMH - E 1 50.2 570.9 11.4
SIRS PMMH - E 2 48.6 667.6 13.7
SIRS PMMH - E 3 48.8 592.6 12.1

Table S9: Log–posterior run times, effective sample sizes (ESSs), and effective sample sizes
per CPU time measure in hours (ESS.per.CPU.time). BDA indicates our Bayesian data
augmentation algorithm, PMMH–A indicates PMMH with paths simulated approximately
via τ–leaping algorithm, and PMMH–E indicates PMMH with paths simulated exactly using
Gillespie’s direct algorithm. The BDA chains were run for 100,000 iterations each, while
the PMMH chains were run for 50,000 iterations following a tuning run of 5,000 iterations.
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Figure S8: Traceplots of the log–posterior and model parameters for the SIR model fit
using Bayesian data augmentation following an initial burn–in of 2,000 iterations. β denotes
the per–contact infectivity rate, µ is the recovery rate, gamma is the rate at which immunity
is lost, and ρ is the binomial sampling probability. Traceplots are thinned to display every
50th iteration.
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Figure S9: Traceplots of the log–posterior and model parameters for the SIR model fit
using PMMH with 500 particles per chain and a time–step of 8 hours in the approximate
τ–leaping algorithm, following a tuning run of 5,000 iterations to estimate the RWMH
covariance matrix and in initial burn–in of 100 iterations. β denotes the per–contact infec-
tivity rate, µ is the recovery rate, gamma is the rate at which immunity is lost, and ρ is
the binomial sampling probability. Traceplots are thinned to display every 50th iteration.
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Figure S10: Traceplots of the log–posterior and model parameters for the SIR model fit
using PMMH with 500 particles per chain and particle paths simulated exactly via Gille-
spie’s direct algorithm, following a tuning run of 5,000 iterations to estimate the RWMH
covariance matrix and in initial burn–in of 100 iterations. β denotes the per–contact infec-
tivity rate, µ is the recovery rate, gamma is the rate at which immunity is lost, and ρ is
the binomial sampling probability. Traceplots are thinned to display every 50th iteration.
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Figure S11: Traceplots of the log–posterior and model parameters for the SIR model fit
using PMMH with 200 particles per chain and a time–step of 8 hours in the approximate
τ–leaping algorithm, following a tuning run of 5,000 iterations to estimate the RWMH
covariance matrix and in initial burn–in of 100 iterations. β denotes the per–contact infec-
tivity rate, µ is the recovery rate, gamma is the rate at which immunity is lost, and ρ is
the binomial sampling probability. Traceplots are thinned to display every 50th iteration.
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S9.7 Estimated latent posterior distributions for all models

Figure S12: Pointwise posterior medians (dashed lines) and pointwise 95% credible inter-
vals for the numbers of individuals in each disease state for the SIR, SEIR, and SIRS models.
True compartment counts are shown as solid lines. Estimates are based on a thinned sample,
retaining the collection of disease histories at the end of every 250th MCMC iteration.
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S10 Simulation 2 — Inference under Model

Misspecification — Setup and Additional Results

S10.1 Simulation setup

We simulated an epidemic in a population of size N=400 with time–varying dynamics using Gille-
spie’s direct algorithm over a four year period. Weekly prevalence counts were binomially distributed
with detection probability ρ “ 0.95. The epidemic dynamics varied over four epochs, based on the
parameters given in Table S10. We fit SIR and SEIR models to the data, running three MCMC
chains per model, discarding the first 100 iterations as burn–in, and sampling the paths of 150
subjects, chosen uniformly at random, per MCMC iteration. After discarding the burn–in, the
resulting samples were combined to form the final sample. We also attempted to fit the models
using PMMH. We ran three chains per model, each using 2,500 particles, the paths for which were
simulated approximately via τ–leaping with a one day time step. The PMMH chains were plagued
by severe particle degeneracy and did not converge.
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Epoch 1: Weeks 0 – 26

Param. True value
β 0.00025
γ 1/210
µ 1/150
ρ 0.95
Xpt0q S0 “ 397, E0 “ 2, I0 “ 1, R0 “ 0

Epoch 2: Weeks 26–105

β 0.0001
γ 1/210
µ 1/330
ρ 0.95
Xpt26q S0 “ 279, E0 “ 98, I0 “ 20, R0 “ 3

Epoch 3: Weeks 105–167

β 0.00035
γ 1/90
µ 1/300
ρ 0.95
Xpt105q S0 “ 1, E0 “ 43, I0 “ 145, R0 “ 211

Epoch 4: Weeks 167 – 209

β 0.0001
γ 1/180
µ 1/70
ρ 0.95
Xpt167q S0 “ 0, E0 “ 1, I0 “ 52, R0 “ 347

Table S10: Parameter values governing the time–varying SEIR dynamics and binomial
emissions process. The epidemic was simulated using Gillespie’s direct algorithm and the
process was restarted with the new parameter values at the beginning of each epoch.

S10.2 Additional results
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Figure S13: Traceplots of the log–posterior and model parameters for the SIR model
fit using BDA following an initial burn–in of 100 iterations. β denotes the per–contact
infectivity rate, µ is the recovery rate, ρ is the binomial sampling probability. Traceplots
are thinned to display every 50th iteration.
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Figure S14: Traceplots of the log–posterior and model parameters for the SIR model
fit using PMMH with 2,500 particles, following a tuning run of 5,000 iterations used to
estimate the covariance matrix for the RWMH. β denotes the per–contact infectivity rate,
µ is the recovery rate, ρ is the binomial sampling probability. Traceplots are thinned to
display every 50th iteration.
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Figure S15: Traceplots of the log–posterior and model parameters for the SEIR model
fit using BDA following an initial burn–in of 100 iterations. β denotes the per–contact
infectivity rate, γ is the rate at which an exposed individual becomes infectious, µ is the
recovery rate, ρ is the binomial sampling probability. Traceplots are thinned to display
every 50th iteration.
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Figure S16: Traceplots of the log–posterior and model parameters for the SEIR model
fit using PMMH with 2,500 particles, following a tuning run of 5,000 iterations used to
estimate the covariance matrix for the RWMH. β denotes the per–contact infectivity rate,
γ is the rate at which an exposed individual becomes infectious, µ is the recovery rate, ρ is
the binomial sampling probability. Traceplots are thinned to display every 50th iteration.
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SIR model

Parameter Prior distribution
R0 Beta1(0.6, 0.7, 1, 4)
β Gammap0.6, 10000q
µ Gamma(0.7, 100)
pt1 Dirichlet(90, 0.5, 0.01)
ρ Beta(10, 1)

SEIR model

R0 Beta1(0.6, 0.7, 1, 4)
β Gammap0.6, 10000q
γ Gammap0.5, 100q
µ Gamma(0.7, 100)
pt1 Dirichlet(90, 0.5, 0.5, 0.01)
ρ Beta(10, 1)

Table S11: Prior distributions for the SIR and SEIR model and measurement process
parameters for the models fit to the dataset simulated under time–varying SEIR dynamics.
The prior for R0 is the induced prior implied by β and µ. The per–contact infectivity rate
is β, the rate at which an exposed individual becomes infectious is γ, the recovery rate is
µ, the binomial sampling probability is ρ, and the initial state probabilities are pt1 .

SIR model

Parameter Posterior median (95% Credible interval)
R0 4.05 (3.40, 4.81)
β 0.000035 (0.000030, 0.000040)
µ 0.0034 (0.0031, 0.0038)
ρ 0.95 (0.93, 0.97)

SEIR model

Parameter Posterior median (95% Credible interval)
R0 23.80 (15.10, 36.98)
β 0.00021 (0.00013, 0.00032)
γ 0.0047 (0.0038, 0.0061)
µ 0.0035 (0.0032, 0.0038)
ρ 0.95 (0.94, 0.97)

Table S12: Posterior median estimates and 95% credible intervals for SIR and SEIR
model parameters fit under a binomial emission distribution to the epidemic simulated with
time–varying SEIR dynamics.

S11 Simulation 3 — Inference under Population Size

Misspecification — Details

We simulated an outbreak under SIR dynamics, with R0 “ βN{µ “ 3.5, in a population of 1,250
individuals. Roughly 0.2% of the population was initially infected, and 95% were initially suscep-
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tible. The mean infectious period was 1{µ “ 7 days. Prevalence was observed at weekly intervals,
with detection probability ρ “ 0.3, over a one year period.

We ran three chains for 100,000 iterations each under the following assumed population sized: 150,
300, 500, 900, 1100, 1200, 1250, 1300, 1400. We sampled the paths for 10% of the subjects, chosen
uniformly at random, per MCMC iteration. We discarded the first 500 iterations from each chain
as burn-in. Diffuse priors were specified for all model parameters, with the prior for the per–contact
infectivity rate depending on the assumed population size (summarized in Table S13).

Param. Prior distribution
R0 Beta1(0.00042ˆ 1250

N
, 0.35, 1, 2 / N)

β Gammap0.00042ˆ 1250
N
, 1q

µ Gamma(0.35, 2)
pt1 Dirichlet(100, 1, 5)
ρ Beta(1,1)

Table S13: Prior distributions for SIR model and measurement process parameters. The
prior for R0 is the induced prior implied by β and µ. The per–contact infectivity rate
is β, the recovery rate is µ, the binomial sampling probability is ρ, and the initial state
probabilities are pt1 . The prior for β was scaled in accordance with the assumed population
size.
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S12 Simulation 4 — Effect of Prior Specification on

Inference — Setup and Additional Results

S12.1 Simulation details

We ran three MCMC chains for each of the SIR models fit under the prior regimes that are specified
in Table S14 along with the true parameter values under which the data were simulated. Each chain
was run for 100,000 MCMC iterations with 75 subject–paths per iteration. The first 100 iterations
of each were discarded as burn–in, after which the samples from all three chains for each model
were combined to form the posterior sample.

Prior Distribution
Parameter Regime 1 Regime 2 Regime 3 Regime 4
R0 “ 1.84 Beta1(3, 3, 1, 1.526) Beta1(0.3, 0.1, 1, 0.6) Beta1(3, 3, 1, 1.526) Beta1(0.3, 0.1, 1, 0.6)
β “ 0.00035 Gamma(3, 10000) Gamma(0.3, 1000) Gamma(3, 10000) Gamma(0.3, 1000)
µ “ 0.14 Gamma(3, 20) Gamma(0.1, 0.8) Gamma(3, 20) Gamma(0.1, 0.8)
ρ “ 0.2 Beta(21, 75) Beta(21, 75) Beta(1,1) Beta(1,1)

Table S14: True parameter values and prior distributions under four different prior
regimes. The prior for R0 is the implied prior induced by the priors for β and µ. In
regimes one and three, the central 80% of the prior mass for R0 lay between 1.25 and 4.56,
while in regimes two and four, 80% of the prior mass lay between 3.8ˆ 10´4 and 2.7ˆ 104.
In regimes one and two, 80% of the prior mass for ρ lay between 0.17 and 0.27, while in
regimes three and four the prior mass for ρ was uniformly distributed between 0 and 1. We
used the same mildly informative Dirichlet(9, 0.2, 0.5) prior for pt1 in all prior regimes.

S12.2 Convergence diagnostics
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Figure S17: Traceplots of the log–posterior and model parameters for the SIR model fit
under informative priors for all model parameters. β denotes the per–contact infectivity
rate, µ is the recovery rate, ρ is the binomial sampling probability. Traceplots are thinned
to display every 50th iteration.
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Figure S18: Traceplots of the log–posterior and model parameters for the SIR model
fit under diffuse priors for the rate parameters and an informative prior for the binomial
sampling probability. β denotes the per–contact infectivity rate, µ is the recovery rate, ρ is
the binomial sampling probability. Traceplots are thinned to display every 50th iteration.
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Figure S19: Traceplots of the log–posterior and model parameters for the SIR model
fit under informative priors for the rate parameters and a diffuse prior for the binomial
sampling probability. β denotes the per–contact infectivity rate, µ is the recovery rate, ρ is
the binomial sampling probability. Traceplots are thinned to display every 50th iteration.
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Figure S20: Traceplots of the log–posterior and model parameters for the SIR model fit
under diffuse priors for all model parameters. β denotes the per–contact infectivity rate,
µ is the recovery rate, ρ is the binomial sampling probability. Traceplots are thinned to
display every 50th iteration.

S43



S13 Setup, additional results, and MCMC diagnostics for

British boarding school example

We ran three MCMC chains per model to fit the SIR and SEIR models to the British boarding
school dataset, for 100,000 iterations per chain. We sampled the paths for 100 subjects, chosen
uniformly at random, per MCMC iteration, and discarded, as burn-in, the first 100 iterations of
each chain for the SIR model, and the first 5,000 iterations of each chain for the SEIR model. Prior
distributions, along with posterior medians and credible intervals are given in tables S15 and S16.
The induced prior for R0 is highly diffuse due to the diffuse prior on the per–contact infectivity
rate. The prior distribution for the recovery rate and the rate at which exposed individuals became
infectious reflected prior knowledge of the natural history of influenza. The prior for the detection
probability has roughly 90% of its mass above 0.3, but is arguably quite diffuse given that it is
known that over 90% of the boys were eventually infected.

We also fit the SIR and SEIR models using PMMH with paths for 5,000 particles simulated approx-
imately via a multinomial modification of τ–leaping over two hour increments. The same priors
were used as for the chains fit using BDA. Parameters were updated via random walk Metropolis–
Hastings on transformed scales with a proposal covariance matrix that was estimated from an initial
run of 2,000 MCMC iterations. We applied a log transformation to the rate parameters, a logit
transformation to the binomial sampling probability, and a generalized logit transformation to the
initial state probabilities. Results for PMMH are not reported since the MCMC never converged
(see traceplots below).

Parameter Prior Distribution Posterior Median (95% BCI)

R0 Beta1(0.001, 1, 1, 1526) 3.89 (3.40, 4.47)
β Gamma(0.001, 1) 0.0024 (0.0021, 0.0026)
µ Gamma(1,2) 0.46 (0.42, 0.50)
ρ Beta(1,2) 0.98 (0.92, 1.00)

PrpXjpt1q “ Sq
Dirichlet(900,3,9)

0.99 (0.98, 0.99)
PrpXjpt1q “ Iq 0.003 (0.001, 0.007)
PrpXjpt1q “ Rq 0.009 (0.004, 0.017)

Table S15: Prior distributions and posterior estimates for parameters of the SIR model
with binomial emissions fit to the British boarding school outbreak data. The per–contact
infectivity rate is β, the recovery rate is µ, and the binomial sampling probability is ρ. The
prior for R0 is the implied prior induced by the priors for β and µ. Effective sample size
were β: 11,304; µ: 16,238; ρ: 3,920; pSt1 : 26,989; pIt1 : 284,431; pRt1 : 22,761.

S13.1 Boarding school example — MCMC diagnostics
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Figure S21: Traceplots of the log–posterior and model parameters for the SIR model fit
under binomial emissions using BDA following an initial burn–in of 100 iterations. β denotes
the per–contact infectivity rate, µ is the recovery rate, and ρ is the binomial sampling
probability. Traceplots are thinned to display every 50th iteration.
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Figure S22: Traceplots of the log–posterior and model parameters for the SEIR model fit
under binomial emissions via BDA following an initial burn–in of 5,000 iterations. β denotes
the per–contact infectivity rate, µ is the recovery rate, γ is the rate at which immunity is
lost, and ρ is the binomial sampling probability. Traceplots are thinned to display every
50th iteration.
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Figure S23: Traceplots of the log–posterior and model parameters for the SIR model fit
under binomial emissions using PMMH with 5,000 particles per chain and a time–step of 2
hours in the approximate τ–leaping algorithm, following a tuning run of 2,000 iterations to
estimate the RWMH covariance matrix and in initial burn–in of 100 iterations. β denotes
the per–contact infectivity rate, µ is the recovery rate, and ρ is the binomial sampling
probability. Traceplots are thinned to display every 50th iteration.
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Figure S24: Traceplots of the log–posterior and model parameters for the SEIR model fit
under binomial emissions using PMMH with 5,000 particles per chain and a time–step of 2
hours in the approximate τ–leaping algorithm, following a tuning run of 2,000 iterations to
estimate the RWMH covariance matrix and in initial burn–in of 100 iterations. β denotes
the per–contact infectivity rate, µ is the recovery rate, γ is the rate at which immunity is
lost, and ρ is the binomial sampling probability. Traceplots are thinned to display every
50th iteration.

S48



Parameter Prior Distribution Posterior Median (95% BCI)

R0 Beta1(0.001, 1, 1, 1526) 3.89 (3.40, 4.47)
β Gamma(0.001, 1) 0.0064 (0.0046, 0.0086)
γ Gamma(0.001, 1) 0.84 (0.66, 1.19)
µ Gamma(1,2) 0.47 (0.43, 0.51)
ρ Beta(1,2) 0.98 (0.91, 1.00)

PrpXjpt1q “ Sq

Dirichlet(900, 6,3,9)

0.98 (0.97, 0.99)
PrpXjpt1q “ Eq 0.006 (0.002, 0.01)
PrpXjpt1q “ Iq 0.003 (0.001, 0.007)
PrpXjpt1q “ Rq 0.009 (0.004, 0.016)

Table S16: Prior distributions and posterior estimates for parameters of the SEIR model
with binomial emissions fit to the British boarding school outbreak data. The per–contact
infectivity rate is β, the rate at which an exposed individual becomes infectious is γ, the
recovery rate is µ, and the binomial sampling probability is ρ. The prior for R0 is the
implied prior induced by the priors for β and µ. Effective sample size were β: 679; γ: 658;
µ: 10,069; ρ: 3,244; pSt1 : 26,868; pIt1 : 26,168; pRt1 : 273,613.

Table S17:

S13.2 Supplementary analysis of the British boarding school example
under negative binomial emissions

The PMMH MCMC runs in which SIR and SEIR models were fit to the boarding school data
under a binomial emission distribution were plagued by severe particle degeneracy (Figures S23
and S24). The binomial emission distribution requires that the latent prevalence always be at least
as great as the observed prevalence. However, this seemed to be a very stringent criterion with
such a high case detection rate. That this criterion was so stringent is suggestive of non–trivial
model misspecification. We attempted to confirm this by simulating a dataset that resembled the
boarding school data. One possible data generating mechanism that yielded to similar prevalence
counts resulted from an outbreak evolving under SEIR dynamics that varied over three epochs
(Figure S25). That even a model with this simple set of time–varying dynamics would undoubtedly
still be misspecified with respect to the real world circumstances in the boarding school is suggestive
of a non–trivial level of model misspecification for both the simple SIR and SEIR models that we
attempted to fit. Still, the inability of PMMH to fit simple, easily interpretable, SEMs to this data
under binomial emissions is a severe limitation.

We fit an alternative set of SIR and SEIR models to the data using BDA and PMMH in which the
observed prevalence was modeled as a negative binomial sample of the true prevalence, parameter-
ized by its mean and overdispersion. This is a somewhat unrealistic emission distribution because
it allows for the observed prevalence to be greater than the true prevalence. That this tended to
occur more often in the later parts of the epidemic when boys were being discharged from the infir-
mary was particularly odd. However, the negative binomial emission distribution allows us to avoid
degeneracy in the collection of PMMH particles by doing away with the constraint that the latent
prevalence be no smaller than the observed prevalence. Parameters were assigned the same priors
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Figure S25: British boardings school data and data simulated under SEIR dynamics
with time–varying dynamics over three epochs (indicated by different shaded regions). The
simulated dataset was generated using the following parameters: in the first epoch (days
1-4), β “ 0.0035, γ “ 1.25, µ “ 0.3. In the second epoch (days 4-8), β “ 0.065, γ “
0.51, µ “ 0.41. In the third epoch (days 8-14), β “ 0.06, γ “ 2.5, µ “ 0.54. The data were
a binomial sample of the true prevalence with detection probability ρ “ 0.98. There were
three exposed individuals and two infected individuals at the beginning of day 1.

given in Tables S15 and S16, and the negative binomial overdispersion parameter, φ, was assigned
a Gamma(1, 0.1) prior parameterized by rate. When fitting the model with BDA, we sampled new
values for the rate parameters and initial state probabilities from their univariate full conditional
distributions via Gibbs sampling. New values for the negative binomial sampling probability and
the overdispersion parameter were sampled using multivariate random walk Metropolis–Hastings on
the logit scale for ρ and on the log scale for φ. An empirical covariance matrix for the RWMH was
estimated from an initial run of 10,000 iterations and scaled until the acceptance rate was between
15%–50%. We ran three chains per model for 100,000 iterations each, updating the paths of 100
subjects per MCMC iteration, and discarding the first 10,000 iterations as burn–in. We also ran
three chains for 50,000 iterations each using PMMH for each of the models, with 500 particles per
chain for the SIR model and 5,000 particles per chain for the SEIR model. Particle paths were
simulated approximately using τ–leaping over a time step of 2 hours. Parameters were updated
via multivariate RWMH whose covariance matrix was estimated from an initial tuning run of 2,000
iterations. Rate parameters and the overdispersion parameter were updated on the log scale, the
negative binomial sampling probability was updated on the logit scale, and the initial state prob-
abilities were updated on the generalized logit scale. We discarded the first 1,000 of each PMMH
chain as burn–in.

Although the posterior median estimates under binomial and negative binomial emissions for the SIR
and SEIR dynamics and detection rate are generally quite similar, the posterior credible intervals
are considerably wider when the data modeled as a negative binomial sample of the true prevalence.
This manifests both in the widths of the credible intervals for the latent process (Figure S26), and
the credible intervals for the model parameters (Figure S27). This is not unexpected given that
the negative binomial distribution is substantially more flexible than the binomial distribution.
In comparing the posterior estimates obtained using BDA and PMMH under negative binomial
emissions, we find that the estimates are essentially identical for the SIR model. For the SEIR

S50



Figure S26: Boarding school data, pointwise posterior median estimates and pointwise
95% credible intervals under negative binomial emissions (grey shaded areas) for the num-
bers of infected boys (solid line) and susceptible boys (dashed line). Posterior estimates
based on a thinned sample, with every 250th configuration retained.

model, estimates of the dynamics are generally similar, though not to the same degree as those
for the SIR model. We notice that the credible intervals for the mean infectious period and the
negative binomial detection probability obtained using PMMH are substantially wider than those
obtained using BDA. Upon closer inspection of the traceplots of the model parameters, it is clear
that the negative binomial overdispersion parameter in the PMMH chains did not converge (Figure
S29).

Method
    BDA - Binomial
    BDA - Neg. Binomial
    PMMH - Neg. Binomial

Figure S27: Posterior medians and 95% credible intervals for SIR and SEIR models fit
with BDA and PMMH to the British boarding school data under binomial and negative
binomial emission distributions.
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SIR model fit to boarding school data via BDA with negative binomial emissions

Figure S28: Traceplots of the log–posterior and model parameters for the SIR model fit
under negative binomial emissions using BDA following an initial burn–in of 100 iterations.
β denotes the per–contact infectivity rate, µ is the recovery rate, and ρ is the binomial
sampling probability. Traceplots are thinned to display every 50th iteration.
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Traceplots for SEIR model fit via BDA with negative binomial emissions

Figure S29: Traceplots of the log–posterior and model parameters for the SEIR model fit
under negative binomial emissions via BDA following an initial burn–in of 5,000 iterations.
β denotes the per–contact infectivity rate, µ is the recovery rate, γ is the rate at which
immunity is lost, and ρ is the binomial sampling probability. Traceplots are thinned to
display every 50th iteration.
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Traceplots for SIR model fit via PMMH w/tau leaping with negative binomial emissions

Figure S30: Traceplots of the log–posterior and model parameters for the SIR model fit
under negative binomial emissions using PMMH with 5,000 particles per chain and a time–
step of 2 hours in the approximate τ–leaping algorithm, following a tuning run of 2,000
iterations to estimate the RWMH covariance matrix and in initial burn–in of 100 iterations.
β denotes the per–contact infectivity rate, µ is the recovery rate, and ρ is the binomial
sampling probability. Traceplots are thinned to display every 50th iteration.

S54



log−
posterior

β
γ

µ
ρ

φ
P

r(X
j (t1 )

=
S)

P
r(X

j (t1 )
=

E)
P

r(X
j (t1 )

=
I)

P
r(X

j (t1 )
=

R)

0 10000 20000 30000 40000 50000

−90

−85

−80

0.005

0.010

2

4

6

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

20

40

60

0.96

0.97

0.98

0.99

0.005

0.010

0.015

0.020

0.000

0.003

0.006

0.009

0.01

0.02

Iteration

Chain

1

2

3

Traceplots for SEIR model fit via PMMH w/tau leaping with negative binomial emissions

Figure S31: Traceplots of the log–posterior and model parameters for the SEIR model
fit under negative binomial emissions using PMMH with 5,000 particles per chain and a
time–step of 2 hours in the approximate τ–leaping algorithm, following a tuning run of
2,000 iterations to estimate the RWMH covariance matrix and in initial burn–in of 100
iterations. β denotes the per–contact infectivity rate, µ is the recovery rate, γ is the rate at
which immunity is lost, and ρ is the binomial sampling probability. Traceplots are thinned
to display every 50th iteration.
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