Supplementary Methods

General considerations about the β -barrel fold. In the past 30 years, descriptive work has been carried out to understand the geometric constraints in closed β -barrel structures. These findings laid the important foundation for the design work presented in this paper and are summarized in this subsection. This supplementary text is an addition to Figure 1. As indicated in the main text, β -barrels are characterized by the total number of strands (n) and the shear number (S), which is the total number of shifts of β -strand register between the first and the last strands. Because of the alternation of the hydrogen bonded and non-hydrogen bonded pairs of residues in anti-parallel β -sheets, the parameter S must be an even number to maintain continuous strand pairing. Together, n and S define the type of the β -barrel fold and its basic geometric properties. The ideal radius (r) of β -barrels has been described as a function of the number of strands (n), the shear number (S), the average distance between two β -strands (D) and the average distance between two residues on a β -strand (d):

$$\mathbf{r} = \left[\left(Sd \right)^2 + \left(nD \right)^2 \right]^{1/2} / \left[2n \sin \left(\pi/n \right) \right]$$
 eq. 1

The β -strand staggering angle to the main axis of the barrel (θ) was defined as:

$$\tan \theta = \frac{S \cdot d}{n \cdot D}$$
 eq. 2

Because of the relationships defined above, the ideal barrel radius and strands staggering angle are not continuous -- but discrete values. They are constrained by the hydrogen bonding pattern of the β -sheet.

The shear number also defines the pattern of the residues packing in the β -barrel (Extended Data Figure 1b-d). Because of the alternation of residues facing in and out on the β -strands, the side-chains of the residues lining up in the direction of the hydrogen bonds (perpendicular to the β -strands) face the same side of the β -sheet. We named such arrangements "C β -strips" (Fig. 1c). The total number of C β -strips in the barrel is equal to the shear number, and half of them point into the barrel. Therefore, a barrel of type (n=8; S=8) is packed with 4 C β -strips, resulting in a 4-fold symmetric arrangement of side-chains in the hydrophobic core. A barrel of type (n=8; S=10) is packed with the intertwinned side-chains provided by 5 C β -strips. Soluble β -barrels large enough to accommodate a ligand binding cavity characterized so far have 8 or 10 strands with a shear number ranging from 8 to 12. Almost all β -barrels with 8 strands and a shear number of 8 belong to the superfamily of TIM barrels with parallel β -strands. A small family of anti-parallel (n=8, S=8) transferrin-binding β -barrels has been characterized, but they are stable only in the presence of a lipid membrane. The theoretical radius of β -barrels with 10 strands, on the other hand, is too large to be packed with natural hydrophobic amino acids and their cavity is usually squished to allow hydrophobic packing of the core. The same is true for β -barrels of type (n=8; S=12) (lipocalins family), which require disulfides for folding and/or stability. Therefore, we started this work focusing on beta-barrels of type (n=8; S=10), which can be packed with hydrophobic side-chains and are large enough to accommodate a small molecule binding site.

Parametric models for β -barrel folds. Hyperboloids defined by the quadratic equation(eq.3),

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{z^2}{C^2} = 1$$
 eq. 3

have previously been used to fit the structures of β -barrel proteins, where the β -strands pass through the generating lines of hyperboloid surface and the equatorial planes of the hyperboloids cut through the

β-sheets. Although this model assumes divergence of the β-strands away from the equatorial plane of the hyperboloid, it has the advantage of representing the β-strands as straight lines that are easily populated with residues. The parameters A and B in eq. 3 are the radii of the elliptical equatorial plane of the hyperboloid (r_A and r_B in Fig. 1a). The parameter C can be expressed as a function of the ideal tilt angle of the β-strands to the main axis of the barrel (Z axis in Fig. 1a), θ , the parameters A and B, and the angular coordinates of the strand in the equatorial plane α ¹⁴:

$$C = \cot(\theta) \cdot \left[A^2 \cdot \sin^2 \alpha + B^2 \cdot \cos^2 \alpha\right]^{1/2}$$
eq. 4

The angle α is a function of the strand number n, since the n strands are regularly arranged around the elliptic equatorial plane:

$$\alpha = 2 \cdot \pi / n \qquad \qquad \text{eq. 5}$$

The β -strands are modeled as equidistant vectors v along the hyperboloid surface:

$$v = [-A \cdot sin(\alpha), B \cdot cos(\alpha), C]$$
 eq.6

These vectors are then populated with $C\alpha$, assuming ideal distance between residues on a β -strand and ideal backbone hydrogen bonds, perpendicular to direction of the β -strands. The other backbone heavy atoms were built over these $C\alpha$ traces using the BBQ software (see Supplementary Data for the parameters and scripts used in this study).

Backbone construction and sequence design. The hyperboloid model presented above was used to generate an ensemble of β -strands arrangements that were further minimized with geometric constraints to enforce hydrogen bonds between strands. To select the backbones that would allow optimal hydrophobic packing of the core, low energy sequences were designed using a RosettaScripts flexible-backbone design protocol with filters reporting the hydrophobic packing density inside the barrel (see Supplementary Data). Based on good packing metrics, a limited number of starting backbones (P1 to P12 in Supplementary Table 2) were selected for loop closure using the loop hash protocol implemented in RosettaRomodel (see Supplementary Data). Two rounds of loop closure were applied to each backbone to connect the strands with ideal, short hairpins. Combinations of different lengths of β -turns were sampled by constructing several blueprint files. The β -barrels with the best hydrogen bond energy were selected for the next stage of sequence design using a RosettaScripts flexible-backbone design protocol (see Supplementary Data). In this design stage, the sequence of the β -turns was constrained to the consensus sequence obtained from native proteins. Each turn was identified by its ABEGO type sequence and a sequence profile was generated (in the format of Rosetta resfile, see Supplementary Data).

Test of the proposed principles for constructing β-barrel backbones. The hypothetical roles of glycine kinks and β-bulges in β-barrels were tested computationally using a similar approach. First, a set of 50 to 100 poly-valine backbones was generated and minimized with constraints to ensure hydrogen bond connectivity across the β-barrel. We applied the Rosetta Relax protocol (iterative backbone minimization and repacking of side-chains) to each set of backbones and the number of retained backbone hydrogen bonds was evaluate (Extended Data Fig. 2a). We built three sets of disconnected β-strands based on different parametric models for β-barrels: 1) The parametric hyperboloid model was described above; 2) A parametric cylindrical model was adapted from¹³; and 3) A coiled coil parametric model was adapted from the helical bundle generation model, where the parameters of the small helices were modified to generate β-strands⁵⁷. For comparison, we built another set of disconnected β-barrels using Rosetta fragment assembly ^{58,21}. To test our final 2D map design with strategically chosen glycine kink positions,

 β -bulges and β -turns, we built sets of β -strands connected with β -turns and attributed an ABEGO type to each residue in the 2D map to enforce local torsional deviations from the canonical β -sheet B space. Kinks and bulges were modeled as residues with ABEGO types E and A, respectively. β -turns were modeled with the ABEGO types GG (canonical type I' β -turn), AA (type I β -turn) or AAG (β -turn with intrinsic G1 bulge).

Fragments-based approach to β-barrel design. As discussed in the main text, Rosetta fragment-based backbone assembly approach allows the introduction of local torsional deviation from ideal β-strands -- such as β-bulges and glycine kinks -- at specific positions. Several previous studies pointed out the presence and relative abundance of these structural features in native β-barrels. However, the precise role of β-bulges and glycine kinks and their localization in the β-sheet remained unclear. Here, we described in detail the rationale for building the 2D map describing the (n=8, S=10) β-barrel presented in the main text. We use β-bulges and glycine kinks to release the tension in the β-sheet and shape the cavity of the barrel. We also present the computation methods used to implement the sequence design. We defined the side of the β-barrel with the N- and C-termini as the "bottom" of the barrel, and the opposite side flanked with four β-turns and accommodating the ligand-binding cavity as the "top". This bottom/top definition was used throughout the text and the figures.

Design of the 2D map of the residues connectivity in a \beta-barrel of type (n=8, S=10). By collecting and analysing the native β -barrel structures, we found that the longest β -strands in soluble β -barrels of type (n=8; S=10), and even larger (such as n=10; S=12), span 12 residues (this number excludes any β -bulges). Therefore, the maximum length of β -strands in the 2D map was set to 12. We also found that an up-and-down β -barrel with antiparallel strands connected by short β -turns could not be composed of strands of the same length and that the length of each strand is constrained by the shear number S. We sought to distribute the total register shift of 10 residues across the 8 strands of the β -barrel. We chose to shift 3 out of 4 hairpins on each side of the barrel by 2 residues (this is the minimal register shift to conserve continuous hydrogen bonds), and shift the last hairpin by 4 residues (this is a "double" register shift, resulting in a hairpin with a longer unpaired edge). Because of the alternation of β -turns between the top and bottom hairpins and the staggering pattern between strands in each hairpin, the strands with odd numbers need to be shorter than the even strands if they all to be connected with short β -turns. As a result of this constraint, the even strands in our 2D map span 12 or 10 residues and the odd strands span 8 or 10 residues (Fig. 1d, left). The specific length of a strand depends on the position to the "double" register shift.

We further defined the backbone torsion angle bins (Fig. 1d, right) for each residue in the map. Regular β -strand positions were attributed the space B, while the glycine kinks positions were modeled in the E ABEGO space. One glycine kink was placed in each C β -strips to relieve the strain inherent to the closure of the β -sheet on itself -- for a total of 5 glycine kinks in our barrel of type (n=8;S=10), as described in the main text. We sculpted a square shaped cavity by placing each glycine kink at the fifth position of each C β -strips from the bottom of the barrel. The vector between the C α of the first residue on the C β -strip to the C α of the glycine (which has an estimated length of 4 times the average distance between two β -strands (D) -- 17.6 Å) can be projected on the equatorial plane of the β -barrel by being multiplied by $\sin(\theta)$, where θ is the ideal staggering angle of the β -strands to the central axis of the barrel (estimated to 43° for a barrel of type (n-8;S=10) using the eq. 2 above). The resulting vector (Fig. 1d) has a length of

 $4D \times \sin(\theta)$, which corresponds to a shift of 12 Å around the circumference of a β -barrel -- or approximately a quarter of the average circumference of a barrel of type (n=8;S=10) (estimated to 50 Å using eq. 1). Three of such vectors correspond to three sides of the square design. The remain two vectors (both starting on the β -strand bearing the "double" register shift) partially overlap and correspond to the fourth side of the square.

We noted that the top hairpin bearing the double register shift had a tendency to curve away from the center of the β -barrel. This is likely because the longer register shift allows more twist, which results in convex curvature of the edge β -strand residues (Extended Data Fig. 3a). To correct the twist of the strand, we introduced an additional glycine kink. It forces concave curvature in the area of the register shift, giving the longer hairpin a conformation similar to the other top hairpins.

In the main text, we show that β -bulges are necessary to relieve the strain associated with high β -sheet curvature at the extremities of the β -hairpins (in proximity to the β -turns). All four β -bulges in the top barrel are located in the same position in the corresponding β -hairpin, so are the bottom β -bulges. According to the $\beta\beta$ rule⁵⁸, if two antiparallel β -strands are connected with a short β -turn, the last residue of the first strand (position -1 relative to the β -turn) and the first residue of the following strand (position +1 relative to the β -turn) form a hydrogen bonded pair. Based on this $\beta\beta$ rule and the preferred hydrogen bond connectivity of β -bulges^{22,23,59}, β -bulge locations were constrained to:

(i) the un-paired edge of each hairpin, which corresponds to the first strand of the bottom hairpins and the second strand on the top hairpins; and (ii) preceding the closest hydrogen bonded pair of residues to the β -turns. Therefore, the ideal placement of β -bulges in our 2D map is at position -2 from the "bottom" β -turns (preceding the paired β -strand residue at position -1) and position +1 from the "top" β -turns (preceding and replacing the β -strand residue at position +1, which now shifts to position +2).

When considering the type of β -turns to use for connecting the strands whose twist has been altered with β -bulges, we found that, in native proteins, the non-canonical type I β -turn (with the ABEGO type sequence AA) is prefered when a β -bulge is located in position -2 (the location decided for the bottom β -bulge, Extended Data Fig. 3c). The use of a type I β -turn in the bottom hairpin was further supported by its higher frequency in native β -barrels, compared to the canonical type I' β -turn (with ABEGO type sequence GG) (Extended Data Fig. 3d). When all native β -sheet protein structures are considered, the canonical GG type turn is much more common than the AA type β -turn, presumably because its twist matches most β -strands without bulges. The AA β -turn is the mirror image of the GG turn and twists in the opposite direction. The most common β -turn in the native β -barrels is the 3-residues AAG turn (Extended Data Fig.3d). This type of turn has an intrinsic G1⁶⁰⁻⁶² β -bulge at the third (G) position preceding the first residue of the β -strand and modifies the hydrogen bond pattern of the pair of β -strands residues flanking the turn. The G1 bulge is ideally positioned to satisfy the localization constraints of the top β -bulges and was used to connect all four top β -hairpins.

We next sought to specify structural features that can control the precise registry between the first and the last strands, as a strategy for negative design against competing alternatives such as amyloid-like aggregates. We found that a conserved "tryptophan corner" in lipocalins was proposed to stabilize the native barrel structure relative to the misfolded structures^{25,63}. Therefore, we decided to introduce a tryptophan on the first strand (immediately after a sharp glycine turn) and a buried arginine on the last strand to guide the pairing between both strands with specific side-chain interactions.

Constraints for maintaining the hydrogen bond connectivity defined in the 2D map. Each backbone hydrogen bond in the 2D map was described with three pairs of constraints (Extended Data Fig. 5b). Additionally, we added a set of distance and dihedral constraints to specify the interactions specific to the "tryptophan corner" motif, which is otherwise constrained by interactions involving side-chains, which are absent from the backbones generated with Rosetta's centroid model. The specific torsion tolerances for the residues of the motif were determined by analyzing the torsion angles of a set of native tryptophan corner motifs extracted from the PDB (Extended Data Fig. 3g-j).

Constraints on amino acid identity with a resfile. A Rosetta resfile was used to constraint the sequence of the β -turn positions to prefered profiles observed in native proteins. An analysis of the sequence preference for the AAG and AA β -turns and flanking position was carried out to and specified in a Rosetta resfile. Our design models and crystal structure revealed that the prefered sequence for the β -turn resulted good intra- and inter-hairpin networks of hydrogen bonds (Fig. 2h&j). Additionally, the resfile defines the amino acid identity of the key residues of the tryptophan corner (G9, W11 and R107), the positions of glycine kinks and the positions constrained to proline. The dedicated positions for prolines were introduced as an attempt to improve the stability of the protein and were chosen based on several observation:

- Pro8 belongs to the tryptophan corner and is located between the residue participating to hydrophobic core packing and the glycine. Although the sequence profile of native tryptophan corner motifs does not show a preference for proline, backbone torsion distributions at that position (Ca-3 in Extended Data Fig. 3i) and the preceding position(Ca-4 in Extended Data Fig. 3h) are compatible with torsion preferences for prolines and pre-prolines.

- Pro31 and Pro50 were placed to protect the edges of the β -strand with double register shifts from forming intermolecular strand-to-strand interactions, as a negative design consideration.

Scaffolds preparation for RIF docking. Several sets of β -barrel scaffolds were constructed as input for RIF docking. A first backbone set was generated using the same centroid-level fragment assembly and minimization protocol developed for nonfunctional β -barrel design, during which hydrogen bond connectivity was maintained by three types of geometric constraints illustrated in Extended Data Fig. 5b. A second set of backbones, featuring broader phi, psi torsion angles distributions and overall higher structural diversity (estimated by all-to-all RMSD), was generated following the same protocol with only two pairs of constraints per hydrogen bond (the N-H-O angle constraint was left out). Output backbones were filtered for backbone torsion geometry (phi, psi, omega), backbone clashing and hydrogen bond energy. 104 and 96 backbones from each set were selected for RIF docking. These two sets of backbones yielded only a small number of RIF docking solutions (162 for 104 scaffolds and 225 for 96 scaffolds respectively, blue bars in Extended Data Fig. 5d).

We sought to further improve the backbone geometry and diversity of these backbones by performing two rounds of flexible-backbone design calculation using Rosetta full-atom energy without hydrogen bond constraints. Because we did not want to optimize the backbones for a specific non-functional sequence, this "pre-design" calculation was carried out using a generalized Ramachandra statistical potential (Rosetta/main/database/scoring/socore_functions/rama/flat/Rama_XPG_3level.txt) that only distinguishes three amino acid side chains (glycines, prolines, and all other amino acids). Such design protocol did not produce reasonable sequences to fold beta-barrels because of the low sampling (the cores were not packed

well and core residues were mostly methionines and valines) but improved the backbone torsion angles (phi, psi, omega) and diversified the backbones. The all-to-all backbone C α RMSD of these backbones was 1.4 ± 0.3 Å. These 200 "pre-designed" scaffolds yielded 2,102 non-redundant RIF docking solutions in total (Extended Data Fig. 5d).

Sequence design calculations were continued using RIF docking solutions from "pre-designed" scaffolds. A uniformly-defined "binding site" was applied to all the BB1-type β -barrel scaffolds. Sixteen positions in the upper half of the barrel except glycine and β -turn positions were used to define the searching grids for RIF docking (Supplementary Data). The sequences selected for ordering were originated from 20 of the 200 input scaffolds. That "productive" subset of input scaffolds had an average omega score of 13.8 Rosetta Energy Unit (REU); an average rama score of -9.8 REU and an average hbond_lr_bb score of -69.8 REU.

DFHBI ligand preparation. 3D atom coordinates of DFHBI was downloaded from PubChem database (PubChem CID: 70808995) and converted to .mol2 file by Avogadro software (Avogadro Chemistry). Partial charges assigned by Avogadro was corrected according to Amber force field (Supplementary Data). Parameter files that define the atom and bond types were generated according to the internal definition of Rosetta (Supplementary Data). The planar *Z*- conformation of DFHBI was used as the only conformer during RIF docking and Rosetta design calculations in order to obtain selective binding interactions compatible with fluorescence activation. The torsional degree of freedom in DFHBI was eliminated for the same purpose, which was added back during the post-design ligand docking simulation. DFHBI was placed into the β -barrel scaffolds by RIF docking database did not recognize fluorine atoms and the internal RIF docking ranking scores does not include electrostatic potentials. Since the fluorine atoms are of similar size as protons for most hydrophobic packing interactions, we think this replacement did not affect the search for interactions. Fluorines were added back during Rosetta design calculations with proper partial charges.

Rosetta sequence design following RIF docking. Rosetta energy-based sequence design was carried out for all 2,102 RIF docking solutions. The design protocol first defined four regions of the β -barrel: the ligand binding site (C α within 10Å distance from atom C4 (the bridging carbon between the two rings) in DFHBI), the protein core, surface and boundary regions (based on the number of neighboring side chains ³⁰). Each position in the protein was assigned to one of these four regions. In order to further reduce the sequence design space, each position was also categorized by its secondary structure. The combination of "regional" and secondary structure definitions was taken to refine the sequence search space. The amino acid propensities for helix, coil, sheet in protein core, boundary and surface (9 categories in total) in natural proteins were analyzed according to the definition of protein depth (see below, and Supplementary Table 17) and implemented in the design protocol (Supplementary Data). Special positions including glycine kinks, β -turns, β -bulges and tryptophan corner were specially treated using a resfile.

Design calculation started with a fixed-backbone calculation to optimize the residues in ligand binding site for better interface energy while the coordinating residues from RIF docking were kept fixed. Then the rest of scaffold was designed with backbone flexibility from energy-based gradient minimization²¹,

during which, the binding-site residues were kept fixed with flexible sidechain torsions ("packable"). The sequence-guided full-protein backbone refinement introduced in the second step would change the geometry of the ligand binding site and the original binding configuration would no longer be the optimal solutions. To continue, the same fixed-backbone binding site design was repeated with the updated backbone (In the ideal case, we would expect covergencies on both backbone conformation and binding-site sequences with these dual optimization goals). This two-step design calculation was repeated three times to search for sequences that not only accommodate the DFHBI-binding interactions from RIF docking but also form a coherently-packed protein core. Output models were evaluated by total energy of the complex, backbone omega geometry, backbone beta-pairing hydrogen bonding energy, interface energy, interface shape complementarity, and the number of buried unsatisfied polar atoms on the interface (Supplementary Data). About 13% of output designs fell into the top half of all these evaluated metrics, and were continued for next round of optimization. A major problem found after the first round sequence design was that the protein core were mainly packed by methionines with long hydrophobic side chain touching each "side" of the rectangular barrel. An amino-acid composition control was introduced in the second round of design trying to bias the searching towards aromatic residues. Similar criteria based on the distribution were used to select out "improved" designs. The third round of design was done to release the fixation imposed on the ligand-coordinating interactions from RIF docking so that the binding configuration can be adjusted by energy-based optimization. We also noticed that the geometric constraints used to construct β -barrel backbones distorted the peptide omega angles and design calculations done in torsional space were not able to recover the right backbone geometry completely. Instead, an energy-based gradient minimization in Cartesian space was performed to correct the peptide bond geometry. An additional round of design (using the same Round 3 design protocol) were carried out to refine the sequences. 460 output designs from on 44 different RIF docking solutions (based on 32 input scaffolds) were selected for profile-based sequence refinement⁶⁴.

Statistical analysis of amino acid preferences in natural proteins. A non-redundant PDB list from PISCES⁶⁵ was used with the following cutoffs: sequence identity <30%, resolution <3.0Å, length >30 (date 03/14/2015). The chain list was further filtered to remove any transmembrane proteins using the annotation from PDBTM⁶⁶. To allow for more accurate computation of secondary structure (SS) and solvent accessibility (SA), each chain along with the interacting neighbors in the biologically-relevant assembly were extracted from RCSB⁶⁷. STRIDE⁶⁸ was used to extract the SS classes. The 8 SS classes were reduced to 3. H, G, and I (from STRIDE) were reduced to (H)elix. E, B, and b were reduced to (E)xtended or sheet. T and C were reduced to (C)oil. DEPTH⁶⁹ was used to compute the SA. Residues with depth 0 to 5 Å were classified as exposed and 5 to 10 Å as buried. Using this classification we computed propensities of each amino acid (AA) given SS and SA. More specifically, we calculated: $log_2(P(AA|SS,exposed)/P(AA))$, $log_2(P(AA|SS,buried)/P(AA))$ and $log_2(P(AA|SS)/P(AA))$ listed in Supplementary Table 17.

Profile-based sequence refinement. After four rounds of Monte Carlo-based design calculations described above, additional two rounds profile-based sequence refinement were carried out. 460 top designs were naturally clustered based on their starting RIF docking solutions. A sequence profile was generated for each cluster. The sequence design calculation was then restricted to residue identities that

already appeared in those best solutions from the preceding design calculations. This was implemented by presenting the cluster-specific sequence profiles in the format of Rosetta resfile (Supplementary Data). Within each cluster, the "functional site", which was the coordinating residues from RIF docking in this case, were totally conserved while the hydrophobic packing core showed high divergence. We inspected each cluster and manually introduced residues for potential improvement. For example, whenever a buried unsatisfied Tryptophan was seen in the packing core, cross-strand Serine and Threonine (which were not allowed for designing a simple 100% hydrophobic core) were added to the resfile in the hope that Rosetta would detect a favorable hydrogen bond between those residues. The same procedure was performed twice to re-enforce the appearing structural features. 42 final designs spanning 22 clusters were selected for experimental characterization (Supplementary Table 4).

Post-design Analysis. Rosetta *ab initio* folding simulations were performed for the final designs using a modified protocol. Since the secondary structure prediction methods have a low success rate for predicting beta structures with irregular features (Gly-kinks and β -bulges), we modified the *ab initio* folding protocol by providing the secondary structure profile that matches the design model for picking short peptide fragments. Thus, the folding simulation would use only beta fragments to assess if there were alternative low-energy conformations. With this assumption, all the 42 designs had a typical funnel-like folding landscape. The energy gap was scaled to 0 to 1 with 1 representing a perfect funnel-like landscape³⁵ (Extended Data Fig. 5e). With all the biochemical characterization results, there was no clear correlation between scaled folding energy gap and β -barrel formation. Most of the failed designs found alternative conformation by associating with multiple peptide chains (7/42 designs were insoluble and 14/42 designs form soluble aggregates, Supplementary Table 3). Far-UV CD spectra indicated that designs forming soluble aggregates formed structured beta conformations instead of random coils (Supplementary Table 3).

To validate the ligand binding interactions, we built the model for the *apo* protein and performed ligand docking simulations. The unbound protein conformation was sampled by running independent short-time MD simulations starting from the protein conformation in the designed complex model. The average structure from MD simulations was used to perform 2,000 independent docking simulations with flexible side chains and backbones in the binding site⁷⁰. As a comparison, the protein conformation in the designed complex before MD refinement was used to perform the same ligand docking simulations (Extended Data Fig. 5f).

Modeling mutations. Mutations from the deep mutational scanning maps (Extended Data Fig. 8a-c) and variants arising from yeast library selection (Extended Data Fig. 8f, 10a&b) were modeled using RosettaScripts⁷¹. Mutations were first introduced into the parent design model, then a full-scale flexible-backbone relaxation calculation was done using FastRelax protocol with three cycles (Supplementary Data).

Experimental Materials. DFHBI was purchased from Lucerna (Brooklyn, NY), and were dissolved in DMSO as instructed by manufacturer. Acridine yellow was purchased from Sigma Aldrich (St. Louis, MO) and dissolved in EtOH. FITC-conjugated anti-cMyc antibodies were purchased Immunology Consultants Labs (catalog number: CMYC-45F) and used as instructed with 50-fold dilution. Thrombin

was purchased from MilliporeSigma (Burlington, MA). Trypsin-EDTA (0.25%) solution was purchased from Life Technologies (Danvers, MA). α -Chymotrypsin from bovine pancreas was purchased from Sigma-Aldrich (St. Louis, MI).

DNA synthesis. Designs BB1-4 and 41 designs from parametric design were ordered from Genscript (Piscataway, NJ) as cloned in pET29 with a C-terminal His6 tag. Codon usage was optimized for *E.coli* (Supplementary Table 1 and 2) by the internal algorithms used by Genscript. 56 designs for DFHBI binding and fluorescence activation were ordered from Gen9 (acquired by Ginkgo, Boston, MA) as cloned in pET28b with a C-terminal His6 tag (Supplementary Table 4). Codon usage was optimized for *E.coli* using DNAworks⁷². 36 designs for b11 loop insertion were ordered from Genscript as cloned between the NdeI and XhoI restriction sites of pETCON2⁷³ for yeast display (Supplementary Table 5). Genes encoding b11L5F and five designs based b11L5F.1 (nC1-5) were ordered from Integrated DNA Technologies(Coralville, IA) as gblock fragments and cloned into pET15 with N-terminal His6 tag followed by thrombin cleavage sequence, with codon usage optimized for *E.coli* using DNAworks. All the DNA oligos and primers used in this work were ordered from Integrated DNA Technologies(Skokie, IL).

Yeast surface display assays. 36 designs for b11 loop insertion were tested for binding using yeast surface display using the protocol presented in⁴⁶. EBY100 cells transformed with designs were inoculated into 1mL SDCAA media and grown at 30°C overnight. 1e7 yeast cells from overnight SDCAA culture were collected by centrifugation at 8,000rpm for 2min and resuspended in 1mL SGCAA media to induce surface protein display. After 24 hrs induction at 22°C shaker, 5e7 cells were collected by centrifugation at washed twice by PBSF. Yeast surface protein display level was monitored by incubating the cells with FITC-conjugated anti-cMyc antibody for 10min at room temperature. DFHBI-binding and fluorescence signal was assessed by directly labeling the cells with DFHBI for 20-30min at room temperature. Cells labeled with FITC-conjugated anti-cMyc antibody were washed once by 100uL PBSF before reading the signal on a flow cytometer (Accuri C6, DB). DFHBI-labeled cells were analyzed by the flow cytometer without washing. For both labels, a 488nm laser was used for excitation and a 520nm band pass filter for emission (Extended Data Fig. 8f).

b11L5F deep mutational scanning. b11L5F deep mutational scanning library was constructed by site-directed PCR mutagenesis using the protocol described in⁴⁴. DNA oligos were ordered with degenerate NNK at the each targeted position for introducing 20 codon variations, together a reverse complementary DNA oligo cover the flanking region (Supplementary Table 8). For each position in b11L5F, three PCR were carried out sequentially to construct the mutagenized full-length gene. Final PCR products of 111 positions were verified on 1% agarose gel to confirm the right length, then pooled together for yeast transformation by electroporation⁴⁶. pETCON2 plasmids were digested by *XhoI* and *NdeI* restriction enzymes (NEB) and gel purified using a commercial kit (Qiagen). Pooled library DNA mixed with cut pETCON2 vector were concentrated to a volume of < 10µL using a centrifugal vacuum concentrator (Savant SpeedVac). Two libraries were transformed independently with different amount of DNA: 1µg vector and 4µg insert genes for the first library; 2µg and 6µg for the second. Number of transformants were estimated by plating a small fraction of transformed libraries after serial dilutions.

Both libraries had more than 2e7 survived clones, which was far above the theoretical size of the library (110*19+1=2,091). Transformed libraries were passaged into 250mL of C-Ura-Trp medium and induced by SGCAA at 22°C for > 24hrs according to⁴⁶.

Transformed naive libraries underwent a series of selections by fluorescence activated cell sorting (FACS). Protein stability selection was done by sorting out variants with protease resistance as described in³⁰. Functional selection was conveniently carried out by selecting fluorescence-activating cells after DFHBI incubation. Labeling conditions and sorting parameters were given in Supplementary Table 16. 2 naive libraries and 20 selected libraries (see Supplementary Table 8 for a complete list) were sequenced by a MiSeq sequencer using a 300-cycle reagent kit (Illumina, CA). Sample preparation was done using the same protocol described in⁴⁷.

Sequencing data analysis. Pair-end reads from MiSeq sequencer were first combined using the PEAR program⁴⁸. The counts analysis was done using scripts adapted from Enrich⁴⁹. 20 sets of sequencing data (2 naive libraries, 16 libraries treated with trypsin or chymotrypsin at 4 different concentrations and 2 control selections without protease treatment) for stability selection were analyzed using the methods and scripts developed in³⁰, where the unfolded states were modeled without disulfide bonds (cysteine were replaced by serine). After subtracting wild type sequence stability score, relative scores in trypsin dataset were in the range of -2 to +2 while the range in chymotrypsin dataset were from -3 to +0.5. Since trypsin dataset has a better dynamic range after backbone subtraction, all the individual mutational effects on protein stability were using trypsin proteolysis data. The average effect (used to color the models in Fig. 4b and Extended Data Fig. 7b) of all the amino acid substitutions on each position were using the average stability scores from trypsin and chymotrypsin treatments. 4 sets of sequencing data for functional selections were analyzed using the statistical methods described in⁵⁰. Python scripts written to implement the Enrich2 methods and data visualization scripts were provided in the Supplementary Data as a Python interactive notebook (b11L5F DMS analysis.ipynb).

Combinatorial library construction and selection. Combinatorial libraries for b11L5F.1 and b11L5F.2 were designed to include all the beneficial mutations and their similar amino acid substitutions from the deep mutational scanning results. 20 positions with 3 to 5 mutations were selected. To control the library size (which is limited by the maximum yeast transformants, usually 1e8), 8 positions (A3, V13, M15, M27, F29, L37, Q42, and L107) were doped with a low percentage of alternative variants (1-2%) by requesting non-catalog synthesis from Integrated DNA Technologies (IDT). By lowering the mutagenesis rate of those positions, the theoretical sizes of the libraries are around 2e6, 99% of which contain additional 0 to 3 mutations at doped positions. Full-length DNA libraries were assembled using a recursive PCR protocol⁴⁵. Oligos received from IDT were dissolved in diH2O to 100µM stock concentrations and further diluted to 8.3µM and 12.5µM for assembling b11L5F.1 and b11L5F.2 libraries respectively, followed by another PCR using the flanking primers to amplify the full-length genes. Assembled genes were purified by gel extraction (Qiagen) and further amplified to obtain enough amount of DNA for yeast transformation. Two electroporations were performed for each library with varied amount of DNA: 3µg vector and 10µg insert genes for the first library; 4µg and 12µg for the second. Transformed yeast cells for the same library were pooled together for growth and display induction as described above. Number of transformants were estimated the same way: 8.8e7 for b11L5F.1 library and

5.5e7 for b11L5F.2 library. Given the complexity of the doped amino acid substitutions, the theoretical size the library was determined by the number of transformants and the FACS experiments were carried out to analyze at least 2 fold of that number in the initial selections. In total, 5 and 6 rounds of sorting and cell growth were carried out for b11L5F.1 and b11L5F.2 libraries, respectively. Detailed sorting parameters and statistics were provided in Supplementary Table 16.

Cells after sort 5 and sort 6 were plated on selective agar plates (C-Ura-Trp) for yeast colony PCR and Sanger sequencing. b11L5F.1 library converged to two sequences named as mFAP0 and mFAP1; b11L5F.2 library converged to one sequence after sort 5, named as mFAP2. Genes encoding mFAP0-2 were subcloned into E.coli vector pET15b for protein purification and biochemical and structural characterizations (Extended Data Fig. 8g&h).

Error-prone library construction and selection. Besides the combinatorial libraries described above, an error-prone library was constructed by amplifying the gene with Mutazyme II (Agilent). To achieve the desired average mutation rate of 2-3 mutations per gene, the reaction was carried out with 25ng, 10ng, 1ng, 0.1ng and 0.01ng of DNA template b11L5F.1 in pETCON2. The PCR products obtained with 1ng and 0.1ng of template were mixed together in equal amounts to build the library. The first reaction (with 1ng of template DNA) produced genes with 1 to 4 mutations, with an average mutation rate of 2 mutations per gene and 7% WT. The mutational bias in the library was similar to the mutational spectrum described by the manufacturer of the polymerase.

Additional PCR amplification was carried out to obtain enough amount of DNA for yeast transformation. Two electroporations were performed with varied amount of DNA: $3\mu g$ vector plus $10\mu g$ insert genes, and $4\mu g$ plus $12\mu g$. Cells were pooled together for growth and display induction as described above. Number of transformants were estimated to be 6.1e7. Five rounds of cell sorting and growth were carried out and the final selected cells were Sanger sequenced. Three of individual clones were tested for binding and confirmed to improve the fluorescence activation (Supplementary Data).

Protein sample preparation for crystallography. BB1 was expressed in *E.coli* BL21(NEB) with a C-terminal His6 tag, purified by gravity flow over Ni-NTA resin (Qiagen, Germany), followed by size-exclusion chromatography in a Akta Pure FPLC machine (GE Healthcare) using a Superdex 75 increase 10/300 GL column (GE Healthcare).

b10 was subcloned into pCDB24 with a N-terminal His8 tag followed by SUMO domain that could be recognized and cleaved by sumo protease 2^{74} . After overnight 18° C *E.coli* expression with IPTG induction, b10 was first purified by gravity flow over Ni-NTA resin, then incubated with homemade sumo protease overnight at 4°C to cleave the tag. Cleavage reaction was confirmed by SDS-Page gel and purified by Ni-NTA resin where the unbound flow-through was collected and concentrated for size-exclusion purification.

mFAP0 and mFAP1 were subcloned into pET15 to have a N-terminal His6 tag followed by thrombin cleavable sequence. After overnight 18° C *E.coli* expression with IPTG induction, mFAP0 and mFAP1 were first purified by Ni-NTA gravity flow, then incubated with thrombin overnight at 4°C to cleave the His6 tag. Cleavage reaction was treated the same way as described above.

Confocal image acquisition. Mammalian cell imaging of mFAP1 and mFAP2 was performed in NIH3T3 cells (Flp-In-3T3, Thermo Fisher Scientific, Inc). NIH3T3 cells were cultured in high-glucose DMEM, 4 mM L-glutamine, 10% fetal bovine serum (FBS, Life Technologies, Inc) at 37 °C, 5% CO₂. Cells were plated at $4x10^4$ cells/mL in 35 mm glass-bottomed dishes (Matek, Inc) that were coated with poly-D-lysine. Cells were transfected 24 hours after plating with Lipofectamine 3000 (Thermo Fisher Scientific, Inc) at a ratio of 3 µL reagent: 1 µL DNA, according to manufacturer's instructions, with 1.25 µg pCDNA5 plasmids of mFAPs or mFAP fusions (1.25 µg mCherry plasmid was added to the cytosolic constructs as a transfection control). Right before imaging, cell media was replaced with FluorBrite DMEM (Thermo Fisher Scientific, Inc) media supplemented with GlutaMax (Thermo Fisher Scientific, Inc) and 10% v/v FBS, and 20 µM DFHBI. Cells were imaged on a heated stage (37 °C). A Leica SP8X system was used for confocal microscopy. A white light laser of 488 was used to excite the DFHBI and detected by a HyD detector, over a range of 495-550 nm. All images were taken using a 63x objective with oil, at 1024x1024 resolution.

E.coli and yeast sample preparation for confocal imaging. 500uL *E.coli* Lemo21 cells (NEB) expressing mFAP1 and mFAP2 were washed three times by 1mL M9 medium. After incubated with 20 μ M DFHBI for 30 min at room temperature, E.coli cells were transferred to a 1mm-thinn 1% agarose gel on a glass slide and waited for 10min for immobilization. Cells were imaged between the glass cover slide and the agarose gel. 5e6 yeast EBY100 cells⁴⁶ displaying mFAP1 and mFAP2 were washed once by 1mL PBSF buffer and incubated with 20 μ M DFHBI for 30 min at room temperature. Yeast cells were transferred to a 35mm glass-bottomed dish (Matek, Inc) and waited for 5min at room temperature for cells to settle down to the bottom of the dish before imaging. Imaging of *E. coli* and yeast expressing mFAPs, or Aga2p-mFAPs (respectively) was performed on the same microscopy described above without the heating stage.

Extinction coefficients. Absorbance spectra were measured using a Thermo Scientific BioMate 3S UV-vis spectrophotometer (1 nm interval, 800 nm/min).

DFHBI-mFAPs complexes. A solution was prepared containing 1 μ M DFHBI and 10 μ M of mFAP1 or mFAP2 in PBS (pH 7.4) and allowed to equilibrate for at least 30 min, producing ~1 μ M of mFAP1-DFHBI or mFAP2-DFHBI. The absorbance was measured for each solution, and the extinction coefficients were calculated using Beer's Law (eq. 7)

$$A = \varepsilon bc$$
 eq. 7

where A is peak absorbance, ε is extinction coefficient, b is path length (1 cm), and c is concentration (1 μ M).

Uncomplexed DFHBI. The absorbance spectrum of DFHBI in PBS (pH 7.4) was measured for several stock solutions over the range 1-14 μ M. The peak absorbance of each was plotted vs concentration and fitted to a line whose slope, when divided by path length 1 cm, is the reported extinction coefficient (Extended Data Fig. 10d).

Fluorescence quantum yield. A Perkin-Elmer LS-B Luminescence Spectrophotometer (10 nm bandwidth, 1 nm interval, 100 nm/min) was used for relative quantum yield measurements. A Hamamatsu C9920-12 integrating sphere instrument was used for absolute quantum yield measurements (6 nm excitation bandwidth, 1 nm interval).

Relative quantum yield. The fluorescence emission spectra of complexes mFAP1-DFHBI and mFAP2-DFHBI (in PBS, pH 7.4) and reference dye Acridine Yellow G (in methanol) were measured. The quantum yield was calculated using the equation⁷⁵(eq. 8)

$$\Phi_c = \Phi_r \times \frac{1 - 10^{A_r(\lambda_{ex})}}{1 - 10^{A_c(\lambda_{ex})}} \times \frac{\int F_c(\lambda) d\lambda}{\int F_r(\lambda) d\lambda} \times \frac{n_c^2}{n_r^2}$$
eq. 8

where is quantum yield, $A(\lambda_{ex})$ is absorbance at the excitation wavelength λ_{ex} (λ_{ex} =440nm), *F* is fluorescence emission, *n* is refractive index of the solution (1.335 for PBS and 1.3284 for methanol), and the subscripts 'c' and 'r' refer to the mFAP1-DFHBI or mFAP2-DFHBI complexes and the reference dye, respectively. A reference quantum yield value =0.57 was used for Acridine Yellow G (in methanol)⁷⁶. *Absolute quantum yield*. Absolute quantum yields were measured for solutions of 1 μ M DFHBI and 10 μ M of mFAP1 or mFAP2 in PBS (pH 7.4) that were allowed to equilibrate for at least 30 min, producing

 $\sim 1 \ \mu M$ of mFAP1-DFHBI or mFAP2-DFHBI. Samples were excited at 440 nm and absolute quantum yields were calculated according to the equation (eq. 9)

$$\Phi_c = \frac{f_{em}}{f_{abs}} \qquad \text{eq. 9}$$

where is the emitted photon flux and is the absorbed photon flux. A similar procedure was used to measure absolute quantum yields of two control samples (Acridine Yellow G and fluorescein) which agreed well with literature values^{76,77}.

Dissociation constant. Dissociation constants (K_D) for b32, b11, b11L5F, mFAP1 and mFAP2 binding DFHBI were determined by measuring the fluorescence intensity of the complex in a 96-well plate (Corning 3650) on a Synergy neo2 plate reader (BioTek, Inc). Binding reactions were performed at 200µL total volume in PBS pH7.4 buffer. For low-affinity b32, b11 and b11L5F, protein concentration was kept at 10µM with varied concentrations of DFHBI in the range of 0.5µM to 200µM. Background fluorescence from DFHBI alone at the same concentration was subtracted from each observed binding signal. For high-affinity DFHBI binders, mFAP1 and mFAP2, DFHBI concentration was kept at 0.25µM with varied concentrations of mFAP1 or mFAP2 in the range of 0.025µM to 5µM. Data were fitted to an equilibrium binding model (eq. 10) by nonlinear regression analysis in R⁷⁸. Fitting curves were available on https://dx.doi.org/10.5281/zenodo.1216229.

$$F_{observed} = F_{free} + \frac{F_{bound} - F_{free}}{L_{total}} \times \frac{(K_d + P_{total} + L_{total}) - \sqrt{(K_d + P_{total} + L_{total})^2 - 4 \times P_{total} \times L_{total}}}{2}$$
eq.10

In eq. 10, $F_{observed}$ is the fluorescence signal measured by plate reader; F_{free} is the fluorescence intensity from free ligand in the absence of protein; F_{bound} is the fluorescence intensity from the bound ligand when binding reaction reaches saturation; P_{total} and L_{total} are the total concentrations of protein and ligand in the reaction; K_d is the dissociation constant. By fitting the titration data iteratively, $F_{observed}$, F_{bound} and K_d were derived from the model.

Supplementary Tables

Supplementary Table 1: List of sequences for nonfunctional β -barrel designs from fragment-based approach. Protein sequences and DNA encoding sequences (optimized for *E.coli* codon usage) of four designs (BB1-4) are provided in this table.

Design ID	Protein sequence	DNA Sequence
BB1	MVDAAQYFPGTWEFRFRSSDGK EYRGTVEMQPRTPTEIEIRFKGQ SSDGRPVEGRGSIEVRSPYEYRF EMQSSDGARWEGTLQVRSPDSV EVRFKSSDGREYSGEFRRQEGS	ATGGTTGACGCTGCTCAGTACTTCCCGGGTACCTGGGAGTTCAGGTTCCGTTCTTCT GACGGTAAAGAATACCGTGGTACCGTTGAAATGCAGCCGCGTACCCCGACCGA
BB2	MTTAAWKYPGEWDFEFKSSDG KEYRGKVRIQPETPTKIEFELEGQ SSDGKPFKGHGYFEVKSPTRMR LEFTSKDGRRFEGEVEEKSPHEV EIRFKESDGREYRGKMRRREGS	ATGACCACCGCTGCGTGGAAATACCCAGGCGAGTGGGACTTCGAGTTCAAGTCTTC TATGGTAAAGAGTACCGTGGCAAAGTTCGTATCCAGCCGGAAACCCCGACCAAAA TCGAGTTGAACTGGAAGGTCAGTCCTCTGACGGTAAACCGTTCAAAGGTCACGGTT ACTTTGAAGGAAGTCTCCGACCCGTATGCGTCTGGAATTCACCTCTAAAGATGGCC GTCGTTTCGAAGTGAAGT
BB3	MKTISQAFPGTWRFDVTSSDGSR WEGRVEVRPRTPTEFEVRFEGKS SDGRPFHGRGEVHVETPDKVEV RFRSSDGREYRGYMELKSPTELE FRFRSSDGKEFRGRLERRGGS	ATGAAAACCATCTCTCAGGCGTTCCCGGGTACCTGGCGTTTTGACGTTACCTCTTCT GATGGTTCTCGTTGGGAAGGTCGTGTTGAAGTTCGTCCGCGCGTACCCCAACCGAGTT CGAGTGCGCTTCGAGGGTAAATCTTCCGATGGTCGTCCGTTCCACGGTCGCGGCGA AGTTCACGTTGAAACCCCGGACAAAGTGGAAGTGCGTTTTCGTTCCTCTGACGGTC GTGAATACCGTGGTTACATGGAACTGAAATCTCCGACCGA
BB4	METASKALPGEWRFDVKSSDGR RWEGRIEVRPKTPTRFEVRFEGK ESDGRPFHGHGEMRVRSPTKVE VRFKSEDGREFRGSLTLRSPYEM EIRFKSSDGKEYRGRLERIGGS	ATGGAAACCGCGTCTAAAGCGCTGCCGGGTGAATGGCGCTTCGACGTTAAGTCCTC CATGGTCGTCGTTGGGAAGGTCGTATCGAGGTTCGTCCGAAAACCCCCGACCCGTTT TGAAGCGCTTTGAAGGTAAAGAATCTGATGGCCGTCCGTTCCACGGTCACGGTGAA ATGCGGTTCGTTCTCCAACCAAAGTTGAAGTTCGTTTTAAGTCTGAAGACGGTCGT GAATTCCGTGTTCTCTGACCCTGCGTTCCCCGTACGAAATGGAAATCCGTTTCAAAT CTTCTGACGGCAAAGAATACCGTGGTCGCCTGGAACGTATCGGTGGTTCC

Supplementary Table 2: List of tested β -barrel designs from parametric design approach. Geometric parameters, protein sequences and stage of failure of forty-one designs are summarized in this table.

Batch	Design	Design description	Sequence	Stage of failure
Batch 1	1_5_0062	b=4.35; r _{tw} =1.0; r _a =1.1; r _b =0.95 (P1, S=10)	MKYKVREEIYGNYYYFFVYIGNVVIVLQVYTFGDVTLVNLYVGNYFTT LKVEVYGNVIVVVWGNYYQYFVYVGNYYLYFLEGGS	
	1_10_0184	b=4.35; r _{tw} =1.0; r _a =1.1; r _b =0.95 (P1, S=10)	MTLKVEEKKHGNVYIFIVHKGNERYYFIVVINGNDVYVEVISGNESRTF RVETHGNLFIVEVGNVYYYFEKKGNFYLLKTEGGS	
	6_6_0064	b=4.35; r _{tw} =1.0; r _a =1.1; r _b =0.95 (P1, S=10)	MKYKVREEKHGNTYFFYVYDGNKTVLYVVKVHGNEIYVEVYSGNQS RTFEVREHGNVFIVRSGNRYFYFVKKGNFYLLYEEGGS	

	4_4_0020	b=4.20; r_{tw} =1.0; r_{a} =1.0; r_{b} =1.15 (P6, S=10)	MKILVIKQTFGNVTYLRIYIGNYVWTVRLEVYGNVIRLELVVGNYVFEL ELRIFGNVITVYVYFGNVILEIRVEVYGNYTLWETRGGS	
	7_1_0012	b=4.20; r _{tw} =1.0; r _a =1.0; r _b =1.15 (P6, S=10)	MKVKLVEQQQGNTIYIEVRRGDQTFTIRVESRGDTYRLELRQGNRTIEL RLERRGDTYHIEVRSGNTRLSLRVERRGNYFLVEERGGS	
	3_2_0065	b=4.60; r_{tw} =1.0; r_a =1.05; r_b =0.9 (P8, S=8)	eq:mreltlersgnrfrltvgdvtlefetrgntievrlqwgnttitlrveitergnytelelrrgnttyrlkfesrgdywrveveggs	
	5_10_0080	b=4.60; r_{tw} =1.0; r_{a} =1.05; r_{b} =0.9 (P8, S=8)	MRQKLTLEIYGDVTILIWGDFYFYFDIFGNVVRVELYYGNFFLTLELRV FGNVTILRVVTGNYVYYFYFEVVGNVTTVYLEGGS	
	10_6_0048	b=4.60; r_{tw} =1.0; r_a =1.05; r_b =0.9 (P8, S=8)	eq:mreltlersgnrfrltvgdvtlefetrgntievrlqwgnttitlrveirgnytelelrrgnttyrlkfesrgdywrveveggs	
Batch 2	P1_charge	(P1, S=10), +15 net charge	MELRVRSRRHGDNRQFYVISGDKRIRLSVRRHGDKVFVRLQSGDKQRR LQVRRHGDKIFLRSGDRISILIRSGDFYIYRRREGS	Insoluble
	P1_thr3	(P1, S=10), +7 net charge	MSLSVQSRQHGNKYIFIVRSGNRTYYFIVSIHGSRQFVQVISGNTSTTLS VRTSGDKFVVQSGSRYYIFQRSGSTYLLFTQEGS	Insoluble
	P6_charge	(P6, S=10), +15 net charge	MSLRVIRRRHGDRVYLILVSGDKRLRIQVSRHGDKLSLQLISGDKRFQL RLFIHGDKYQIQVRSGDKRYRISVSRHGDVYSLRRRGGS	Insoluble
	P6_thr3	(P6, S=10), +10 polar charge	MQIILIQSRSGDRFRVSLISGNKQLQLTVSQHGNKYRIQLQSGNKQYQL TLRSHGSKFTITVSSGNRRFTLSVSQHGSTYSVQQSHGS	No expression
	P6_diverse	(P6, S=10), loop diversification, +3 net charge	MEITVTVQTHGNKLRWTFTYNGKTFTVTVTQHNGEYIITWQYGDTTW TLRLQRSGDTYTVTVVSGNKRFTVTLQQSGNTYVLRITMGS	No Expression
	P8_hydro	(P8, S=8), 2 hydrophobics on surface	MTKTLTLTTRGTTYTLTNGTLTLTITKRGRTLTVSLTAGTTTFTLTITRK GKTLTLTLTSGTTTITFTFTKSGTTYTVLVTSGS	No expression
	P8_polar	(P8, S=8), +8 net charge	MTKTLTLTRRGTTFTLTDGTNTFTLTKRGRTYTIKVTSGTTTYTVTLTQ KGKTLTLTWTNGTTTYTYIFTKRGKTYTVLVTGGS	Toxique - could not be transformed
	P8_thr3	(P8, S=8), +8 net charge, down-weight threonine	MKQQLTLRRHGSTYQLRSGDLSFSISQHGNKLSVRLQYGNTTYQLTLS RHGDRLRLTVSHGNKTYIYYFQRSGDTYQVLVQGGS	Insoluble
	P12_div	b=4.30; r_{tw} =1.0; r_{a} =1.10; r_{b} =1.0 (P12, S=8)	MRTTLTVSTHNNELVLTYNNNTVRISRHGDTWTVLYGNTTLTVTRSGD TYVLTSGDLTIIISQHGDTYRLTVTGGS	Toxique - could not be transformed
	P12_charge	b=4.30; r _{tw} =1.0; r _a =1.10; r _b =1.0 (P12, S=8)	MEQTLTLRSHGDKWSVRSGSNTLVVIQHNNRFLVTYNNQTLVLQTHG NRLRLTYGNKTVSIQRHGDTFRLTVTGGS	Insoluble
Batch 3	P6_negative	(P6, S=10), -15 net charge	MKREVEREEHGDKEYLRLRSGDKDLELEVDSHGDKFRLRLESGDKEFE IEWEESGDKFELRVEHGDREDRLEVEESGDKYLLDEQSGS	Poor solubility, Random coil
	P6_normal	(P6, S=10), +4 net charge	MKLKVIRTRHGDKEYLILVSGNKKLEIEVQRHGDTLKLRLKSGNTEITL RWREHGSRFELELESGDTRKTLTVEKSGSTYLLDTQCGS	Insoluble
	P6_positive	(P6, S=10), +20 net charge	MKLKVIEKRHGDKVFLRLKSGNKDYRIEVRKHGSKLKLRLESGNKRFK LRLERSGNKYRVEVRSGNKRYKIKVERSGNTYLWEKRGS	Poor expression, insoluble
	P8_alt_layers	(P8, S=8), 0 net charge	MRQTYELKEHGNTYKLTSGNREFRLERHGNTVRIELKYGNTTYTLTLS VHGNTWELETRSGNTTERFEFEKSGNTFTVREECGS	Insoluble

	P8_negative	(P8, S=8), -22 net charge	MREEYELEEHGDTEELESGDREFRFEEHGDKFRVEVESGDTDYELELER SGDTQELDFESGDTRERFEFEKSGDTYRVEVECGS	Toxic - cell lysis after induction
	P8_neg_ ssbond	(P8, S=8), -20 net charge	MCGDEEEYELESHGDTYELESGDKELRFEEHGDKFRVELDYGDTRFEL ELQRHGDTWELDLRSGDREERFEFEESGDRFRVEVYCIEGS	No expression
	P8_normal_1	(P8, S=8), +1 net charge	MTETYTLDRHGNKYRLTSGNKTFTFDQHGNTVRVELKSGNTTYTLTLS THGNTQRLDVQSGNTQETYRFEKHGDTFRVEVERGS	Unstable expression, Insoluble
	P8_normal_2	(P8, S=8), +2 net charge	MPETYTLKRHGSTYKLTSGDFRLRFREHGNTFKVELEYGNTTYTLTLSS HGDTWKLDLKSGNTQLVYLFERHGDKFRVEVYGS	Unstable expression, Insoluble
	P8_positive	(P8, S=8), +17 net charge	MRKKYEVKRHGDRYELKSGNLKLEIRRHGNKFKVKLKSGNRTYTLKL QRHGDKWKLELRSGNRRLEFEFVRSGDKFKVYVKGS	No expression
	P8_pos_ ssbond	(P8, S=8), +21 net charge	MKGCKRKYTLDRHGDRWRLKSGNFQFEFKKHGDKFKVKVKYGNRK YKFKLKRHGDRFKLKVRSGNREYEYYFYRHGDKFKVVVKCRDGS	No expression
	P8_ssbond_ normal	(P8, S=8), -1 net charge	MGCRTETYQLRRHGSKYELTSGDRELRFEEHGDTIRVEVESGNTTYTV TLEKHGNKLELRLTHGNTEFKFEFEKSGDTFKVTVYKCGS	No expression
Batch 4	Cb_short_1		MHMPESTLELRVDGKTLTVLVSGDTIRIESGDTEITVTKDPSNNLFRLK VNGQTYRLRQEDKNRRLEVDSNDRKTWEVQEKGSLE	Very low expression
	Cb_short_2		MHMTERRVELRVDGETWTVKVEDRTGTITITSRNKKTFEIRKSGNTYSL EYNGQQLKVEQEDDNRKFRVKSGNKTWELQEKGSLE	Insoluble
	Cb_short_3		MHMPEYTLRLEYDGKELTVYWSGDTIEIVSGNKRLEVRKDPSNNVFRL EHNGQELTVKEEKDNKVFRVTYNNRKTLRLQSEEGSLE	Insoluble
	Short_idl		MHMPEYKLELRSGNKTLTVYSSGDKYEIESGNRRYEVRRSGNTFLVKS EGRTLRLEERKGKYQIESEGKTLELQQTSGSLE	No expression
	P6_helix	P6, with helical capping of one side of the barrel	MHMKVELRQERHGDTEKIELRSGNNRLEIEVRRHGNKLTLRVKYGNK EIKVEWRDHGSNFSLRIEYGNKRFTVKVEQSGNKYLVEGNSPAQAAKE SGSLE	No expression
Batch 5	Cb1_ff	Cb_short_1 with remodeled turn 7	MHMPQSTFELRKDGRTLEVREDGDTITIRDGNTSLTVQKDPSSGTFRID KNGKDLELRKDPDSGELRVRDEDGKTWELRKHGSLE	Oligomer
	Cb1_ssm	Cb_short_1 with a point mutation in a turn 7	MHMPESTLELRVDGKTLTVLVSGDTIRIESGDTEITVTKDPSNNLFRLK VNGQTYRLRQEDKNRRLEVDSNDGKTWEVQEKGSLE	Insoluble
	Cb1_ff_neg	Cb_short_1 with remodeled turn 7	MHMPEHEFEVDKDGRELKLEEDGDEIRVEDGDTEIEVRRDPDSGTFRW DVDGRDLEEEEDPDSGERRVRDEDGKTWEVRDRGSLE	No expression
	Cb1_ff_pos		MHMPKRRYELKKDGRRYEVRVKGDEIEIRDGNRRWEVRRDPKTGRYR VRKDGKDWELEKDPKSGRFRIRDSDGKTLRIERRGSLE	No expression
	Cb1_ff_ ssbond		MHMPQCKFELEKDGRTYEVRDDGDEIEIRDGNTNIQVQKDPSSGTYRL DVNGKDLTLEEDPSSGTRRVRDSDGKTLRVETKSCGSLE	No expression
	Id_ff_1		MHMPRRRFRLDKNGKDITVEYDPSTGVFRIHDGNTELKIERDGNTYYLI KNGKRFEVRQDGDTFYIYEGNETLRLTHDGSLE	No expression
	Id_ff_2		MHMPTYTLRVHKDGREFTLLKDPSTGTFEIRDGNDQYEIRKDPSTGLY RVHKDGRTYELYEDGNKYVIYKGNEKITVRQEGSLE	No expression

Supplementary Table 3: Experimental characterization of DFHBI-binding fluorescence activating β -barrel designs. Fifty-six β -barrel designs were expressed in *E.coli* and purified by affinity chromatography, followed by SEC and CD measurements. Soluble monomeric designs were tested for DFHBI fluorescence activation. Results are summarized in this table. For protein expression and purification experiments: n=5 biological replicates for b11 and b32; n=3 for other designs; for CD spectra recording: n=1.

*Designs with a disulfide bond have the parent design ID in the parentheses.

[†]E-value calculated by BLAST against the non-redundant protein database.

	RIF docking			E.coli			β CD	Fluorescence
Scaffold ID	solution ID	Design ID*	E-value [†]	Expression	Solubility	SEC	spectrum	Activation
13input0059	1	b01	0.9100	yes	yes	oligomers	yes	
		b07	0.1600	yes	yes	oligomers		no
	18	b14	0.0650	yes	yes	oligomers	yes	no
3input0012	5	b40	1.2000	yes	yes	oligomers	yes	
		b46	4.8000	yes	no			
		D04	0.7100	yes	yes	oligomers		20
		DOO 649 (655)	0.1400	yes	yes	monomer		no
13ipput0010	0	b46 (b55)	0.4800	yes	yes	oligomere	VOC	10
13110410010	0	b05 (b31)	0.4000	yes	yes	oligomers	yes	110
8input0012	7	b17	2,4000	no	110			
ompatoone		b23	7.5000	no				
		b06 (b23)		ves	ves	monomer		no
		b52 (b23)		ves	ves	monomer		no
		b29	1.8000	yes	no			
		b12 (b29)		yes	no			
37input0094	7	b09	0.0090	yes	no			
		b16	0.0130	no				
		b22	0.0020	yes	yes	monomer		no
		b28	0.0004	no				
8input0010	13	b10	1.5000	yes	yes	monomer	yes	no
		b56	2.8000	yes	yes	monomer		no
15input0040	0	b08	0.3400	yes	yes	tetramer	yes	
		b18 (b08)		yes	yes	oligomers		no
		b24 (b08)		yes	yes	monomer	yes	no
		b51 (b08)		yes	no			
		b15	0.7800	yes	yes	monomer	yes	no
14input0065	12	b26	0.4100	yes	yes	monomer	yes	no
		b32	6.1000	yes	yes	monomer	yes	YES
		b38	4.5000	yes	yes	oligomers		VEO
10:0001	0	D11 (D38)	0.0100	yes	yes	monomer	yes	YES
101110034	3	DO3	0.0100	yes	yes	oligomers		no
		b47 (b53)	0 1500	yes	110	oligomoro	200	
11input0067	0	h19	4 6000	yes ves	yes	monomer	yes ves	maybe
1 mpatooo/	Ū	b15	1,3000	ves	ves	oligomers	ves	maybe
24input0071	0	b20	2,6000	ves	ves	monomer	ycc	no
2 mpatoo, 1	Ū	b27	2.0000	ves	ves	monomer		no
		b33	0.3100	ves	ves	monomer	ves	no
		b30 (b33)		ves	ves	oligomers		
39input0072	9	b34	0.6800	yes	yes	monomer		no
		b54 (b34)		yes	yes	monomer		no
		b42 (b34)		yes	yes	monomer		no
10input0001	0	b35	6.7000	yes	yes	oligomers		no
	1	b41	0.2400	yes	no			no
28input0026	2	b39	0.0040	yes	yes	oligomers		
		b36 (b39)		yes	yes	monomer		no
		b49	0.0210	yes	yes	monomer	yes	no
		b45	0.0150	yes	yes	oligomers		
13input0015	7	b37	0.0010	yes	no			
		b43	0.2200	yes	no			
9input0068	17	b50	0.2900	yes	yes	monomer		no
15input0019	9	b02	0.0400	no				
14input0074	8	b44	0.1400	yes	no			
14input0016	4	b20	0.0650	no		alla and and		
36input0056	4	b03	0.0000	yes	yes	oligomers		no

Supplementary Table 4: List of sequences for DFHBI-binding designs. Protein sequences and DNA encoding sequences (optimized for *E.coli* codon usage) of fifty-six designs (HBI_b_01 to _56) are provided in this table.

Design ID	Protein Sequence	DNA Sequence
	MGKNVAQALPGTWKVDLTQS	ATGGGCAAAAACGTTGCGCAGGCGCTGCCGGGTACCTGGAAAGTTGACCTGACTCAGTCT
	DGSKYTGQITVKPTTPYTFDIK	GATGGCTCTAAATACACCGGTCAGATCACTGTTAAGCCGACTACCCCGTACACCTTCGACA
	TRGTVSDGRPLTGKGKVTVKT	TCAAAACCCGTGGTACCGTGTCCGACGGTCGTCCGCTGACTGGCAAAGGTAAAGTTACCGT
	PTTVDVTMTLSDGSTSTGKMT	TAAAACCCCGACCACTGTTGACGTGACCATGACCCTCTCTGACGGCTCTACCTCCACCGGT
	VDSPTQFKLDVTASDGTKATG	AAAATGACCGTTGACTCTCCGACCCAGTTCAAACTGGACGTTACTGCGTCCGATGGCACCA
HBI_b_01	TVQRQS	AAGCGACCGGTACTGTGCAGCGTCAGTCT
	MGAPVVEFLPGTWQINVTVSD	ATGGGCGCTCCGGTTGTTGAATTCCTGCCGGGTACCTGGCAGATCAACGTTACCGTTTCTG
	GLQFTGQMHITPRTPETLTVTS	ACGGTCTGCAGTTCACCGGTCAGATGCACATCACCCCGCGTACCCCGGAAACCCTGACCGT
	RGQVEDGTPYKGQGHLTLTSP	TACCTCTCGTGGTCAGGTTGAAGACGGTACCCCGTACAAAGGTCAGGGTCACCTGACCCTG
	TTVKFTAKAEDGADTQGHLTI	ACCTCTCCGACCACCGTTAAATTCACCGCTAAAGCTGAAGACGGTGCTGACACCCAGGGTC
	RTPTQFDVNMTVADGQTATG	ACCTGACCATCCGTACCCCGACCCAGTTCGACGTTAACATGACCGTTGCTGACGGTCAGAC
HBI_b_02	KLTRHE	CGCTACCGGTAAACTGACCCGTCACGAA
	MGANMKDLAPGTWTWTLTQ	ATGGGCGCGAACATGAAAGACCTGGCTCCGGGTACTTGGACCTGGACTCTGACTCAGGAA
	EDGLTVQGQTDVQPRTPTTFD	GACGGCCTCACTGTTCAGGGTCAAACCGACGTTCAGCCGCGTACCCCAACCACCTTCGACC
	LRSHGQTADGTPYHGNGQLH	TGCGTTCTCACGGCCAGACCGCGGACGGTACCCCGTACCACGGTAACGGTCAGCTGCACGT
	VRSPDQVDVTARVKDGRDAT	TCGTTCTCCGGACCAGGTTGACGTGACCGCGCGTGTTAAAGACGGTCGTGACGCGACCGGT
	GTTTMKTPTTLDVTMTVGDG	ACCACCACCATGAAAACCCCGACTACCCTGGACGTTACCATGACTGTTGGTGACGGTGTTA
HBI_b_03	VTSQGKVTRTE	CCTCTCAGGGTAAAGTTACCCGTACTGAA
	MGKDAASVLPGKWKFNTTAE	ATGGGCAAAGACGCGGCGTCTGTTCTGCCGGGTAAATGGAAATTCAACACCACCGCGGAA
	DGVTITGTITMQPRTPTTFDVT	GACGGTGTTACCATCACTGGTACTATCACTATGCAGCCGCGTACCCCGACCACCTTCGACG
	LKGHQSDGRPTKGNGQITVKT	TGACCCTGAAAGGTCACCAGTCCGACGGTCGTCCGACCAAAGGTAACGGTCAGATCACCG
	PDTVDSRFTLSDGRTFQGKLQ	TTAAAACCCCGGACACTGTTGACTCTCGTTTCACCCTGTCTGATGGCCGTACCTTCCAGGGT
	LDSPDTLTINWTMQDGTTQTG	AAACTGCAGCTGGACTCTCCGGATACCCTGACCATCAACTGGACCATGCAGGACGGTACC
HBI_b_04	HVTRQE	ACCCAGACCGGCCACGTTACCCGCCAGGAA
	MGPCAKTVLPGKWDLNFTSS	ATGGGCCCGTGCGCGAAAACCGTTCTGCCGGGTAAATGGGACCTGAACTTTACCTCCTCTG
	DGTTFTGKMTVQPKTPDTVDV	ACGGTACCACCTTCACCGGTAAAATGACTGTTCAGCCGAAGACCCCGGACACCGTTGACGT
	TIKGKQSDGNPTNGQGQLHVE	GACCATTAAAGGCAAACAGTCCGACGGCAACCCGACTAACGGTCAGGGTCAGCTGCACGT
	SCTTFTWDVTYADGKTFKGKT	TGAATCTTGCACCACTTTCACCTGGGACGTTACCTACGCGGATGGTAAGACTTTCAAAGGT
	QLKTPTTLQVDVRAADGSKST	AAAACCCAGCTGAAAACCCCGACCACCCTGCAAGTGGACGTGCGTG
HBI_b_05	GYLTRKD	AAATCTACCGGTTACCTGACCCGTAAAGAC
	MGCLGWTVLPGTWKFTVTWS	ATGGGCTGCCTGGGTTGGACCGTTCTGCCGGGTACCTGGAAATTCACCGTTACCTGGTCTG
	DGQTSTGQVHFQPRTPTTLQV	ATGGTCAGACCTCTACTGGTCAGGTGCACTTTCAGCCGCGTACTCCGACTACTCTGCAAGT
	HFRGRSSDGRPFNGKGHVTCK	TCACTTTCGTGGTCGTTCTTCCGACGGTCGTCCGTTCAACGGTAAAGGCCACGTGACCTGC
	TPTTFDVNVTQSDGATSTGKIT	AAAACCCCAACTACCTTTGACGTTAATGTTACCCAGTCCGATGGCGCGACCTCCACCGGCA
	MKSPTTIDVTFTIEDGQTATGQ	AAATCACCATGAAATCTCCGACCACTATCGACGTTACTTTCACCATCGAAGACGGTCAAAC
HBI_b_06	MHRQS	CGCGACCGGCCAGATGCACCGCCAATCT
	MGQQVAQALPGTWKFDLTQS	ATGGGCCAGCAGGTTGCGCAGGCGCTGCCGGGTACCTGGAAATTTGACCTGACTCAGTCC
	DGSKYTGQITIKPETPTTLTVK	GACGGTTCTAAATACACCGGTCAGATCACCATCAAACCGGAGACCCCGACCACCCTGACC
	TKGTVSDGRPLTGKGKVTMK	GTTAAAACCAAAGGTACCGTTTCTGACGGTCGTCCGCTGACTGGTAAGGGTAAAGTTACCA
	TPETMDVTMTLSDGSTSTGKM	TGAAAACCCCGGAAACTATGGACGTGACCATGACCCTGTCTGATGGCTCTACCTCCACCGG
	RLRSPDTFDLDVTASDGTKAK	TAAGATGCGTCTGCGTTCTCCGGACACCTTCGACCTGGACGTTACCGCTTCCGATGGTACT
HBI_b_07	GQVHRQS	AAAGCGAAAGGTCAGGTTCACCGTCAATCT
	MGTAAVQFLPGTWKFDVTAE	ATGGGCACTGCGGCGGTTCAGTTCCTGCCGGGTACTTGGAAATTCGACGTTACCGCGGAAG
	DGSQFTGKVTVQPDSPDTVKI	ACGGTTCTCAGTTCACTGGTAAAGTTACTGTTCAGCCGGACTCTCCAGACACCGTGAAAAT
	TFNGTQSDGKPATGQGTLTMT	CACCTTCAACGGTACCCAGTCTGATGGCAAACCGGCGACCGGCCAGGGTACTCTGACCAT
	SPETVKITVTYSDGKTFTGYVT	GACCTCTCCGGAAACCGTTAAGATTACCGTTACCTACTCCGACGGCAAAACCTTCACCGGC
	LRTPTQFQVDATANDGTKSTG	TATGTTACCCTGCGTACCCCGACCCAGTTCCAGGTTGACGCGACCGCGAACGACGGTACTA
HBI_b_08	YMRRTE	AATCTACCGGTTATATGCGTCGTACCGAA

	MGRAAVQFLPGTWKMTSHYE	ATGGGCCGTGCGGCGGTGCAGTTCCTGCCGGGTACCTGGAAAATGACCTCCCACTATGAA
	DGTQMQGHVHVQPRSPDTVD	GACGGTACCCAGATGCAAGGTCATGTTCACGTTCAGCCGCGTTCCCCGGACACCGTTGACG
	VTVTGKASDGKPMQGQGKIT	TTACCGTTACTGGTAAAGCGTCCGACGGTAAACCGATGCAGGGCCAGGGTAAAATCACCG
	VDSPDQVQWHLTSSDGTQAK	TGGATTCTCCGGACCAGGTTCAGTGGCACCTGACTTCTTCTGATGGTACTCAGGCGAAAGG
	GSSQIDSPTQLKLDLTASDGTR	TTCTTCTCAGATCGACTCCGACCCAGCTGAAACTGGACCTGACCGCGTCTGACGGCACC
HBI_b_09	LTGTFQRTS	CGCCTGACTGGTACCTTCCAGCGTACCTCT
	MGSALAQQLPGTWKMDVTSE	ATGGGCTCTGCGCTGGCGCAGCAACTGCCGGGTACCTGGAAAATGGACGTGACCTCTGAA
	DGVRTTGOMHIOPKTPTTMDV	GACGGTGTTCGTACCACCGGCCAGATGCACATCCAGCCGAAAACCCCCGACCACTATGGAT
	TLTGTHADGKPFTGQGKITVK	GTTACCCTGACCGGTACCCATGCGGACGGTAAACCGTTTACTGGTCAAGGTAAAATCACCG
	TPTTVDITVTYEDGSTATGQLT	TTAAGACTCCGACTACCGTTGACATTACCGTGACTTACGAGGACGGTTCTACCGCGACTGG
	VDSPTOFKFDMTASDGTRFTG	CCAACTGACTGTTGACTCTCCGACCCAGTTCAAATTCGACATGACCGCGTCTGACGGTACT
HBI b 10	TVQRQS	CGTTTCACCGGCACCGTGCAACGTCAGTCT
	MGCRAASLLPGTWOVTMTNE	ATGGGCTGCCGTGCGGCGTCTCTGCTGCCGGGTACCTGGCAAGTTACTATGACCAACGAAG
	DGOTSOGOMHEOPRSPYTLDV	ACGGTCAGACCTCTCAGGGTCAGATGCACTTCCAGCCGCGTTCTCCGTACACCCTCGACGT
	KAOGTMSDGRPIOGKGKVTC	GAAAGCGCAGGGTACTATGTCCGACGGTCGTCCGATTCAAGGCAAAGGTAAAGTGACCTG
	KTPDTMDVDITYSDGKOVOG	
	OVTLDSPTOFKFDVTTSDGSK	CCAGGTTACCCTGGACTCTCCGACCCAGTTTAAGTTTGACGTTACCACCTCTGATGGTTCTA
HBI b 11	VTGTLOROE	AAGTTACCGGCACCCTGCAACGTCAGGAA
	MGPCNVOVI PGTWOFOVTES	ATCCCCCCCTCCAACCTCTCCCCCCCCTACCTCCACCTTACCTTCTCTC
	DCOTSPCHVHVOPPTPTTVOV	ATGGTCAGACTTCTCCTCCTCACCTTCATCTTCAACCCCCCTACCCCCC
	TPTTVDVNVTOSDCATSTC/F	
	IMKSPITLDVKFTIEDGQTAQ	
HBI_0_12	GQLHRQS	
	MGGDLSKVVPGTWDLDATNE	ATGGGCGGTGACCTGTCTAAAGTTGTTCCGGGTACCTGGGACCTGGACGCGACCAACGAA
	DGATIKGQIDIQPRTPDKFQLT	GACGGTGCGACCATCAAAGGTCAGATTGACATCCAGCCGCGTACCCCGGACAAATTCCAG
	SRGQYSDGKPMKGTGSFKLDT	CIGACCICICGIGGICAATATICIGACGGCAAACCGATGAAAGGIACCGGIICITICAAAC
	PTTVTVTFHLSDGRTIQGKLTV	TGGACACCCCAACCACCGTTACTGTTACCTTCCACCTGTCCGACGGTCGTACCATCCAGGG
	KTPTTLDINVTASDGSTSTGQV	TAAACTGACCGTGAAAACCCCGACCACCCTCGACATCAACGTTACCGCGTCTGATGGCTCT
HBI_b_13	TRRE	ACCTCTACCGGTCAGGTTACCCGTCGTGAA
	MGAEVAQALPGTWQMDLTQS	ATGGGCGCGGAAGTTGCGCAGGCGCTGCCGGGCACCTGGCAGATGGACCTGACTCAGTCT
	DGSQAKGRFTVKPTTPTTFKL	GATGGTTCTCAGGCGAAAGGTCGTTTCACCGTTAAACCGACCACCCCGACTACCTTCAAAC
	TYKGTISDGRPTNGQGTMTVR	TGACTTACAAAGGTACCATCTCCGATGGCCGTCCGACCAACGGCCAGGGCACCATGACCG
	SPDTVDLKMTLSDGATIQGKL	TTCGTTCTCCGGACACCGTTGATCTGAAAATGACCCTCTCTGACGGTGCGACTATCCAGGG
	TIDSPTQLKVDLTMSDGTRAT	TAAGCTCACCATCGATTCTCCGACCCAGCTGAAAGTTGACCTCACTATGTCCGACGGCACC
HBI_b_14	GTVQRQS	CGTGCGACCGGCACCGTGCAGCGTCAGTCT
	MGTAAVQFLPGTWKFDVTAE	ATGGGCACCGCGGCTGTTCAGTTCCTGCCGGGTACCTGGAAATTCGATGTTACCGCGGAGG
	DGSQFKGKVHIQPDSPDTVKV	ACGGTTCTCAGTTCAAAGGTAAAGTTCACATCCAGCCGGACTCCCCGGATACTGTTAAAGT
	TFNGTQSDGKPATGQGTLTMT	TACCTTCAACGGTACCCAGTCTGATGGTAAACCGGCGACCGGCCAGGGTACTCTGACCATG
	SPETVKLQVTYEDGKTFTGYM	ACCTCTCCGGAAACCGTTAAACTGCAGGTTACCTACGAAGACGGTAAAACCTTTACCGGTT
	TLRTPTQFQLDAKANDGTKST	ACATGACCCTGCGTACCCCGACCCAGTTTCAGCTGGACGCGAAAGCGAACGATGGCACCA
HBI_b_15	GYMRRTE	AATCCACTGGTTATATGCGTCGTACCGAA
	MGQAAVQLMPGTWDITSHYE	ATGGGCCAGGCTGCTGTTCAGCTGATGCCGGGTACCTGGGACATCACCTCTCACTACGAAG
	DGQTMQGKVHVKPRSPDTVDI	ACGGTCAGACCATGCAGGGTAAAGTTCACGTTAAACCGCGTTCTCCGGACACCGTTGACAT
	TVTGQASDGKPMQGQGQLTM	CACCGTTACCGGTCAGGCTTCTGACGGTAAACCGATGCAGGGTCAGGGTCAGCTGACCAT
	KSPHQVQVRLTSSDGTQAQGT	GAAATCTCCGCACCAGGTTCAGGTTCGTCTGACCTCTTCTGACGGTACCCAGGCTCAGGGT
	VTMESPTRFRWDLTASDGVRL	ACCGTTACTATGGAATCTCCGACCCGTTTCCGTTGGGACCTGACCGCTTCTGACGGTGTTCG
HBI_b_16	TGTTQRTS	TCTGACCGGTACCACCCAGCGTACCTCT
	MGPAAVOVLPGTWKFTVTWS	ATGGGCCCGGCTGCTGTTCAGGTTCTGCCGGGTACCTGGAAATTCACCGTTACCTGGTCTG
	DGOTSTGOVHVOPRTPTTVOV	ACGGTCAGACCTCTACCGGTCAGGTTCACGTTCAGCCGCGTACCCCGACCACCGTTCAGGT
	HFRGRSSDGRPFNGKGHLTMK	TCACTTCCGTGGTCGTTCTTCTGACGGTCGTCCGTTCAACGGTAAAGGTCACCTGACCATG
	TPTTLDVNVTOSDGATSTGKF	AAAACCCCGACCACCCTGGACGTTAACGTTACCCAGTCTGACGGTGCTACCTCTACCGGTA
	TMKSPTTIDVTFTIEDGOTATG	AATTCACCATGAAATCTCCGACCACCATCGACGTTACCTTCACCATCGAAGACGGTCAGAC
HBI b 17	OMHROS	CGCTACCGGTCAGATGCACCGTCAGTCT
`	1 · · ·	

	MGRCEAVRLPGTWKFDVTAE	ATGGGCCGTTGCGAAGCTGTTCGTCTGCCGGGTACCTGGAAATTCGACGTTACCGCTGAAG
	DGSQFTGKVTVQPDSCDTVKI	ACGGTTCTCAGTTCACCGGTAAAGTTACCGTTCAGCCGGACTCTTGCGACACCGTTAAAAT
	TFNGTQSDGKPATGQGTLTMT	CACCTTCAACGGTACCCAGTCTGACGGTAAACCGGCTACCGGTCAGGGTACCCTGACCATG
	SPETVKITVTYSDGKTFTGYVT	ACCTCTCCGGAAACCGTTAAAATCACCGTTACCTACTCTGACGGTAAAACCTTCACCGGTT
	LRTPTQFQVDATANDGTKSTG	ACGTTACCCTGCGTACCCCGACCCAGTTCCAGGTTGACGCTACCGCTAACGACGGTACCAA
HBI_b_18	YMRRTE	ATCTACCGGTTACATGCGTCGTACCGAA
	MGPAAAQVFPGTWDFQFTAE	ATGGGCCCGGCTGCGGCGCAGGTTTTCCCGGGTACCTGGGACTTCCAGTTCACCGCGGAAG
	DGSTFRGKVTFQPRTPTTLDVT	ACGGTTCTACTTTCCGTGGTAAAGTTACCTTCCAGCCGCGCACTCCGACCACCCTCGACGTT
	MKGTQSDGRPLTGKGKVHVE	ACTATGAAAGGTACTCAGTCTGACGGTCGTCCGCTGACCGGTAAAGGCAAAGTGCACGTT
	SPTTVQINVTYSDGRTIQGKLT	GAATCTCCAACCACCGTGCAGATCAACGTTACCTACTCCGATGGTCGTACCATCCAGGGTA
	VKTPTTVDVDARFSDGTKSTG	AACTGACCGTTAAAACCCCGACTACCGTTGATGTTGACGCTCGCT
HBI_b_19	KVRRTS	ATCTACTGGTAAGGTTCGTCGTACTTCT
	MGALVQNALPGKWQMHLQM	ATGGGCGCTCTGGTTCAGAACGCTCTGCCGGGTAAATGGCAGATGCACCTGCAGATGTCTG
	SDGSSFTGYVTFQPRSPTTFDV	ACGGTTCTTCTTCACCGGTTACGTTACCTTCCAGCCGCGTTCTCCGACCACCTTCGACGTT
	HTQGQASDGQPSQGTGKVTV	CACACCCAGGGTCAGGCTTCTGACGGTCAGCCGTCTCAGGGTACCGGTAAAGTTACCGTTA
	KTPETVDVTTTMKDGRQVTG	AAACCCCGGAAACCGTTGACGTTACCACCACCATGAAAGACGGTCGTCAGGTTACCGGTA
	KFTVKSPTHLQVDLQQADGST	AATTCACCGTTAAATCTCCGACCCACCTGCAGGTTGACCTGCAGCAGGCTGATGGCTCTAC
HBI_b_20	VSGTMKRSE	CGTAAGCGGTACCATGAAACGTTCTGAA
	MGPEAVNILPGDWDVQLHSE	ATGGGCCCGGAAGCGGTTAACATCCTGCCGGGTGACTGGGACGTTCAGCTCCACTCTGAA
	DGSTFRGTLRVQPKTPTTLDV	GACGGCTCTACCTTCCGTGGTACCCTGCGTGTTCAGCCGAAAACCCCAACCACCCTGGACG
	TMQGTVSDGRPSDGQGQVHV	TTACCATGCAAGGTACTGTTTCTGATGGTCGTCCGTCCGACGGTCAAGGTCAAGTTCACGT
	DSPHDVKITMTMSDGSTATGT	TGACTCTCCGCACGACGTTAAAATCACCATGACCATGTCTGACGGTTCTACCGCGACCGGC
	LKLHSPTTFQVTLTYADGFTA	ACCCTGAAACTGCACTCCCGACCACCTTCCAGGTTACCCTCACTTACGCGGACGGTTTCA
HBI_b_21	QGRFTRDG	CCGCTCAGGGTCGTTTCACTCGTGACGGT
	MGRAAVQFLPGTWNITSTYED	ATGGGCCGTGCGGCGGTTCAGTTCCTGCCGGGTACTTGGAACATCACTTCTACCTAC
	GTTMQGTVHVTPRSPETFDITV	ATGGCACCACCATGCAGGGTACTGTTCATGTTACCCCGCGTTCTCCGGAAACCTTCGACAT
	QGQASDGKPMRGQGKVTVQS	CACCGTGCAAGGCCAAGCGTCTGACGGTAAACCGATGCGTGGTCAGGGTAAAGTTACCGT
	PHQVQVNLTSEDGTQAQGVF	TCAGTCTCCGCACCAGGTTCAAGTTAATCTGACCTCTGAAGACGGTACCCAGGCGCAGGGT
	QVDSPTRVKVDLTASDGVRLT	GTTTTCCAGGTTGACTCTCCGACCCGTGTTAAAGTTGACCTGACCGCGTCCGACGGTGTTC
HBI_b_22	GTLQRTS	GTCTCACCGGTACTCTGCAACGTACCTCT
	MGPEAYQVLPGTWKFTVTWS	ATGGGCCCGGAAGCTTACCAGGTTCTGCCGGGTACCTGGAAATTCACCGTTACCTGGTCTG
	DGQTSTGQVHFQPRTPTTLQV	ACGGTCAGACCTCTACCGGTCAGGTTCACTTCCAGCCGCGTACCCCGACCACCCTGCAGGT
	HFRGRSSDGRPFNGKGHVTM	TCACTTCCGTGGTCGTTCTTCTGACGGTCGTCCGTTCAACGGTAAAGGTCACGTTACCATGA
	KTPTTFDVNVTQSDGATSTGKI	AAACCCCGACCACCTTCGACGTTAACGTTACCCAGTCTGACGGTGCTACCTCTACCGGTAA
	TMKSPTTIDVTFTIEDGQTATG	AATCACCATGAAATCTCCGACCACCATCGACGTTACCTTCACCATCGAAGACGGTCAGACC
HBI_b_23	QMHRQS	GCTACCGGTCAGATGCACCGTCAGTCT
	MGPCHALELPGTWKFDVTAE	ATGGGCCCGTGCCACGCTCTGGAACTGCCGGGTACCTGGAAATTCGACGTTACCGCTGAAG
	DGSQFTGKVTVQPDSPDTVKI	ACGGTTCTCAGTTCACCGGTAAAGTTACCGTTCAGCCGGACTCTCCGGACACCGTTAAAAT
	TFNGTQSDGKPATGQGTLTCT	CACCTTCAACGGTACCCAGTCTGACGGTAAACCGGCTACCGGTCAGGGTACCCTGACCTGC
	SPETVKITVTYSDGKTFTGYVT	ACCTCTCCGGAAACCGTTAAAATCACCGTTACCTACTCTGACGGTAAAACCTTCACCGGTT
	LRTPTQFQVDATANDGTKSTG	ACGTTACCCTGCGTACCCCGACCCAGTTCCAGGTTGACGCTACCGCTAACGACGGTACCAA
HBI_b_24	YMRRTE	ATCTACCGGTTACATGCGTCGTACCGAA
	MGPAAAQYFPGTWKVQFTVE	ATGGGCCCGGCTGCTGCTCAGTACTTCCCGGGCACCTGGAAAGTTCAGTTCACTGTTGAAG
	DGSTFTGRVDFQPRTPTTLDV	ACGGTTCTACCTTCACCGGTCGTGTGGACTTCCAGCCGCGTACCCCAACTACCCTGGACGT
	RFQGTQSDGKPVQGKGKVHV	TCGTTTCCAAGGTACCCAGTCTGACGGCAAACCAGTTCAGGGTAAAGGTAAAGTGCACGTT
	DSPTTLTVNVTYSDGRTIQGKL	GACTCTCCGACCACCCTGACCGTTAATGTTACCTACTCCGACGGTCGTACCATTCAGGGCA
	TLKTPTKFDVDATFSDGTKST	AGCTGACCCTCAAAACCCCCGACCAAATTCGACGTTGATGCGACCTTCTCCGATGGCACCAA
HBI_b_25	GTVHRTS	ATCTACTGGTACTGTTCACCGCACCTCT
	MGAEVAOVLPGKWOVHMTN	ATGGGCGCGGAAGTTGCGCAGGTTCTGCCGGGTAAATGGCAAGTTCACATGACCAACGAA
	EDGTTSTGTMTVQPRSPYTFD	GACGGTACCACCTCTACCGGCACCATGACCGTTCAGCCGCGTTCCCCGTACACCTTCGACG
	VKFKGTMSDGRPITGNGKVT	TTAAATTCAAAGGTACCATGTCCGACGGTCGTCCGATCACCGGCAACGGTAAGGTTACCAT
	MKTPDTLDVDLTYSDGKKVT	GAAAACCCCGGACACCCTGGACGTTGATCTGACCTACTCTGACGGTAAAAAGGTGACTGG
	GKVTMRSPTQLDWDLTTSDGS	TAAAGTGACCATGCGTTCTCCGACCCAGCTCGACTGGGACCTGACCACTTCTGATGGTTCT
HBI_b_26	KVTGTSKRQE	AAAGTTACTGGCACTTCTAAACGTCAGGAA

r	r	
	MGPEAVNMLPGDWDIQLTSE	ATGGGCCCGGAAGCGGTTAACATGCTGCCGGGTGACTGGGACATCCAGCTGACCTCTGAA
	DGSQFRGTFRVRPTTPTTVQV	GACGGTTCTCAGTTCCGCGGTACCTTTCGTGTTCGTCCAACCACCCCGACCACTGTTCAGGT
	TMRGTVSDGRPSQGQGYVTV	TACCATGCGTGGTACTGTTTCTGACGGTCGTCCGTCTCAGGGTCAGGGTTACGTTACCGTTG
	DSPTDMQVKMTMSDGSQAQG	ACTCTCCGACTGACATGCAGGTTAAAATGACCATGTCCGACGGCTCTCAGGCGCAAGGTAC
	TIKLDSPTTLKIKLTYADGFTA	TATCAAGCTGGACTCCCCGACTACCCTGAAAATCAAACTCACCTACGCGGACGGTTTCACC
HBI_b_27	QGTFTRDG	GCGCAGGGTACTTTTACCCGTGACGGT
	MGPAAVQMLPGTWNITSTYE	ATGGGCCCGGCTGCTGTTCAGATGCTGCCGGGTACCTGGAACATCACCTCTACCTAC
	DGTTMOGTVHVTPESPDTVKV	ACGGTACCACCATGCAGGGTACCGTTCACGTTACCCCGGAATCTCCGGACACCGTTAAAGT
	TVOGOASDGKPMRGOGHLTM	TACCGTTCAGGGTCAGGCTTCTGACGGTAAACCGATGCGTGGTCAGGGTCACCTGACCATG
	QSPHQVQVRLTSEDGTQAQGV	CAGTCTCCGCACCAGGTTCAGGTTCGTCTGACCTCTGAAGACGGTACCCAGGCTCAGGGTG
	VKVDSPTQFQWDLTASDGVR	TTGTTAAAGTTGACTCTCCGACCCAGTTCCAGTGGGACCTGACCGCTTCTGACGGTGTTCGT
HBI b 28	LTGTTHRTS	CTGACCGGTACCACCGTACCTCT
	MGPAAIOVLPGTWOFOVTFSD	ATGGGCCCAGCGGCGATCCAAGTTCTGCCGGGTACCTGGCAGTTCCAGGTTACCTTCTCTG
	GOTSRGHVHVOPRTPTTVOVH	ACGGCCAGACCTCTCGTGGTCATGTTCACGTGCAGCCGCGTACCCCGACCACCGTTCAGGT
	FTGRSSDGRPFNGKGHMTMK	TCACTTCACCGGTCGTTCTTCTGATGGTCGTCCGTTCAACGGTAAAGGTCACATGACTATG
	TPTTVDVNVTOSDGATSTGKF	AAAACCCCAACTACCGTGGATGTTAACGTGACCCAGTCCGACGGTGCGACCTCTACTGGTA
	TMKSPTTLDVRFTIEDGOTAO	AATTCACCATGAAATCTCCGACTACCCTGGACGTTCGTTTCACTATTGAAGACGGTCAGAC
HBI b 29	GOLHROS	CGCGCAGGGTCAGCTCCACCGTCAATCT
	MGPKCVSOLPGDWDVTFHSE	ATGGGCCCGAAGTGCGTTTCTCAGCTGCCGGGTGACTGGGACGTTACCTTCCACTCTGAAG
	DGSTFRGTVRMOPRTPDTVOV	ACGGTTCCACCTTCCGTGGTACCGTTCGTATGCAGCCGCGTACCCCGGACACCGTTCAGGT
	KMTGTVSDGRPSTGTGVVHV	TAAAATGACCGGCACCGTGTCCGACGGTCGTCCGTCCACTGGTACTGGTTACGTTCACGTT
	DSPHDVKFOMTMSDGSTATG	GACTCTCCGCACGACGTTAAATTCCAGATGACCATGTCTGATGGTTCTACCGCGACCGGTA
	TI KCDSPTOFTVRI TVADGET	CCCTGAAATGCGACTCCCCGACCCAGTTCACCGTGCGCCTGACCTACGCGGACGGTTTCAC
HBI b 30	AOGHLORDG	CGCGCAGGGTCACCTCCAGCGTGACGGT
<u>IIDI_0_</u> 50	MCAASOVVI DOWNDI NETSS	
	MGAASQVILPGKWDLNFISS	
	TIVEVOSDENDTNGOGOLHVE	
	SPITTETWDVTY A DCKTEK CKT	
	OL KTRTTL OVDVR A DOSKST	
UDI b 21	QUE TP TILQVDV KAADOSKST	
11BI_0_31		
	MGQEVAQVLPGDWQVHMIN	A IGGULLAGGAAGI I GUILAAGI I LIGULGGUIGAL I GULAGGI I LALAI GALLAALGAA
	EDGQISIGIVIFQPKSPYIFDV	
	KFKG1MSDGRPHGKGKM1M	
	KIPDIMDIDVI YSDGKKVIGK	
	VIMKSPIQLDWDLIISDGSK	
HBI_0_32	VIGISHRQE	
	MGPEAINVLPGDWDVTFHSED	ATGGGCCCGGAAGCGATCAATGTTCTGCCGGGTGACTGGGACGTTACCTTCCACTCTGAAG
	GSTFRGTVRMQPRTPDTVQVK	
	MIGIVSDGRPSIGIGYVHVDS	AAAATGACCGGCACCGTGTCCGACGGTCGTCCGTCTACTGGTACTGGTTACGTTCACGTTG
	PHDVKFQMTMSDGSTATGTL	
	KMDSPTQFTVRLTYADGFTAQ	
HBI_b_33	GHLQRDG	GCGCAGGGTCACCTCCAGCGTGACGGT
	MGADAQSVLPGTWDINVTFSD	ATGGGCGCGGACGCGCAGTCTGTTCTGCCGGGTACCTGGGACATCAACGTTACCTTCTCCG
	GSTFTGTLHFTPRTPTTFDVTL	ACGGCTCTACCTTCACCGGCACCCTGCACTTCACCCCGCGTACCCCAACCACCTTCGACGT
	KGHSSDGQPATGQGKVTLKTP	GACCCTCAAAGGTCACTCCTCTGACGGTCAGCCGGCGACTGGTCAAGGTAAGGTTACCCTG
	TTLDIDIQNSDGSKSTGQITMD	AAAACCCCGACCACCCTGGACATCGACATCCAGAACTCTGATGGCTCCAAATCTACCGGTC
	TPYDLKFTAKLSDGVTFTGTL	AGATCACTATGGACACCCCGTACGACCTGAAATTCACCGCGAAACTGTCCGATGGCGTTAC
HBI_b_34	KRRE	TTTCACTGGTACTCTCAAGCGTCGTGAA
	MGSNAAQFLPGTWDVTFTAE	ATGGGCTCTAATGCGGCGCAGTTCCTGCCGGGTACCTGGGACGTTACTTTCACCGCGGAAG
	DGSTFQGKVHIKPETPDRVRV	ACGGTTCTACCTTCCAGGGTAAAGTGCACATCAAACCGGAAACCCCGGACCGTGTTCGTGT
	TFKGTQSDGKPATGNGSLQVD	TACCTTCAAAGGCACCCAGTCTGATGGTAAACCGGCGACCGGTAATGGTTCTCTGCAGGTT
	TPTTVKVQVHYADGKDAKGT	GACACCCCAACCACCGTTAAAGTTCAGGTTCACTACGCTGACGGCAAGGACGCGAAAGGT
	VTLRTPTTFTFDAQLADGAKS	ACCGTTACTCTGCGTACCCCGACCACCTTCACCTTCGACGCGCAGCTGGCGGACGGTGCGA
HBI_b_35	TGQVTRKE	AATCCACCGGTCAAGTTACCCGTAAAGAA

	MGTSCSSGAPGNWDLQMTSS	ATGGGCACCTCTTGCTCCTGGTGCTCCGGGTAACTGGGACCTGCAGATGACTTCTTCCG
	DGSQSRGTITMKPQTPDQLQV	ACGGCTCCCAGTCTCGTGGCACCATCACCATGAAACCGCAGACCCCGGACCAGCTCCAGG
	TVKGHFSDGKPFKGTGYVQVT	TGACCGTTAAAGGCCACTTCTCTGACGGCAAACCGTTCAAAGGTACCGGTTACGTTCAGGT
	TPTQLTVHLTYSDGRQATGQF	TACCACCCCGACCCAGCTGACCGTGCATCTGACCTATTCTGATGGTCGTCAGGCGACTGGT
	NCDTPTDFKVTFTFSDGSTAQ	CAGTTCAACTGCGATACCCCAACTGACTTCAAAGTTACCTTCACCTTCTCCGATGGTTCTAC
HBI_b_36	GTVKRTE	CGCGCAGGGTACCGTGAAGCGTACCGAA
	MGASASQALPGTWKVTFNSE	ATGGGCGCTTCTGCTTCTCAGGCTCTGCCGGGTACCTGGAAAGTTACCTTCAACTCTGAAG
	DGLQTHGVMTVQPDTPYTFK	ACGGTCTGCAGACCCACGGTGTTATGACCGTTCAGCCGGACACCCCGTACACCTTCAAAGT
	VTFQGTHADGKPIRGQGKMTI	TACCTTCCAGGGTACCCACGCTGACGGTAAACCGATCCGTGGTCAGGGTAAAATGACCATC
	DTPTTVTFTVTAEDGRQQTGQ	GACACCCCGACCACCGTTACCTTCACCGTTACCGCTGAAGACGGTCGTCAGCAGACCGGTC
	VTVKSPDTMDVTAQAADGTT	AGGTTACCGTTAAATCTCCGGACACTATGGACGTTACCGCTCAGGCTGCTGACGGTACCAC
HBI_b_37	YTGQVHRQK	CTACACCGGTCAGGTTCACCGTCAGAAA
	MGQKVAQVLPGTWQVTMTN	ATGGGCCAGAAAGTTGCGCAGGTTCTGCCGGGTACTTGGCAGGTTACCATGACCAACGAA
	EDGQTSQGQMHFQPRSPYTLD	GATGGTCAGACCTCTCAGGGTCAGATGCACTTCCAACCGCGTTCTCCGTACACTCTGGACG
	VKAQGTMSDGRPIQGKGKVT	TTAAAGCGCAAGGTACCATGTCTGATGGTCGTCCGATCCAGGGTAAAGGTAAAGTGACCA
	MKTPDTMDVDITYSDGKQVQ	TGAAAACCCCGGACACTATGGACGTGGACATCACCTACTCTGACGGTAAACAGGTTCAGG
	GQVTLDSPTQFKFDVTTSDGS	GCCAAGTTACTCTCGACTCTCCGACCCAGTTCAAATTCGACGTTACCACCTCCGACGGTTCT
HBI_b_38	KVTGTLQRQE	AAGGTTACTGGCACCCTGCAACGTCAGGAA
	MGPEAAEAAPGNWDLQMTSS	ATGGGCCCGGAAGCTGCTGAAGCTGCTCCGGGTAACTGGGACCTGCAGATGACCTCTTCTG
	DGSQSRGTITMKPQTPDQLQV	ACGGTTCTCAGTCTCGTGGTACCATCACCATGAAACCGCAGACCCCGGACCAGCTGCAGGT
	TVKGHFSDGKPFKGTGYVQVT	TACCGTTAAAGGTCACTTCTCTGACGGTAAACCGTTCAAAGGTACCGGTTACGTTCAGGTT
	TPTQLTVHLTYSDGRQATGQF	ACCACCCCGACCCAGCTGACCGTTCACCTGACCTACTCTGACGGTCGTCAGGCTACCGGTC
	NLDTPTDFKVTFTFSDGSTAQ	AGTTCAACCTGGACACCCCGACCGACTTCAAAGTTACCTTCACCTTCTCTGACGGTTCTACC
HBI_b_39	GTVKRTE	GCTCAGGGTACCGTTAAACGTACCGAA
	MGNAAAQYLPGKWKFTTTAE	ATGGGCAACGCTGCGGCTCAGTACCTGCCGGGTAAATGGAAATTCACCACCACCGCGGAA
	DGVTITGKVTIQPRTPTTLDITV	GACGGTGTTACCATCACCGGTAAAGTTACTATCCAGCCGCGTACCCCAACCACCCTGGACA
	TGTQSDGRPTTGTGKFHVKTP	TCACTGTTACCGGCACCCAGTCCGACGGTCGTCCGACCACTGGTACTGGTAAGTTCCACGT
	TTVDSKLQLSDGRTFTGQMTV	TAAAACCCCGACTACCGTTGACTCCAAACTGCAGCTGTCTGATGGCCGTACCTTCACCGGC
	DSPDTVTVTWTMQDGTTQQG	CAGATGACTGTTGATTCTCCGGACACCGTTACCGTGACCTGGACCATGCAGGACGGTACCA
HBI_b_40	QITRQE	CCCAGCAGGGTCAGATTACCCGTCAGGAA
	MGTYAAQFLPGTWDIDTTAED	ATGGGCACCTACGCGGCTCAGTTCCTGCCGGGTACCTGGGACATCGACACCACCGCGGAA
	GSKFTGKLTVQPDTPTQLKVT	GACGGTTCTAAGTTCACTGGTAAACTCACCGTTCAGCCGGACACTCCAACCCAGCTGAAAG
	TNGKASDGKPATGQGTVTVET	TTACCACCAACGGTAAAGCGTCTGACGGCAAGCCGGCGACCGGCCAGGGTACCGTGACCG
	PTTVKFQAKASDGNDITGKFT	TTGAAACTCCGACTACCGTTAAATTCCAGGCGAAAGCTTCCGACGGTAACGACATCACCGG
	VRTPTTLDVDYQAADGVKST	TAAATTCACTGTTCGCACCCCGACCACTCTGGACGTTGACTACCAAGCGGCGGACGGTGTT
HBI_b_41	GKLTRRD	AAATCTACTGGCAAACTGACTCGTCGTGAC
	MGCDARTVLPGTWDINVTFSD	ATGGGCTGCGATGCGCGTACTGTTCTGCCGGGTACCTGGGACATCAATGTTACTTTCTCTG
	GSTFTGTLHFTPRTPTTFDVTL	ACGGTTCTACTTTCACTGGCACCCTGCACTTCACCCCGCGTACCCCAACCACTTTCGACGTT
	KGHSSDGQPATGQGKVTLKTP	ACTCTGAAAGGTCATTCTTCCGACGGTCAGCCGGCGACCGGCCAGGGTAAAGTGACCCTG
	TTLDIDIQNSDGSKSTGQITCD	AAAACCCCGACCACCCTGGACATCGACATCCAGAACTCCGATGGTTCTAAATCTACCGGTC
	TPYDLKFTAKLSDGVTFTGTL	AAATCACTTGCGATACCCCGTACGACCTGAAATTCACCGCGAAACTGTCTGATGGCGTTAC
HBI_b_42	KRRE	CTTCACCGGTACCCTCAAGCGTCGTGAA
	MGASATQALPGTWTLTFNSED	ATGGGCGCTTCTGCTACCCAGGCTCTGCCGGGTACCTGGACCCTGACCTTCAACTCTGAAG
	GLQTHGQWTMQPKTPTTVDV	ACGGTCTGCAGACCCACGGTCAGTGGACCATGCAGCCGAAAACCCCGACCACCGTTGACG
	TVQGTHADGKPIRGQGKMTV	TTACCGTTCAGGGTACCCACGCTGACGGTAAACCGATCCGTGGTCAGGGTAAAATGACCGT
	DTPTTVTFTVTAEDGRQQTGQ	TGACACCCCGACCACCGTTACCTTCACCGTTACCGCTGAAGACGGTCGTCAGCAGACCGGT
	VTVKSPTTMDVTAQAADGTTF	CAGGTTACCGTTAAATCTCCGACCACTATGGACGTTACCGCTCAGGCTGCTGACGGTACCA
HBI_b_43	TGKVHRQS	CCTTCACCGGTAAAGTTCACCGTCAGTCT
	MGPAAAQVLPGTWDVKFTSK	ATGGGCCCGGCTGCTGCTCAGGTTCTGCCGGGTACCTGGGACGTTAAATTCACCTCTAAAG
	DGTTITGKMTIKPRSPETFDVT	ACGGTACCACCATCACCGGTAAAATGACCATCAAACCGCGTTCTCCGGAAACCTTCGACGT
	MTGNMSDGKPYQGQGQVTVR	TACCATGACCGGTAACATGTCTGACGGTAAACCGTACCAGGGTCAGGGTCAGGTTACCGTT
	TPDTVDVQVTAKDGRTFRGKI	CGTACCCCGGACACCGTTGACGTTCAGGTTACCGCTAAAGACGGTCGTACCTTCCGTGGTA
	TLRSPTKMTLTSTASDGQTAT	AAATCACCCTGCGTTCTCCGACCAAAATGACCCTGACCTCTACCGCTTCTGACGGTCAGAC
HBI_b_44	GHFRRQP	CGCTACCGGTCACTTCCGTCGTCAGCCG
11D1_0_++	in magi	edemeeddrenerreedredeed

	MGALAQEAAPGTWDVQMDSS	ATGGGCGCTCTGGCTCAGGAAGCTGCTCCGGGTACCTGGGACGTTCAGATGGACTCTTCTG
	DGSKSRGKLHLKPTTPTQFTV	ACGGTTCTAAATCTCGTGGTAAACTGCACCTGAAACCGACCACCCGACCCAGTTCACCGT
	TLTGHFSDGKPFQGNGYVDVT	TACCCTGACCGGTCACTTCTCTGACGGTAAACCGTTCCAGGGTAACGGTTACGTTGACGTT
	TPTTLTLTVTYKDGSQAQGKL	ACCACCCCGACCACCCTGACCCTGACCGTTACCTACAAAGACGGTTCTCAGGCTCAGGGTA
	DFETPTTLKFTLTFSDGSTAKG	AACTGGACTTCGAAACCCCGACCACCCTGAAATTCACCCTGACCTTCTCTGACGGTTCTAC
HBI b 45	DVTRTE	CGCTAAAGGTGACGTTACCCGTACCGAA
	MGNAAAOFLPGKWKFOTTAE	ATGGGCAACGCTGCTGCTCAGTTCCTGCCGGGTAAATGGAAATTCCAGACCACCGCTGAA
	DGVTITGTFTVOPRTPTRVDVT	GACGGTGTTACCATCACCGGTACCTTCACCGTTCAGCCGCGTACCCCGACCCGTGTTGACG
	VTGTOSDGRPTTGTGOMOVR	TTACCGTTACCGGTACCCCAGTCTGACGGTCGTCCGACCACCGGTCAGATGCAGGT
	TPTTVDVPLTISDGPTVOGKI	TCGTACCCCCACCGTTGACGTTCGTCTGACCCTGTCTGACGGTCGTACCGGTCGTCAGGGT
	TVDSPDTVTITI TMODCTTOO	
HBI_0_40	GQLIRQE	
	MGPECHKVLPGTWDFNATNE	ATGGGCCCGGAATGCCACAAAGTTCTGCCGGGTACCTGGGACTTCAACGCTACCAACGAA
	DGATITGQLDMQPRTPDRVQV	GACGGTGCTACCATCACCGGTCAGCTGGACATGCAGCCGCGTACCCCGGACCGTGTTCAG
	HSNGQYSDGKPVQGTGHVQC	GTTCACTCTAACGGTCAGTACTCTGACGGTAAACCGGTTCAGGGTACCGGTCACGTTCAGT
	DTPTTVKFQVDLSDGKTIRGQ	GCGACACCCCGACCACCGTTAAATTCCAGGTTGACCTGTCTGACGGTAAAACCATCCGTGG
	LDLKTPTTVDITVTASDGSTST	TCAGCTGGACCTGAAAACCCCGACCACCGTTGACATCACCGTTACCGCTTCTGACGGTTCT
HBI_b_47	GQLTRKE	ACCTCTACCGGTCAGCTGACCCGTAAAGAA
	MGQLTCQNLPGKWKFNTTAE	ATGGGCCAGCTGACTTGCCAGAACCTGCCGGGTAAATGGAAATTCAACACCACCGCGGAA
	DGVTITGTLQVQPRTPTTFDVN	GACGGTGTTACCATCACCGGTACCCTGCAAGTGCAGCCGCGTACCCCGACCACCTTCGACG
	LKGHQSDGRPTKGNGKMTCK	TTAACCTGAAAGGTCACCAGTCTGATGGTCGTCCGACCAAAGGTAACGGTAAAATGACCT
	TPDQVDSRFQLSDGRTFQGKL	GCAAAACCCCGGACCAAGTTGACTCCCGTTTCCAGCTGTCTGACGGTCGTACCTTCCAGGG
	OVDSPDTLTVNWTMODGTTO	TAAACTCCAGGTGGACTCTCCGGACACCCTGACCGTTAACTGGACCATGCAGGACGGTACC
HBI b 48	TGOLTROE	ACCCAGACCGGCCAGCTCACTCGTCAGGAA
	MGALAOFAAPGTWDVTMTSS	ATGGGCGCGCGCGCGGGAGGAAGCGGCTCCGGGTACCTGGGACGTGACCATGACCTCCTCT
	DGSOSOGOFHMOPTTPTRFTV	GATGGCTCTCAGTCTCAGGGTCAGTTCCACATGCAGCCGACCACTCCGACCCGTTTCACCG
	TVPGHESDGKPEKCOGVVDV	TACCGTTCGTCGTCACTTTTCTGACCGCTAAACCGTTCAAACGCCACGCCTACGTTGACGT
	EIPTILKINVI YSDGSQAIGKL	
1101 1 40	QFDIPIDVKVILIFSDGSIAQ	
HBI_0_49	GIMKRIE	
	MGADVQQVLPGTWDLRVTQE	ATGGGCGCGGACGTTCAGCAGGTTCTGCCGGGTACCTGGGACCTGCGTGTTACCCAGGAA
	DGTTTQGKVTVKPETPTTLRF	GATGGTACTACCACCCAGGGTAAAGTTACCGTTAAACCGGAAACTCCAACCACTCTGCGTT
	TSKGTMSDGKPFHGQGHFTVK	TCACCTCTAAAGGTACCATGTCTGATGGTAAACCGTTCCACGGTCAGGGTCACTTCACTGT
	SPTTVQIQQTASDGKTATGSLT	TAAATCTCCGACCACTGTTCAGATCCAGCAGACCGCGTCTGACGGTAAAACCGCGACCGGT
	MKTPTTLDVTMTNQDGTTAQ	TCTCTGACCATGAAAACCCCGACTACTCTGGACGTTACCATGACCAACCA
HBI_b_50	GKMTRKS	CCGCGCAGGGCAAGATGACCCGTAAATCT
	MGCDKANQLPGTWKFDVTAE	ATGGGCTGCGACAAAGCGAACCAGCTGCCGGGTACTTGGAAATTCGACGTTACTGCGGAA
	DGSQFTGKVTVQPDSPDTVKI	GACGGTTCTCAGTTTACTGGCAAAGTTACCGTTCAGCCGGACTCTCCGGACACTGTTAAGA
	TFNGTQSDGKPATGQGTLTCT	TCACCTTCAACGGTACCCAGTCCGACGGCAAACCGGCGACTGGTCAGGGTACTCTCACTTG
	SPETVKITVTYSDGKTFTGYVT	CACCTCTCCAGAAACCGTGAAAATCACCGTGACCTACTCTGACGGTAAAACCTTCACTGGT
	LRTPTQFQVDATANDGTKSTG	TACGTGACCCTGCGTACCCCGACCCAGTTCCAGGTTGACGCGACCGCGAACGACGGTACTA
HBI b 51	YMRRTE	AATCTACCGGTTATATGCGTCGTACCGAA
	MGPCSTNVLPGTWKFTVTWS	ATGGGCCCGTGCTCTACCAACGTTCTGCCGGGTACCTGGAAATTCACCGTTACTTGGTCTG
	DGOTSTGOVHEOPRTPTTLOV	ACGGCCAGACCTCTACCGGCCAAGTTCATTTTCAGCCGCGTACTCCGACTACTCTGCAGGT
	HERGRSSDGRPENGKGHVTM	TCACTTCCGTGGTCGTTCTTCCGATGGTCGTCCGTTCAACGGTAAAGGTCACGTTACTATGA
	KTPTTEDVNVTOSDGATSTGKI	A A A CCCC A A CC A CTTTCG A TGTT A A TGTT A CCCA GTCTG A TGGTGCG A CTTCT A CTGGT A A
	TCKSPTTIDVTETIEDGOTATG	
HBI h 52	OMHROS	CCTACCGGTCACATCCACCGTCAATCT
<u>IIBI_0_</u> 32		
	MGPDLSKVLPG1WDFNAINE	
	DGATHGQLDMQPRTPDRVQV	
	HSNGQYSDGKPVQGTGHVQV	GTTCACTCTAACGGTCAGTACTCTGATGGCAAGCCGGTTCAGGGTACCGGTCATGTTCAAG
	DIPTTVKFQVDLSDGKTIRGQ	
	LDLKTPTTVDITVTASDGSTST	ICAACIGGACCIGAAAACCCCCAACCACCGTTGACATCACCGTTACCGCTTCCGACGGTTCT
HBI_b_53	GQLTRKE	ACCTCTACCGGCCAGCTCACTCGTAAAGAA

	MGCDQWRILPGTWDINVTFSD	ATGGGCTGCGACCAGTGGCGTATCCTGCCGGGTACCTGGGACATCAACGTTACCTTCTCTG
	GSTFTGTLHFTPRTPTTFDVTL	ACGGTTCTACCTTCACCGGTACCCTGCACTTCACCCCGCGTACCCCGACCACCTTCGACGTT
	KGHSSDGQPATGQGKVTLKTC	ACCCTGAAAGGTCACTCTTCTGACGGTCAGCCGGCTACCGGTCAGGGTAAAGTTACCCTGA
	TTLDIDIQNSDGSKSTGQITMD	AAACCTGCACCACCCTGGACATCGACATCCAGAACTCTGACGGTTCTAAATCTACCGGTCA
	TPYDLKFTAKLSDGVTFTGTL	GATCACTATGGACACCCCGTACGACCTGAAATTCACCGCTAAACTGTCTGACGGTGTTACC
HBI_b_54	KRRE	TTCACCGGTACCCTGAAACGTCGTGAA
	MGKDAANVLPGKWKFNTTAE	ATGGGCAAAGACGCGGCGAACGTGCTGCCGGGTAAATGGAAATTCAACACCACCGCGGAA
	DGVTITGTLQVQPRTPTTFDVN	GACGGTGTTACCATCACCGGTACTCTGCAAGTTCAGCCGCGTACCCCGACCACCTTCGACG
	LKGHQSDGRPTKGNGKMTMK	TTAACCTGAAAGGTCACCAGTCCGACGGTCGTCCAACCAA
	TPDQVDSRFQLSDGRTFQGKL	TGAAAACCCCGGACCAGGTTGACTCCCGTTTCCAGCTGTCTGATGGTCGTACCTTCCAGGG
	QVDSPDTLTVNWTMQDGTTQ	TAAACTCCAGGTGGACTCTCCGGACACCCTGACCGTTAACTGGACCATGCAGGACGGTACC
HBI_b_55	TGQLTRQE	ACCCAGACTGGTCAGCTCACTCGTCAGGAA
	MGSALAQQLPGTWKVDVTSE	ATGGGCTCTGCGCTGGCGCAGCAACTGCCGGGTACTTGGAAAGTTGATGTTACCTCTGAAG
	DGVRTTGQVHFQPRTPTTMDV	ACGGTGTTCGTACCACTGGTCAGGTTCACTTCCAGCCGCGTACCCCAACCACTATGGACGT
	TLTGTHADGKPFTGQGKVTIT	GACCCTGACTGGCACCCACGCGGACGGTAAACCGTTCACTGGCCAAGGTAAAGTGACCAT
	TPTTVKVTVTYEDGSTATGQF	CACCACCCCGACCACCGTTAAAGTTACCGTTACCTACGAGGACGGCTCTACCGCGACCGGC
	TVDSPTQLKFDMTASDGTRFT	CAGTTCACCGTTGACTCTCCGACCCAGCTGAAATTCGACATGACCGCGTCTGACGGTACCC
HBI_b_56	GTVQRQS	GTTTTACCGGCACCGTGCAGCGTCAATCT

Supplementary Table 5: List of oligos used for making mutants of DFHBI-binding designs. DNA

Name	Sequence	Purpose
b32_Y71F_For	GACATCGACGTGACCTTCTCTGACGGTAAAAAAG	
b32_Y71F_Rev	CTTTTTTACCGTCAGAGAAGGTCACGTCGATGTC	making b32_Y71F mutant
b32_S23V_For	GAAGACGGTCAGACCGTTACTGGTACCGTTACC	
b32_S23V_Rev	GGTAACGGTACCAGTAACGGTCTGACCGTCTTC	making b32_S23V mutant
b32_T95V_For	CTGGGACCTGACCGTTTCTGATGGTTCCAAG	
b32_T95V_Rev	CTTGGAACCATCAGAAACGGTCAGGTCCCAG	making b32_T95V mutant
b32_N17S_For	GGTTCACATGACCTCTGAAGACGGTCAGAC	
b32_N17S_Rev	GTCTGACCGTCTTCAGAGGTCATGTGAACC	making b32_N17S mutant
b32_Q21T_For	CCAACGAAGACGGTACCACCTCTACTGGTACC	
b32_Q21T_Rev	GGTACCAGTAGAGGTGGTACCGTCTTCGTTGG	making b32_Q21T mutant
b32_M15V_For	GACTGGCAGGTTCACGTTACCAACGAAGACGGTC	
b32_M15V_Rev	GACCGTCTTCGTTGGTAACGTGAACCTGCCAGTC	making b32_M15V mutant
b32_M15F_For	GACTGGCAGGTTCACTTCACCAACGAAGACGGTC	
b32_M15F_Rev	GACCGTCTTCGTTGGTGAAGTGAACCTGCCAGTC	making b32_M15F mutant
b32_V27M_For	CCTCTACTGGTACCATGACCTTCCAGCCGCGTTC	
b32_V27M_Rev	GAACGCGGCTGGAAGGTCATGGTACCAGTAGAGG	making b32_V23M mutant
b32_F37Y_For	CGTTCTCCGTACACCTACGACGTTAAATTCAAAG	
b32_F37Y_Rev	CTTTGAATTTAACGTCGTAGGTGTACGGAGAACG	making b32_F37Y mutant
b32_K75I_For	CCTACTCTGACGGTATCAAAGTGACCGGCAAAG	
b32_K75I_Rev	CTTTGCCGGTCACTTTGATACCGTCAGAGTAGG	making b32_K75I mutant
b32_M59C_For	GTAAGGGTAAAATGACTTGCAAAACCCCGGACACTATG	
b32_M59C_Rev	CATAGTGTCCGGGGTTTTGCAAGTCATTTTACCCTTAC	making M59C/Q1C double
b32_Q1C_For	GAAGGAGATATACCATGGGCTGCGAAGTTGCTCAAGTTC	mutant
b11_Y71F_For	GATGTTGACATCACCTTCTCTGACGGCAAACAG	
b11_Y71F_Rev	CTGTTTGCCGTCAGAGAAGGTGATGTCAACATC	making b11_Y71F mutant
b11_S23V_For	GAAGACGGTCAGACCGTTCAGGGTCAGATGCAC	
b11_S23V_Rev	GTGCATCTGACCCTGAACGGTCTGACCGTCTTC	making b11_S23V mutant
b11_T95V_For	GTTTAAGTTTGACGTTACCGTTTCTGATGGTTCTAAAG	
b11_T95V_Rev	CTTTAGAACCATCAGAAACGGTAACGTCAAACTTAAAC	making b11_T95V mutant
b11_N17S_For	GCAAGTTACTATGACCTCTGAAGACGGTCAGAC	
		making b11 N17S mutant

oligo sequences and the purpose of usage are listed in this table.

b11_N17S_Rev	GTCTGACCGTCTTCAGAGGTCATAGTAACTTGC	
b11_Q21T_For	CCAACGAAGACGGTACCACCTCTCAGGGTCAG	
b11_Q21T_Rev	CTGACCCTGAGAGGTGGTACCGTCTTCGTTGG	making b11_Q21T mutant
b11_M15F_For	CCTGGCAAGTTACTTTCACCAACGAAGACGGTC	
b11_M15F_Rev	GACCGTCTTCGTTGGTGAAAGTAACTTGCCAGG	making b11_M15F mutant
b11_M15V_For	CCTGGCAAGTTACTGTTACCAACGAAGACGGTC	
b11_M15V_Rev	GACCGTCTTCGTTGGTAACAGTAACTTGCCAGG	making b11_M15V mutant
b11_K75V_For	CACCTACTCTGACGGCGTGCAGGTTCAGGGCCAG	
b11_K75V_Rev	CTGGCCCTGAACCTGCACGCCGTCAGAGTAGGTG	making b11_K75V mutant
b11_L105F_For	CTAAAGTTACCGGCACCTTCCAACGTCAGGAAC	
b11_L105F_Rev	GTTCCTGACGTTGGAAGGTGCCGGTAACTTTAG	making b11_L105F mutant
b26_T21Q_For	CCAACGAAGACGGTCAGACCTCTACCGGCAC	
b26_T21Q_Rev	GTGCCGGTAGAGGTCTGACCGTCTTCGTTGG	making b26_T21Q mutant

Supplementary Table 6: List of sequences for b11 loop designs. Protein sequences and DNA encoding sequences (optimized for *Saccharomyces cerevisae* yeast codon usage) of thirty-five designs are provided in this table.

Design ID	Protein Sequence	DNA sequence
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGGTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	GTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTACTACATCTGGTTCATTATCTTCAACTGAATCATA
	QGTTSGSLSSTESYQGKGKVT	CCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGATAT
	CKTPDTMDVDITYSDGLQVQG	CACATACTCTGATGGTTTGCAAGTTCAAGGTCAAGTTACATTGGATTCACCAACT
	QVTLDSPTQFKFDVTTSDGSK	CAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTACTGGTACATTGC
b11_L3B_11c	VTGTLQRQE	AAAGACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGGTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	GTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTCATACAGATGGTAATATGCAAGATACTGAATCAA
	QGHTDGNMQDTESIQGKGKV	TCCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGATA
	TCKTPDTMDVDITYSDGLQVQ	TTACTTACTCTGATGGTTTGCAAGTTCAAGGTCAAGTTACATTGGATTCACCAAC
	GQVTLDSPTQFKFDVTTSDGS	TCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTACTGGTACATTA
b11_L3B_2c	KVTGTLQRQE	CAAAGACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACTTGGCAAGTTACTATGACAAATGAAG
	CRAASLLPGTWQVTMTNEDG	ATGGTGTTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACATT
	VTSQGQMHFQPRSPYTLDVKA	GGATGTTAAAGCTCAGGGTGAATACAAGAAATCTGATGCAAACCCATCATTGAA
	QGEYKKSDANPSLNGKPIQGK	CGGTAAACCAATCCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTAT
	GKVTCKTPDTMDVDITYSDG	GGATGTTGATATCACTTACTCTGATGGTATGCAAGTTCAAGGTCAAGTTACATTG
	MQVQGQVTLDSPTQFKFDVTT	GATTCACCAACTCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTA
b11_L3C_6c	SDGSKVTGTLQRQE	CTGGTACATTACAAAGACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGTTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	VTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTTCTTTTGATCAAACTAATTCAGCTCCAGATTTGGA
	QGSFDQTNSAPDLDGAPIQGK	TGGTGCACCAATCCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTAT
	GKVTCKTPDTMDVDITYSHG	GGATGTTGATATTACATACTCTCATGGTATGCAAGTTCAAGGTCAAGTTACATTG
	MQVQGQVTLDSPTQFKFDVTT	GATTCACCAACTCAATTCGAATTCGATGTTACTACATCTGATGGTTCAAAAGTTA
b11_L3C_8c	SDGSKVTGTLQRQE	CTGGTACATTACAAAGACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGGTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	GTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTCATGGTACTGGTTCATTAAAAGGTATTCCATACCA
	QGHGTGSLKGIPYQGKGKVTC	GGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGATATCAC
	KTPDTMDVDITYSDGMAVQG	ATACTCTGATGGTATGGCAGTTCAAGGTCAAGTTACATTGGATTCACCAACTCAA
	QVTLDSPTQFKFDVTTSDGSK	TTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTACTGGTACATTACAAA
b11_L3D_1c	VTGTLQRQE	GACAAGAA

		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGGTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	GTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTTCTGGTTCTGGTAATTTGTCAGGTGTTCCAATCCA
	OGSGSGNLSGVPIOGKGKVTC	GGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGATATTAC
	KTPDTMDVDITYSDGMAVQG	TTACTCTGATGGTATGGCAGTTCAAGGTCAAGTTACATTGGATTCACCAACTCAA
	OVTLDSPTOFKFDVTTSDGSK	TTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTACTGGTACATTACAAA
b11 L3D 3c	VTGTLOROE	GACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWOVTMTNEDG	GATGGTGCTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	ATSOGOMHFOPRSPYTLDVKA	TGGATGTTAAAGCACAAGGTACATTGCATGGTTTCGGTAACACTATCGATTCTTC
	OGTLHGEGNTIDSSIOGKGKVT	AATCCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGA
	CKTPDTMDVDITYSDGMOVO	TATTACTTACTCTGATGGTATGCAAGTTCAAGGTCAAGTTACATTGGATTCACCA
	GOVTLDSPTOFKFDVTTSDGS	ACTCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTACTGGTACAT
b11_L3F_1c	KVTGTLOROE	ТАСАААДАСААДАА
	it i for Equilation	TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLI PGTWOVTMTNEDG	GATGGTGTTACTTCTCA AGGTCA A ATGCATTTTCA ACCA AGATCACCATATACAT
	VTSOGOMHEOPRSPVTI DVK A	TGGATGTTAAAGCTCAAGGTACTGCATCTGGTTCTGGTAAAGATGCTAATAAGT
	OGTASGSGKDANKSVOGKGK	CATACCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTATGGATGTTG
	VTCKTPDTMDVDITVSDGMO	ATATTACATACTCTGATGGTATGCAAGTTCAAGGTCAAGTTACATTGGATTCACC
	VOGOVTI DSPTOEKEDVTTSD	A ACTCA A TTCA A ATTCGATGTTA CTACATCTGATGGTTCA A A AGTTACTGGTACA
b11_13E_2c	GSKVTGTLOROF	
011_L31_20	USKVIULEKQL	TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAAATGAA
	CPAASLI PGTWOVTMTNEDG	GATGGTATGACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	MTSOCOMHEODDSDYTLDVK	
	AQUQARSSSFINQUSFIQUKU	TTCATACTACTACTCTCATCCTTTCCAACCTCAACCTCAACCTACATCCATC
	VOCOVTLDSPTOEVEDVTTSD	
h11 L2C 1a	CSKVTCTLODOE	
011_L3G_10	OSKVIGILQKQE	
	CRAASLLPGT WQVTMTNEDG	
	MISQGQMHFQPRSPTILDVK	
	AQGQAK5555P I SUSPIQUKUK	
	VICKIPDIMDVDIIYSDGLQV	
	QGQV1LDSP1QFKFDV11SDG	
b11_L3G_2c	SKVIGILQKQE	
	CRAASLLPGT WQVTMTNEDG	GATGGIGITACITCICAAGGICAAAIGCAITTICAACCAAGAICACCAIAIACAI
	VISQGQMHFQPRSPYILDVKA	
	QGQ1KNSNSPYSGSPWQGKG	
	KVICKIPDIMDVDIIYSDGLQ	
	VQGQVILDSPIQFKFDVIISD	
bII_L3G_3c	GSKVIGILQRQE	
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	
	ATSQGQMHFQPRSPYTLDVKA	
	QGEADSQSEDVRKKLGSSPTY	AATTGGGTTCTTCACCAACATACCAGGGTAAAGGTAAAGTTACTTGTAAGACAC
	QGKGKVTCKTPDTMDVDITYS	CAGATACTATGGATGTTGATATCACTTACTCTTCAGGCATGCAAGTTCAAGGTCA
	SGMQVQGQVTLDSPTQFKFDV	AGTTACATTGGATTCACCAACTCAATTCAAATTCGATGTTACTACATCTGATGGT
b11_L3IA_1c	TTSDGSKVTGTLQRQE	TCAAAAGTTACTGGTACATTACAAAGACAAGAA
		TGTAGAGCTGCATCATTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGTTACTTCACAAGGTCAAATGCATTTTCAACCAAGATCTCCATATACAT
	VTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTGAGGATAAGTCTTCATCTGAAAAAATCAAGAGATG
	QGEDKSSSEKSRDDIGASPTYQ	ATATTGGTGCATCTCCAACATACCAGGGTAAAGGTAAAGTTACTTGTAAGACAC
	GKGKVTCKTPDTMDVDITYSS	CAGATACTATGGATGTTGATATCACTTACTCATCTGGTATGCAAGTTCAAGGTCA
	GMQVQGQVTLDSPTQFKFDVT	AGTTACATTGGATTCTCCAACTCAATTCAAATTCGATGTTACTACATCAGATGGT
b11_L3IA_3c	TSDGSKVTGTLQRQE	TCTAAAGTTACTGGTACATTACAAAGACAAGAA

		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGGTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	GTSOGOMHFOPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTCAAGCAAATCCAAATTCAGATGATCCAACTTTTA
	OGOANPNSDDPTFRGTPIOGK	GAGGTACTCCAATCCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTA
	GKVTCKTPDTMDVDITYSDGL	TGGATGTTGATATTACTTACTCTGATGGTTTGCAAGTTCAAGGTCAAGTTACATT
	OVOGOVTI DSPTOFKFDVTTS	GGATTCACCAACTCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTT
h11 I 3Im 1c	DCSKVTGTLOPOE	
UII_LSJIII_IC	DOSKVIOTEQKQE	
	CRAASLLPGT WQVTMTNEDG	
	GISQGQMHFQPRSPYILDVKA	
	QGQ I SPSSDDPSLKGTPIQGKG	
	KVICKIPDIMDVDIIYSDGM	GGATGTTGATATCACATACTCTGATGGTATGCAAGTTCAAGGTCAAGTTACATTG
	QVQGQV1LDSP1QFKFDV11S	GATICACCAACICAATICAAATICGATGITACTACATCIGATGGITCAAAAGITA
b11_L3Jm_2c	DGSKVIGILQRQE	СТӨӨТАСАТТАСАААӨАСААӨАА
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGTTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	VTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTCAATACGATCCAAGAACAGAAGATTCTCAATTAT
	QGQYDPRTEDSQLSGTPIQGK	CAGGTACTCCAATCCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTA
	GKVTCKTPDTMDVDITYSDG	TGGATGTTGATATCACTTACTCTGATGGTATGCAAGTTCAAGGTCAAGTTACATT
	MQVQGQVTLDSPTQFKFDVTT	GGATTCACCAACTCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTT
b11_L3Jnm_2c	SDGSKVTGTLQRQE	ACTGGTACATTACAAAGACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGTTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	VTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTCAAGTTGATCCAAACTCTAACGATTCAAAGTTGA
	QGQVDPNSNDSKLRGSPIQGK	GAGGTTCACCAATCCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTA
	GKVTCKTPDTMDVDITYSHG	TGGATGTTGATATTACTTACTCTCATGGTATGCAAGTTCAAGGTCAAGTTACATT
	MQVQGQVTLDSPTQFKFDVTT	GGATTCACCAACTCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTT
b11_L3Jnm_3c	SDGSKVTGTLQRQE	ACTGGTACATTACAAAGACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTTTGACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATACACAT
	LTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAGGCTCAGGGTAAAGTTAGATCTTCAGATTCTAGACCAGATTTGA
	QGKVRSSDSRPDLNTEYQGKG	ACACTGAATACCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTATGG
	KVTCKTPDTMDVDITYNNGM	ATGTTGATATCACATACAACAATGGTATGCAAGTTCAAGGTCAAGTTACATTGG
	QVQGQVTLDSPTQFKFDVTTS	ATTCACCAACTCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTAC
b11 L3K 1c	DGSKVTGTLQRQE	TGGTACATTACAAAGACAAGAA
		TGTAGAGCTGCATCATTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWOVTMTNEDG	GATGGTGTTACTTCACAAGGTCAAATGCATTTTCAACCAAGATCTCCATATACAT
	VTSOGOMHFOPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTTCTTTCGATTCAACTGATTCTAACCCAGATTTGGA
	OGSFDSTDSNPDLDSSIOGKGK	TTCTTCAATCCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTATGGA
	VTCKTPDTMDVDITYSHGMO	TGTTGATATTACATACTCACATGGTATGCAAGTTCAAGGTCAAGTTACATTGGAT
	VOGOVTLDSPTOFKFDVTTSD	TCTCCAACTCAATTCAAATTCGATGTTACTACATCAGATGGTTCTAAAGTTACTG
b11_L3K_4c	GSKVTGTLOROF	GTACATTACAAAGACAAGAA
	ositi rorizandi	TGTAGAGCTGCATCTTTGTTACCAGGTACTTGGCAAGTTACAATGACTAATGAAG
	CPAASLI PGTWOVTMTNEDG	
	VTSOCOMHEODDSDVTI DV/A	
	OCOWPTTDS A PKI TTL OCKC	
	QOQWRIIDSAFKLIIILQOKO	
	KVICKIPDIMDVDII I SDGM	
111 1 217 5	QVQGQVILDSPIQFKFDVIIS	
bII_L3K_5c	DGSKVIGILQRQE	
		TGTAGAGCTGCATCATTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTACTACATCACAAGGTCAAATGCATTTTCAACCAAGATCTCCATATACTT
	TTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTTCTTACTCACCATCTACTCCAACACCATCAGGTGA
	QGSYSPSTPTPSGEDSSISGKGK	AGATTCTTCAATCTCTGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTATG
	VTCKTPDTMDVDIKYSDGMQ	GATGTTGATATCAAGTACTCAGATGGTATGCAAGTTCAAGGTCAAGTTACATTG
	VQGQVTLDSPTQFKFDVTTSD	GATTCTCCAACTCAATTCAAATTCGATGTTACTACATCAGATGGTTCTAAAGTTA
b11 L3L 2c	GSKVTGTLQRQE	CTGGTACATTACAAAGACAAGAA

		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWOVTMTNEDG	GATGGTTTGACTTCTGAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	LTSEGOMHFOPRSPYTLDVKA	TAGATGTTAAAGCTCAGGGTGAATTCAATCCAAACTCTCCATCAGCATTGAACA
	OGEFNPNSPSALNINDSISGKG	TCAACGATTCTATCTCTGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTAT
	KVTCKTPDTMDVDIKYSNGLO	GGATGTTGATATCAAGTACTCTAATGGTTTGCAAGTTCAAGGTCAAGTTACATTG
	VOGOVTLDSPTOFKFDVTTSD	GATTCACCAACTCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTA
b11_1_31_4c	GSKVTGTLOROF	CTGGTACATTACAAAGACAAGAA
	CORVICTED ROL	TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CPAASLIEGTWOVTMTNEDG	CATCCTCCTACTTCTCAACCTCAAACCATTTTCAACCAACTACCATATACAT
	CTSOCOMUEODDSDVTL DVKA	
	OLO ATDCSNICTDYOCKCKV	
h11 I 2m 2a	VVTCTLOPOE	
011_L3III_2c	K V TOTLQKQE	
	CRAASLLPGTWQVTMTNEDG	GATGGTTTGACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	LISQGQMHFQPRSPYILDVKA	
	QGELKDNSDPSWDSSIQGKGK	
	VICKIPDIMDVDIIYSDGMQ	
	VQGQVTLDSPTQFKFDVTTSD	ACCAACICAATICAAATICGATGITACTACATCIGATGGTTCAAAAGITACIGGT
b11_L3Mm_2c	GSKVIGILQRQE	ACATTACAAAGACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGTTACTTCTAGAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	VTSRGQMHFQPRSPYTLDVKA	TGGATGTTAAGGCTCAAGGTTCTTTCGATTCAAACAACGATCCAGCAATTTCTGG
	QGSFDSNNDPAISGSTSISGKG	TTCAACTTCTATCTCTGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTATG
	KVTCKTPDTMDVDITYSDGAQ	GATGTTGATATTACATACTCTGATGGTGCTCAAGTTCAAGGTCAAGTTACATTGG
	VQGQVTLDSPTQFKFDVTTSD	ATTCACCAACTCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTAC
b11_L3N_1c	GSKVTGTLQRQE	TGGTACATTACAAAGACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGTTACTTCTGAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	VTSEGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTACTATTAAAACAAACAACGATCCAAACTTCAAAG
	QGTIKTNNDPNFKGTTDISGKG	GTACTACAGATATCTCTGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTA
	KVTCKTPDTMDVDITYSDGIQ	TGGATGTTGATATTACTTACTCTGATGGTATTCAAGTTCAAGGTCAAGTTACATT
	VQGQVTLDSPTQFKFDVTTSD	GGATTCACCAACTCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTT
b11_L3N_3c	GSKVTGTLQRQE	ACTGGTACATTACAAAGACAAGAA
		TGTAGAGCTGCATCATTGTTACCAGGTACATGGCAAGTTACTATGACAAACGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTTTAACTTCACAAGGTCAAATGCATTTTCAACCAAGATCTCCATATACAT
	LTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAGGCTCAGGGTAAATTGAAGTCTCAATCAGTTCCAGCATTGAGAG
	QGKLKSQSVPALRGSTSISGKG	GTTCTACTTCAATCTCTGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTAT
	KVTCKTPDTMDVDITYSDGM	GGATGTTGATATTACATACTCAGATGGTATGCAAGTTCAAGGTCAAGTTACATTG
	QVQGQVTLDSPTQFKFDVTTS	GATTCTCCAACTCAATTCAAATTCGATGTTACTACATCAGATGGTTCTAAAGTTA
b11_L3N_4c	DGSKVTGTLQRQE	CTGGTACATTGCAAAGACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGCTACTTCTTCAGGTCAAATGCATTTTCAACCAAGATCTCCATATACAT
	ATSSGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTACATGGGAATCACAAGATACTCCAAATGCACAAG
	QGTWESQDTPNAQGNQSISGK	GTAACCAATCTATCTCTGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTA
	GKVTCKTPDTMDVDITYSDG	TGGATGTTGATATTACTTACTCTGATGGTATGCAAGTTCAAGGTCAAGTTACATT
	MQVQGQVTLDSPTQFKFDVTT	GGATTCACCAACTCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTT
b11_L3N_7c	SDGSKVTGTLQRQE	ACTGGTACATTACAAAGACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTGTTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	VTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTCAAGGTAGATCTGGTAAATTGAAGGGTAACCCAA
	QGQGRSGKLKGNPIQGKGKVT	TCCAGGGTAAAGGTAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGATA
	CKTPDTMDVDITYSHGMQVQ	TTACTTACTCTCATGGTATGCAAGTTCAAGGTCAAGTTACATTGGATTCACCAAC
	GQVTLDSPTQFKFDVTTSDGS	TCAATTCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTACTGGTACATTA
b11 L3nm 4c	KVTGTLQRQE	CAAAGACAAGAA

-		
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTCAAACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	QTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTACTATGTCAGATGGTAGACCAATCCAGGGTAAAG
	QGTMSDGRPIQGKGKVTCKTP	GTAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGATATCCAATACAACA
	DTMDVDIQYNINNGLRVQGQ	TCAACAACGGTTTGAGAGTTCAAGGTCAAGTTACATTGGATTCTCCAACTCAATT
	VTLDSPTQFKFDVTTSDGSKVT	CAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTACTGGTACATTACAAAGA
b11_L5C_1c	GTLQRQE	CAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTCAAACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	QTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTACTATGTCAGATGGTAGACCAATTTCTGGTTCTGG
	QGTMSDGRPISGSGKVTCKTP	TAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGATATTCAATACGGTTCT
	DTMDVDIQYGSALNGASVQG	GCTTTGAATGGTGCATCAGTTCAAGGTCAAGTTACATTGGATTCTCCAACTCAAT
	OVTLDSPTOFKFDVTTSDGSK	TCAAATTCGATGTTACTACATCTGATGGTTCAAAAGTTACTGGTACATTACAAAG
b11 L5D 1c	VTGTLOROE	ACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWOVTMTNEDG	GATGGTCAAACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	OTSOGOMHFOPR SPYTL DVK A	TGGATGTTAAAGCTCAAGGTACTTTATCTGATGGTAGACCAATTCAAGGTTCTGG
	OGTI SDGR PIOGSGK VTCK TP	TAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGATATTCAATACGATCCA
		ACAGCTTTTA A AGGTA A AGCA A A AGTTCA AGGTCA AGTTACATTGGATTCACCA
	OGOVTI DSPTOEKEDVTTSDG	ACTCA ATTCA A ATTCGATGTTACTACATCTGATGGTTCAAAAAGTTACTGGTACAT
b11_1.5E_1c	SKVTGTI OPOF	
UTI_LJE_IC	SKVIGILQKQL	
	CDAASLI DCTWOVTMTNEDC	
	QISQGQMHFQPRSPIILDVKA	
	QGILSDGRPIKGSGKVICKIP	
		ACCAGCIIIIAAIGGIACAIIGAGAGIICAAGGICAAGIIACAIIGGAIICACCA
	GQV1LDSP1QFKFDV11SDGS	
bII_LSE_3c	KVIGILQRQE	
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTCAAACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	QTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTACTATTTCTGATGGTAGACCAATCTCTGGTAAAG
b11_L5F_4c	QGTISDGRPISGKGKVTCKTPD	GTAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGATATTACATACCCATC
(b11L5F)	TMDVDITYPSLGNMKVQGQV	TTTGGGTAACATGAAGGTTCAAGGTCAAGTTACATTGGATTCACCAACTCAATTC
	TLDSPTQFKFDVTTSDGSKVTG	AAATTCGATGTTACTACATCTGATGGTTCAAAAGTTACTGGTACATTACAAAGAC
	TLQRQE	AAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAATGAA
	CRAASLLPGTWQVTMTNEDG	GATGGTACTACATCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	TTSQGQMHFQPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTACTTTATCTGATGGTAGACCAATCCAGGGTAAAG
	QGTLSDGRPIQGKGKVTCKTP	GTAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGATATTACATACTCACA
	DTMDVDITYSHGVQVQGQVT	TGGTGTTCAAGTTCAAGGTCAAGTTACATTGGATTCTCCAACTCAATTCAAATTC
	LDSPTQFKFDVRSDGTGNTMT	GATGTTAGATCAGATGGTACTGGTAATACTATGACAGGTAGAGTTACTGGTACA
b11_L7_2c	GRVTGTLQRQE	TTACAAAGACAAGAA
		TGTAGAGCTGCATCTTTGTTACCAGGTACATGGCAAGTTACTATGACAAACGAA
	CRAASLLPGTWOVTMTNENG	AACGGTGTTACTTCTCAAGGTCAAATGCATTTTCAACCAAGATCACCATATACAT
	VTSOGOMHFOPRSPYTLDVKA	TGGATGTTAAAGCTCAAGGTACTTTATCAGATGGTAGACCAATCCAGGGTAAAG
	OGTLSDGRPIOGKGKVTCKTP	GTAAAGTTACTTGTAAGACACCAGATACTATGGATGTTGATATCACATACTCTAA
	DTMDVDITYSNGMOVOGOVT	TGGTATGCAAGTTCAAGGTCAAGTTACATTGGATTCACCAACTCAATTCAAAATTC
	I DSPTOFKEDVTTKGAGNTHT	GATGTTACTACAAAAAGGTGCAGGTAATACTCATACAGGTAGAGTTACTGGTACA
b11 I 7 5c	GRVTGTLOROF	
<u> </u>	SILLIOILYNYL	

Supplementary Table 7: List of oligos used for constructing b11L5F deep mutational scanning library. Two oligos (R and F) were synthesized for each of 111 site-directed

Name	Sequence
L5F_1R	CATATGGCTAGCCGACCCT
L5F_2R	ACACATATGGCTAGCCGACC
L5F_3R	TCTACACATATGGCTAGCCGAC
L5F_4R	AGCTCTACACATATGGCTAGCC
L5F_5R	TGCAGCTCTACACATATGGCT
L5F_6R	AGATGCAGCTCTACACATATGGC
L5F_7R	CAAAGATGCAGCTCTACACATATGG
L5F_8R	TAACAAAGATGCAGCTCTACACAT
L5F_9R	TGGTAACAAAGATGCAGCTCTA
L5F_10R	ACCTGGTAACAAAGATGCAGCT
L5F_11R	TGTACCTGGTAACAAAGATGCAG
L5F_12R	CCATGTACCTGGTAACAAAGATGC
L5F_13R	TTGCCATGTACCTGGTAACAAA
L5F_14R	AACTTGCCATGTACCTGGTAAC
L5F_15R	AGTAACTTGCCATGTACCTGGT
L5F_16R	CATAGTAACTTGCCATGTACCTGG
L5F_17R	TGTCATAGTAACTTGCCATGTACCT
L5F_18R	ATTTGTCATAGTAACTTGCCATGTACC
L5F_19R	TTCATTTGTCATAGTAACTTGCCATG
L5F_20R	ATCTTCATTTGTCATAGTAACTTGCCA
L5F_21R	ACCATCTTCATTTGTCATAGTAACTTGC
L5F_22R	TTGACCATCTTCATTTGTCATAGTAACT
L5F_23R	AGTTTGACCATCTTCATTTGTCATA
L5F_24R	AGAAGTTTGACCATCTTCATTTGTC
L5F_25R	TTGAGAAGTTTGACCATCTTCATTTG
L5F_26R	ACCTTGAGAAGTTTGACCATCTT
L5F_27R	TTGACCTTGAGAAGTTTGACCAT
L5F_28R	CATTTGACCTTGAGAAGTTTGACCA
L5F_29R	ATGCATTTGACCTTGAGAAGTTTG
L5F_30R	AAAATGCATTTGACCTTGAGAAGTT
L5F_31R	TTGAAAATGCATTTGACCTTGAGAA
L5F_32R	TGGTTGAAAATGCATTTGACCTT
L5F_33R	TCTTGGTTGAAAATGCATTTGACCT
L5F_34R	TGATCTTGGTTGAAAATGCATTTGA
L5F_35R	TGGTGATCTTGGTTGAAAATGCA
L5F_36R	ATATGGTGATCTTGGTTGAAAATGCA
L5F_37R	TGTATATGGTGATCTTGGTTGAAAATG
L5F_38R	CAATGTATATGGTGATCTTGGTTGAA

mutagenesis PCR to construct the b11L5F single mutational scanning library. DNA oligo sequences are listed in this table.

L5F_39R	ATCCAATGTATATGGTGATCTTGGTT
L5F_40R	AACATCCAATGTATATGGTGATCTTGG
L5F_41R	TTTAACATCCAATGTATATGGTGATCTTG
L5F_42R	AGCTTTAACATCCAATGTATATGGTGA
L5F_43R	TTGAGCTTTAACATCCAATGTATATGGT
L5F_44R	ACCTTGAGCTTTAACATCCAATGT
L5F_45R	AGTACCTTGAGCTTTAACATCCAA
L5F_46R	AATAGTACCTTGAGCTTTAACATCCAA
L5F_47R	AGAAATAGTACCTTGAGCTTTAACATCC
L5F_48R	ATCAGAAATAGTACCTTGAGCTTTAACA
L5F_49R	ACCATCAGAAATAGTACCTTGAGCT
L5F_50R	TCTACCATCAGAAATAGTACCTTGAGC
L5F_51R	TGGTCTACCATCAGAAATAGTACCT
L5F_52R	GATTGGTCTACCATCAGAAATAGTACC
L5F_53R	AGAGATTGGTCTACCATCAGAAATA
L5F_54R	ACCAGAGATTGGTCTACCATCAG
L5F_55R	TTTACCAGAGATTGGTCTACCATCA
L5F_56R	ACCTTTACCAGAGATTGGTCTACC
L5F_57R	TTTACCTTTACCAGAGATTGGTCTA
L5F_58R	AACTTTACCATTACCAGAGATTGGTC
L5F_59R	AGTAACTTTACCATTACCAGAGATTGGT
L5F_60R	ACAAGTAACTTTACCTTTACCAGAGAT
L5F_61R	CTTACAAGTAACTTTACCATTACCAGAG
L5F_62R	TGTCTTACAAGTAACTTTACCTTTACCA
L5F_63R	TGGTGTCTTACAAGTAACTTTACCTT
L5F_64R	ATCTGGTGTCTTACAAGTAACTTTACC
L5F_65R	AGTATCTGGTGTCTTACAAGTAACTT
L5F_66R	CATAGTATCTGGTGTCTTACAAGTAACT
L5F_67R	ATCCATAGTATCTGGTGTCTTACAAG
L5F_68R	AACATCCATAGTATCTGGTGTCTTA
L5F_69R	ATCAACATCCATAGTATCTGGTGTC
L5F_70R	AATATCAACATCCATAGTATCTGGTGTC
L5F_71R	TGTAATATCAACATCCATAGTATCTGGTG
L5F_72R	GTATGTAATATCAACATCCATAGTATCTGGT
L5F_73R	TGGGTATGTAATATCAACATCCATAGTA
L5F_74R	AGATGGGTATGTAATATCAACATCCAT
L5F_75R	CAAAGATGGGTATGTAATATCAACATCCA
L5F_76R	ACCCAAAGATGGGTATGTAATATCAA
L5F_77R	GTTACCCAAAGATGGGTATGTAATATCA
L5F_78R	CATGTTACCCAAAGATGGGTATGT
L5F_79R	CTTCATGTTACCCAAAGATGGGT

L5F_80R	AACCTTCATGTTACCCAAAGATGG
L5F_81R	TTGAACCTTCATGTTACCCAAAGA
L5F_82R	ACCTTGAACCTTCATGTTACCCA
L5F_83R	TTGACCTTGAACCTTCATGTTACC
L5F_84R	AACTTGACCTTGAACCTTCATGTT
L5F_85R	TGTAACTTGACCTTGAACCTTCAT
L5F_86R	CAATGTAACTTGACCTTGAACCTT
L5F_87R	ATCCAATGTAACTTGAACCTTGAACC
L5F_88R	TGAATCCAATGTAACTTGACCTTGA
L5F_89R	TGGTGAATCCAATGTAACTTGACC
L5F_90R	AGTTGGTGAATCCAATGTAACTTGA
L5F_91R	TTGAGTTGGTGAATCCAATGTAACT
L5F_92R	GAATTGAGTTGGTGAATCCAATGTA
L5F_93R	TTTGAATTGAGTTGGTGAATCCAAT
L5F_94R	GAATTTGAATTGAGTTGGTGAATCCA
L5F_95R	ATCGAATTTGAATTGAGTTGGTGAA
L5F_96R	AACATCGAATTTGAATTGAGTTGGTG
L5F_97R	AGTAACATCGAATTTGAATTGAGTTGG
L5F_98R	TGTAGTAACATCGAATTTGAATTGAGTT
L5F_99R	AGATGTAGTAACATCGAATTTGAATTGAG
L5F_100R	ATCAGATGTAGTAACATCGAATTTGAAT
L5F_101R	ACCATCAGATGTAGTAACATCGAAT
L5F_102R	TGAACCATCAGATGTAGTAACATCGA
L5F_103R	TTTTGAACCATCAGATGTAGTAACATC
L5F_104R	AACTTTTGAACCATCAGATGTAGTAAC
L5F_105R	AGTAACTTTTGAACCATCAGATGTAGT
L5F_106R	ACCAGTAACTTTTGAACCATCAGA
L5F_107R	TGTACCAGTAACTTTTGAACCATCA
L5F_108R	TAATGTACCAGTAACTTTTGAACCATC
L5F_109R	TTGTAATGTACCAGTAACTTTTGAACCA
L5F_110R	TCTTTGTAATGTACCAGTAACTTTTGAA
L5F_111R	TTGTCTTTGTAATGTACCAGTAACTTT
L5F_1	AGGGTCGGCTAGCCATATGNNKAGAGCTGCATCTTTGTTACCA
L5F_2	GGTCGGCTAGCCATATGTGTNNKGCTGCATCTTTGTTACCAGG
L5F_3	GTCGGCTAGCCATATGTGTAGANNKGCATCTTTGTTACCAGGTACATG
L5F_4	GGCTAGCCATATGTGTAGAGCTNNKTCTTTGTTACCAGGTACATGGC
L5F_5	AGCCATATGTGTAGAGCTGCANNKTTGTTACCAGGTACATGGCAA
L5F_6	GCCATATGTGTAGAGCTGCATCTNNKTTACCAGGTACATGGCAAGTT
L5F_7	CCATATGTGTAGAGCTGCATCTTTGNNKCCAGGTACATGGCAAGTTACT
L5F_8	ATGTGTAGAGCTGCATCTTTGTTANNKGGTACATGGCAAGTTACTATGAC
L5F_9	TAGAGCTGCATCTTTGTTACCANNKACATGGCAAGTTACTATGACAAATG

L5F_10	AGCTGCATCTTTGTTACCAGGTNNKTGGCAAGTTACTATGACAAATGAAG
L5F_11	CTGCATCTTTGTTACCAGGTACANNKCAAGTTACTATGACAAATGAAGATGGT
L5F_12	GCATCTTTGTTACCAGGTACATGGNNKGTTACTATGACAAATGAAGATGGTCA
L5F_13	TTTGTTACCAGGTACATGGCAANNKACTATGACAAATGAAGATGGTCAAA
L5F_14	GTTACCAGGTACATGGCAAGTTNNKATGACAAATGAAGATGGTCAAACT
L5F_15	ACCAGGTACATGGCAAGTTACTNNKACAAATGAAGATGGTCAAACTTCT
L5F_16	CCAGGTACATGGCAAGTTACTATGNNKAATGAAGATGGTCAAACTTCTCAAG
L5F_17	AGGTACATGGCAAGTTACTATGACANNKGAAGATGGTCAAACTTCTCAAGG
L5F_18	GGTACATGGCAAGTTACTATGACAAATNNKGATGGTCAAACTTCTCAAGGTC
L5F_19	CATGGCAAGTTACTATGACAAATGAANNKGGTCAAACTTCTCAAGGTCAAAT
L5F_20	TGGCAAGTTACTATGACAAATGAAGATNNKCAAACTTCTCAAGGTCAAATGCA
L5F_21	GCAAGTTACTATGACAAATGAAGATGGTNNKACTTCTCAAGGTCAAATGCATTT
L5F_22	AGTTACTATGACAAATGAAGATGGTCAANNKTCTCAAGGTCAAATGCATTTTCA
L5F_23	TATGACAAATGAAGATGGTCAAACTNNKCAAGGTCAAATGCATTTTCAACC
L5F_24	GACAAATGAAGATGGTCAAACTTCTNNKGGTCAAATGCATTTTCAACCAAG
L5F_25	CAAATGAAGATGGTCAAACTTCTCAANNKCAAATGCATTTTCAACCAAGATCA
L5F_26	AAGATGGTCAAACTTCTCAAGGTNNKATGCATTTTCAACCAAGATCACC
L5F_27	ATGGTCAAACTTCTCAAGGTCAANNKCATTTTCAACCAAGATCACCATATAC
L5F_28	TGGTCAAACTTCTCAAGGTCAAATGNNKTTTCAACCAAGATCACCATATACATT
L5F_29	CAAACTTCTCAAGGTCAAATGCATNNKCAACCAAGATCACCATATACATTGG
L5F_30	AACTTCTCAAGGTCAAATGCATTTTNNKCCAAGATCACCATATACATTGGATG
L5F_31	TTCTCAAGGTCAAATGCATTTTCAANNKAGATCACCATATACATTGGATGTTAAAG
L5F_32	AAGGTCAAATGCATTTTCAACCANNKTCACCATATACATTGGATGTTAAAGC
L5F_33	AGGTCAAATGCATTTTCAACCAAGANNKCCATATACATTGGATGTTAAAGCTCA
L5F_34	TCAAATGCATTTTCAACCAAGATCANNKTATACATTGGATGTTAAAGCTCAAGG
L5F_35	TGCATTTTCAACCAAGATCACCANNKACATTGGATGTTAAAGCTCAAGG
L5F_36	TGCATTTTCAACCAAGATCACCATATNNKTTGGATGTTAAAGCTCAAGGTACT
L5F_37	CATTTTCAACCAAGATCACCATATACANNKGATGTTAAAGCTCAAGGTACTATTTCT
L5F_38	TTCAACCAAGATCACCATATACATTGNNKGTTAAAGCTCAAGGTACTATTTCTGA
L5F_39	AACCAAGATCACCATATACATTGGATNNKAAAGCTCAAGGTACTATTTCTGATG
L5F_40	CCAAGATCACCATATACATTGGATGTTNNKGCTCAAGGTACTATTTCTGATGGT
L5F_41	CAAGATCACCATATACATTGGATGTTAAANNKCAAGGTACTATTTCTGATGGTAGACC
L5F_42	TCACCATATACATTGGATGTTAAAGCTNNKGGTACTATTTCTGATGGTAGACCA
L5F_43	ACCATATACATTGGATGTTAAAGCTCAANNKACTATTTCTGATGGTAGACCAATCT
L5F_44	ACATTGGATGTTAAAGCTCAAGGTNNKATTTCTGATGGTAGACCAATCTCT
L5F_45	TTGGATGTTAAAGCTCAAGGTACTNNKTCTGATGGTAGACCAATCTCTGG
L5F_46	TTGGATGTTAAAGCTCAAGGTACTATTNNKGATGGTAGACCAATCTCTGGTAA
L5F_47	GGATGTTAAAGCTCAAGGTACTATTTCTNNKGGTAGACCAATCTCTGGTAAAGG
L5F_48	TGTTAAAGCTCAAGGTACTATTTCTGATNNKAGACCAATCTCTGGTAAAGGTAAA
L5F_49	AGCTCAAGGTACTATTTCTGATGGTNNKCCAATCTCTGGTAAAGGTAAAGTTAC
L5F_50	GCTCAAGGTACTATTTCTGATGGTAGANNKATCTCTGGTAAAGGTAAAGTTACTTGT

L5F_51	AGGTACTATTTCTGATGGTAGACCANNKTCTGGTAAAGGTAAAGTTACTTGTAAG
L5F_52	GGTACTATTTCTGATGGTAGACCAATCNNKGGTAAAGGTAAAGTTACTTGTAAGACA
L5F_53	TATTTCTGATGGTAGACCAATCTCTNNKAAAGGTAAAGTTACTTGTAAGACACC
L5F_54	CTGATGGTAGACCAATCTCTGGTNNKGGTAAAGTTACTTGTAAGACACCAG
L5F_55	TGATGGTAGACCAATCTCTGGTAAANNKAAAGTTACTTGTAAGACACCAGATAC
L5F_56	GGTAGACCAATCTCTGGTAAAGGTNNKGTTACTTGTAAGACACCAGATACTATG
L5F_57	TAGACCAATCTCTGGTAAAGGTAAANNKACTTGTAAGACACCAGATACTATGG
L5F_58	GACCAATCTCTGGTAAAGGTAAAGTTNNKTGTAAGACACCAGATACTATGGATG
L5F_59	ACCAATCTCTGGTAAAGGTAAAGTTACTNNKAAGACACCAGATACTATGGATGTT
L5F_60	ATCTCTGGTAAAGGTAAAGTTACTTGTNNKACACCAGATACTATGGATGTTGAT
L5F_61	CTCTGGTAAAGGTAAAGTTACTTGTAAGNNKCCAGATACTATGGATGTTGATATTACATAC
L5F_62	TGGTAAAGGTAAAGTTACTTGTAAGACANNKGATACTATGGATGTTGATATTACATACCC
L5F_63	AAGGTAAAGTTACTTGTAAGACACCANNKACTATGGATGTTGATATTACATACCCA
L5F_64	GGTAAAGTTACTTGTAAGACACCAGATNNKATGGATGTTGATATTACATACCCATCT
L5F_65	AAGTTACTTGTAAGACACCAGATACTNNKGATGTTGATATTACATACCCATCTTTGG
L5F_66	AGTTACTTGTAAGACACCAGATACTATGNNKGTTGATATTACATACCCATCTTTGGG
L5F_67	CTTGTAAGACACCAGATACTATGGATNNKGATATTACATACCCATCTTTGGGTAAC
L5F_68	TAAGACACCAGATACTATGGATGTTNNKATTACATACCCATCTTTGGGTAACA
L5F_69	GACACCAGATACTATGGATGTTGATNNKACATACCCATCTTTGGGTAACA
L5F_70	GACACCAGATACTATGGATGTTGATATTNNKTACCCATCTTTGGGTAACATGAA
L5F_71	CACCAGATACTATGGATGTTGATATTACANNKCCATCTTTGGGTAACATGAAGG
L5F_72	ACCAGATACTATGGATGTTGATATTACATACNNKTCTTTGGGTAACATGAAGGTTCA
L5F_73	TACTATGGATGTTGATATTACATACCCANNKTTGGGTAACATGAAGGTTCAAGG
L5F_74	ATGGATGTTGATATTACATACCCATCTNNKGGTAACATGAAGGTTCAAGGTC
L5F_75	TGGATGTTGATATTACATACCCATCTTTGNNKAACATGAAGGTTCAAGGTCAAGT
L5F_76	TTGATATTACATACCCATCTTTGGGTNNKATGAAGGTTCAAGGTCAAGTTACA
L5F_77	TGATATTACATACCCATCTTTGGGTAACNNKAAGGTTCAAGGTCAAGTTACATTG
L5F_78	ACATACCCATCTTTGGGTAACATGNNKGTTCAAGGTCAAGTTACATTGGA
L5F_79	ACCCATCTTTGGGTAACATGAAGNNKCAAGGTCAAGTTACATTGGATTCA
L5F_80	CCATCTTTGGGTAACATGAAGGTTNNKGGTCAAGTTACATTGGATTCACC
L5F_81	TCTTTGGGTAACATGAAGGTTCAANNKCAAGTTACATTGGATTCACCAACT
L5F_82	TGGGTAACATGAAGGTTCAAGGTNNKGTTACATTGGATTCACCAACTCA
L5F_83	GGTAACATGAAGGTTCAAGGTCAANNKACATTGGATTCACCAACTCAATTC
L5F_84	AACATGAAGGTTCAAGGTCAAGTTNNKTTGGATTCACCAACTCAATTCAAA
L5F_85	ATGAAGGTTCAAGGTCAAGTTACANNKGATTCACCAACTCAATTCAAATTCG
L5F_86	AAGGTTCAAGGTCAAGTTACATTGNNKTCACCAACTCAATTCAAATTCGA
L5F_87	GGTTCAAGGTCAAGTTACATTGGATNNKCCAACTCAATTCAAATTCGATGTTAC
L5F_88	TCAAGGTCAAGTTACATTGGATTCANNKACTCAATTCAAATTCGATGTTACTACA
L5F_89	GGTCAAGTTACATTGGATTCACCANNKCAATTCAAATTCGATGTTACTACATCTG
L5F_90	TCAAGTTACATTGGATTCACCAACTNNKTTCAAATTCGATGTTACTACATCTGA
L5F_91	AGTTACATTGGATTCACCAACTCAANNKAAATTCGATGTTACTACATCTGATGG

L5F_92	TACATTGGATTCACCAACTCAATTCNNKTTCGATGTTACTACATCTGATGGT	
L5F_93	ATTGGATTCACCAACTCAATTCAAANNKGATGTTACTACATCTGATGGTTCAA	
L5F_94	TGGATTCACCAACTCAATTCAAATTCNNKGTTACTACATCTGATGGTTCAAAAGT	
L5F_95	TTCACCAACTCAATTCAAATTCGATNNKACTACATCTGATGGTTCAAAAGTTAC	
L5F_96	CACCAACTCAATTCAAATTCGATGTTNNKACATCTGATGGTTCAAAAGTTACTG	
L5F_97	CCAACTCAATTCAAATTCGATGTTACTNNKTCTGATGGTTCAAAAGTTACTGGT	
L5F_98	AACTCAATTCAAATTCGATGTTACTACANNKGATGGTTCAAAAGTTACTGGTACA	
L5F_99	CTCAATTCAAATTCGATGTTACTACATCTNNKGGTTCAAAAGTTACTGGTACATTACA	
L5F_100	ATTCAAATTCGATGTTACTACATCTGATNNKTCAAAAGTTACTGGTACATTACAAAGA	
L5F_101	ATTCGATGTTACTACATCTGATGGTNNKAAAGTTACTGGTACATTACAAAGACA	
L5F_102	TCGATGTTACTACATCTGATGGTTCANNKGTTACTGGTACATTACAAAGACAAGA	
L5F_103	GATGTTACTACATCTGATGGTTCAAAANNKACTGGTACATTACAAAGACAAGAAC	
L5F_104	GTTACTACATCTGATGGTTCAAAAGTTNNKGGTACATTACAAAGACAAGAACTCG	
L5F_105	ACTACATCTGATGGTTCAAAAGTTACTNNKACATTACAAAGACAAGAACTCGAG	
L5F_106	TCTGATGGTTCAAAAGTTACTGGTNNKTTACAAAGACAAGAACTCGAGGG	
L5F_107	TGATGGTTCAAAAGTTACTGGTACANNKCAAAGACAAGAACTCGAGGGA	
L5F_108	GATGGTTCAAAAGTTACTGGTACATTANNKAGACAAGAACTCGAGGGAGG	
L5F_109	TGGTTCAAAAGTTACTGGTACATTACAANNKCAAGAACTCGAGGGAGGC	
L5F_110	TTCAAAAGTTACTGGTACATTACAAAGANNKGAACTCGAGGGAGGCGG	
L5F_111	AAAGTTACTGGTACATTACAAAGACAANNKCTCGAGGGAGGCGGAT	

Supplementary Table 8: List of primers used for sequencing b11L5F libraires by Illumina Miseq sequencer. Two rounds of PCR were performed to amplify genes prior to illumina chip sequencing. DNA primer sequences and the purpose of usage are summarized in this table. Barcode sequences are lower case.

Name	Sequence	Purpose
pETCON_miseq_offset0_f pETCON_miseq_offset1_f pETCON_miseq_offset2_f	TCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNNNGGGTCGGCTAGCCATATG TCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNNNN	
pETCON_miseq_offset0_r pETCON_miseq_offset1_r pETCON_miseq_offset1_r	G GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNGGATCCGCCCCCTC GAG GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNN	amplifying genes from pECTON2 open reading frame
pETCON_miseq_offset3_r	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNN	-
miseq_start_adapt TSBC_26	AATGATACGGCGACCACCGAGATCTACAC TCTTTCCCTACACGACGCTCTTCCGATCT CAAGCAGAAGACGGCATACGAGAT getcat GTGACTGGAGTTCAGACGTGTGCTCTTCCG	the 5'-end barcoding library Naïve_1
TSBC_27	CAAGCAGAAGACGGCATACGAGAT aggaat GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library FITC_1
TSBC_28	CAAGCAGAAGACGGCATACGAGAT ettttg GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library Bind_1
---------	--	---------------------------
TSBC_33	CAAGCAGAAGACGGCATACGAGAT cgcctg GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library T9_1
TSBC_34	CAAGCAGAAGACGGCATACGAGAT gccatg GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library T27_1
TSBC_35	CAAGCAGAAGACGGCATACGAGAT aaaatg GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library T81_1
TSBC_36	CAAGCAGAAGACGGCATACGAGAT tgttgg GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library T243_1
TSBC_37	CAAGCAGAAGACGGCATACGAGAT attccg GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library Ch9_1
TSBC_38	CAAGCAGAAGACGGCATACGAGAT agetag GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library Ch27_1
TSBC_39	CAAGCAGAAGACGGCATACGAGAT gtatag GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library Ch81_1
TSBC_40	CAAGCAGAAGACGGCATACGAGAT tctgag GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library Ch243_1
TSBC_29	CAAGCAGAAGACGGCATACGAGAT tagttg GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library naïve_2
TSBC_30	CAAGCAGAAGACGGCATACGAGAT ccggtg GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library FITC_2
TSBC_31	CAAGCAGAAGACGGCATACGAGAT atcgtg GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library Bind_2
TSBC_41	CAAGCAGAAGACGGCATACGAGAT gtcgtc GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library T9_2
TSBC_42	CAAGCAGAAGACGGCATACGAGAT cgatta GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library T27_2
TSBC_43	CAAGCAGAAGACGGCATACGAGAT getgta GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library T81_2
TSBC_44	CAAGCAGAAGACGGCATACGAGAT attata GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library T243_2
TSBC_45	CAAGCAGAAGACGGCATACGAGAT gaatga GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library Ch9_2
TSBC_46	CAAGCAGAAGACGGCATACGAGAT teggga GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library Ch27_2
TSBC_47	CAAGCAGAAGACGGCATACGAGAT ettega GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library Ch81_2
TSBC_48	CAAGCAGAAGACGGCATACGAGAT tgccga GTGACTGGAGTTCAGACGTGTGCTCTTCCG	barcoding library Ch243_2

Supplementary Table 9: List of sequences for designs from the 2nd round of design calculation based on the lowest-energy ligand docking model of b11L5F.1. Protein sequences and DNA encoding

sequences (optimized for *E.coli* codon usage) of five designs (nC1-5) are provided in this table.

Design ID	Protein Sequence	DNA sequence
	NRAYRMLPGTWQVTMTNED	AACCGTGCGTACCGTATGCTGCCGGGTACCTGGCAGGTTACCATGACCAACGAAGAC
	GQTSQGQMHIQPRSPYTLDV	GGTCAGACCTCTCAAGGTCAGATGCACATCCAGCCGCGTTCTCCGTATACCCTGGAC
b11L5F_M10_noCC1	VAQGTISDGRPISGYGKVTVK	GTTGTTGCGCAGGGTACTATCTCCGATGGTCGTCCGATCTCTGGTTACGGTAAAGTTA
(nC1)	TPDTLQVHITYPSLGNIKVQG	CCGTTAAAACCCCGGACACCCTCCAGGTTCACATCACCTACCCGTCTCTGGGTAACAT
	QITLDSPTQFTFNATTSDGKN	CAAAGTTCAGGGCCAGATCACTCTGGACTCTCCGACCCAGTTCACCTTCAACGCGAC
	LTGTLQRQE	CACCTCTGATGGTAAAAACCTGACCGGTACTCTCCAACGTCAGGAA
	NRAASLLPGTWQVTMTNEDG	AACCGTGCGGCTTCTCTGCTGCCGGGTACCTGGCAAGTTACTATGACCAACGAAGAC
	QTSQGQMHIQPRSPYTLDVV	GGTCAGACCTCTCAAGGTCAGATGCACATCCAGCCGCGTTCTCCGTATACCCTGGAC
	AQGTISDGRPISGYGKVTVKT	GTTGTTGCGCAGGGTACCATCTCTGATGGTCGTCCGATCTCTGGTTACGGTAAGGTTA
	PDTMQVHITYPSLGNIKVQGQ	CCGTTAAAACCCCGGACACCATGCAAGTTCACATCACCTACCCGTCTCTGGGTAACA
b11L5F_M10_noCC2	ITLDSPTQFTFNATTSDGKNLT	TCAAAGTTCAGGGCCAGATCACCCTCGACTCTCCGACCCAGTTCACCTTCAACGCGA
(nC2)	GTLQRQE	CCACCTCTGACGGTAAAAACCTGACCGGTACTCTGCAACGTCAGGAA
	NRAAANLPGTWQVTMTNED	AACCGTGCGGCTGCGAATCTGCCGGGTACCTGGCAGGTTACCATGACCAACGAAGAC
	GQTSQGQMHFQPRSPYTLDV	GGTCAGACCTCTCAGGGCCAGATGCACTTCCAGCCGCGTTCTCCGTACACCCTGGAT
b11L5F_M10_noCC3	VAQGTISDGRPISGYGKVTVK	GTTGTTGCGCAGGGCACTATCTCTGACGGTCGTCCGATCTCTGGTTACGGTAAAGTTA
(nC3)	TPDTMNVDITYPSLGNIKVQG	CCGTTAAAACCCCGGACACCATGAACGTTGACATCACCTACCCGTCTCTGGGTAACA
	QITLDSPTQFTFNATTSDGKK	TCAAAGTTCAGGGTCAGATCACCCTCGACTCTCCGACCCAGTTCACCTTCAACGCGA
	LTGTIQRQE	CCACCTCTGATGGCAAAAAACTGACCGGCACCATTCAGCGTCAGGAA
	NTAIANLPGTWQVTMTNEDG	AACACCGCGATTGCGAATCTGCCGGGTACCTGGCAAGTGACCATGACCAATGAGGAC
	QTSQGQMHIQPRSPYTADVV	GGTCAGACCTCTCAGGGCCAGATGCACATCCAGCCGCGTTCTCCGTACACCGCTGAC
	AQGTISDGRPISGYGKLTAKT	GTTGTTGCGCAGGGTACCATCTCTGATGGTCGTCCGATCTCTGGTTACGGTAAGCTGA
b11L5F_M10_noCC4	PDTVNVQITYPSLGNINVQGQI	CCGCGAAAACCCCGGACACCGTGAACGTGCAGATTACTTAC
(nC4)	TNDSPTQAHFNATTSDGKKLT	TCAATGTGCAAGGTCAGATCACCAACGACTCTCCGACCCAGGCGCACTTCAACGCGA
	GTMQRQE	CCACCTCTGACGGTAAAAAACTCACCGGTACTATGCAGCGTCAGGAA

	NRAAQLLPGTWQVTMTNED	AACCGTGCGGCGCAGCTCCTGCCGGGTACCTGGCAGGTTACCATGACCAACGAAGAC
	GQTSQGQMHFQPRSPYTLDIV	GGTCAGACCTCCCAGGGCCAGATGCACTTCCAGCCGCGTTCTCCGTACACCCTGGAC
b11L5F_M10_noCC5	AQGTISDGRPISGYGKVTVKT	ATCGTTGCGCAGGGCACCATTTCTGACGGTCGTCCGATCTCTGGTTACGGTAAAGTTA
(nC5 -> b11L5F.2)	PDTMHVNITYPSLGNIKVQGQ	CCGTTAAAACCCCGGACACCATGCACGTTAACATTACCTACC
	ITLDSPTQFTWNSTTSDGKKL	TCAAAGTTCAGGGTCAAATCACCCTCGACTCTCCGACCCAGTTCACCTGGAACTCTAC
	TGTLQRQE	TACCTCTGATGGTAAAAAACTGACCGGTACTCTGCAACGTCAGGAA

Supplementary Table 10: List of oligos used for constructing b11L5F.1 and b11L5F.2 combinatorial libraries. DNA assembly method was used to construct the combinatorial libraries (see Methods). DNA oligo sequences and the purpose of usage are summarized in this table. Mutations and doping ratios are highlighted in bold using the degenerate letters defined on IDT website (https://www.idtdna.com).

Name	Sequence	Purpose
		assembling b11L5F.1 and
	CAGGTACCCGGCAGGAGCTGCGCS(R1:01009900)(H1:01980001)ACGGCTCA	b11L5F.2 combinatorial
oligo1_rev	TATGGCTAGCCGACCCTC	library
	CAGCTCCTGCCGGGTACCTGGCAG(D1:01009801)	assembling b11L5F.1 and
	(Y2:00010099)SACC(D3:98000101)(Y2:00010099)(S3:00019900)ACCAACGAAG	b11L5F.2 combinatorial
oligo2_for	ACGGTCAGACCTCCCAG	library
	GGTGTACGGAGAACGCGGCTG(S3:00019900)(R2:99000100)(H2:98010001) GT	assembling b11L5F.1 and
	G(S2:00990100)(R2:99000100)(H3:01010098)CTGGCCCTGGGAGGTCTGACCGT	b11L5F.2 combinatorial
oligo3_rev	СТТС	library
	AGCCGCGTTCTCCGTACACC(D2:01000198)(H3:01010098)	
	(\$3:00019900)GACRTAGTTGCG(\$2:00990100)(W1:99000001)AGGCACCATTTC	assembling b11L5F.2
oligo4_for	TGACGGTCGTC	combinatorial library
	TCGGATCCGCCTCCCTCGAGTTCCTGACGTTG(S2:00990100)(R2:99000100)(H	assembling b11L5F.2
oligo5_rev	2:98010001)AGTACCGGTCAGTTTTTTACCATC	combinatorial library
	TTTGATGTTACCCAGAGACGGGTAGGTTABGTTTRCGTGYAKGGTGTC KT C	
	GGTTTTAACGGTTRCTTTACCGTAACCGGTGATCGGACGACCGTCAGAAAT	assembling b11L5F.2
noCC5_ultramer1-1_rev	GGTGCC	combinatorial library
	TTTGATGTTACCCAGAGACGGGTAGGTTABGTTTRCGTGYAKGGTGTCCGG	
	GGTTTTAACGGTTRCTTTACCGTAACCGGTGATCGGACGACCGTCAGAAAT	assembling b11L5F.2
noCC5_ultramer1-2_rev	GGTGCC	combinatorial library
	CGTCTCTGGGTAACATCAAARYACAGGGTCAARTAACCMTGGACTCTCCG	
	ACCCAGKYCACCTGGAACTCTACTACCKCAGATGGTAAAAAACTGACCGG	assembling b11L5F.2
noCC5_ultramer2-1_for	TAC	combinatorial library
	CGTCTCTGGGTAACATCAAARYACAGGGTCAARTAACCTACGACTCTCCG	
	ACCCAGKYCACCTGGAACTCTACTACCKCAGATGGTAAAAAACTGACCGG	assembling b11L5F.2
noCC5_ultramer2-2_for	TAC	combinatorial library
		assembling b11L5F.1
sv_oligo4_for	CAGCCGCGTTCTCCGTACACC MTG GACGTTGTTGCTCAGGGTACCATC	combinatorial library
	GTAACTTTACCGTAACCAGAGATCGGACGACCGTCAGAGATGGTACCCTGA	assembling b11L5F.1
loop3 wt rev	GCAACAACG	combinatorial library
	CACCGGTTACGGTAAAGTTACCGTTAAAAACCGAMGACACCMTRGACGYA	
	GACATCACCTACCCGTCTCTGGGTAACATCAAAGTTCAGGGTCAGRTAACC	assembling b11L5F.1
sv loop5 ultramer-1 for	MTGGACTCTCCGACCCAGTTCAAATTCGACGCAACC	combinatorial library
	CACCGGTTACGGTAAAGTTACCGTTAAAACCCCCGGACACCMTRGACGYAG	
	ACATCACCTACCCGTCTCTGGGTAACATCAAAGTTCAGGGTCAGRTAACC	assembling b11L5F.1
sv loop5 ultramer-2 for	MTGGACTCTCCGACCCAGTTCAAATTCGACGCAACC	combinatorial library
	CGCTGCAGGGTACCGGTCAGTTTTTTACCGTCAGAGGTGGTTGCGTCGAAT	assembling b11L5F.1
sv loop7 wt rev	TTGAACTG	combinatorial library

	GCTGCAGGGTACCGGTCAGACGACCGGTSAHGTTACCCGCACCTTTGS	assembling b11L5F.1
sv_loop7_variants_rev	TGGTTGCGTCGAATTTGAACTG	combinatorial library
	CTGACCGGTACCCTGCAGCGTCAGGAACACGGAGGGGGGGG	assembling b11L5F.1
sv_end_for	AAAGC	combinatorial library
		amplifying pETCON2 gene
forward_amp	TGGAGGCGGTAGCGGAGGCGGAGGGTCGGCTAGCCATATG	reading frame
		amplifying pETCON2 gene
reverse_amp	CTTCAGAAATAAGCTTTTGTTCGGATCCGCCTCCCTCGAG	reading frame

Supplementary Table 11: List of primers for b11L5F.1-based error prone library. Two adjacent primers were synthesized for constructing b11L5F.1 error prone library. DNA primer sequences and the purpose of usage are summarized in this table.

Name	Sequence	Purpose
Up_ATG_ptc_for	GAGGCGGAGGGTCGGCTAGCCATATG	error-prone PCR
Down_Xhol_ptc_rev	GCTTTTGTTCGGATCCGCCCCCTCGAG	error-prone PCR

Supplementary Table 12: List of primers for cloning mammalian subcellular targeting tags. Site-directed primers were synthesized for fusing mammalian subcellular targeting tags to mFAP genes. DNA primer sequences and the purpose of usage are summarized in this table.

Name	Sequence	Purpose
	CTTAAGCTTGGTACCGAGCTCGCCACCATGGTAGGCCG	
Nt_Tom20_for	GAACAGTGCAATC	cloning Tom20 to N-term of mFAP
	CAGCAGCTGGGCGGCGCGGCGGCTACCAGAGCCGAAGTTG	
Nt_Tom20_mFAP_rev	GGGTCTG	cloning Tom20 to N-term of mFAP
	CTTAAGCTTGGTACCGAGCTCGCCACCATGGATCCTAA	
Nt_3NLS_for	GAAAAAGCGCAAG	cloning nucleus-targeting sequence to N-term of mFAP
	CAGCAGCTGGGCGGCGCGGCGGCTACCAGAGCCTACCTTCC	
Nt_3NLS_mFAP_rev	GCTTCTTC	cloning nucleus-targeting sequence to N-term of mFAP
	CTTAAGCTTGGTACCGAGCTCGCCACCATGTCCGTCCT	cloning mitochondrial-targeting sequence to N-term of
Nt_mts_for	GACGCCGCTGCTG	mFAP
	CAGCAGCTGGGCGGCGCGGCGACCGACCGGC	cloning mitochondrial-targeting sequence to N-term of
Nt_mts_mFAP_rev	GGATCCCCCAACGAATG	mFAP
	GACCGGCACCCTGCAGCGCCAGGAGCGAAAACATAAA	cloning membrane-targeting sequence to C-term of
Ct_CAAX_mFAP_for	GAAAAGATGAGCAA	mFAP
	GAGCGGCCGCCACTGTGCTGGATTTATCACATAATTAC	cloning membrane-targeting sequence to C-term of
Ct_CAAX_rev	ACACTTTGTCTTTG	mFAP
	GACCGGCACCCTGCAGCGCCAGGAGATGCCTGGTCCG	
Ct_Sec61b_mFAP_for	ACCCCCAG	cloning ER-targeting protein to C-term of mFAP
	GAGCGGCCGCCACTGTGCTGGATTTATCACGAACGAGT	
Ct_Sec61b_rev	GTACTTGCCCCAA	cloning ER-targeting protein to C-term of mFAP
pcDNA5_start_for	CTTAAGCTTGGTACCGAGCTCGCCACCATG	amplifying pcDNA5/FRT/TO reading frame gene
mFAP_for	AGCCGCGCCGCCCAGCTGCTG	amplifying mFAP1 and mFAP2
mFAP_rev	CTCCTGGCGCTGCAGGGTGCCGGTC	amplifying mFAP1 and mFAP2
pcDNA5_stop_rev	GAGCGGCCGCCACTGTGCTGGATTTATCA	Amplifying pcDNA5/FRT/TO reading frame gene

Supplementary Table 13: List of oligos used for general cloning and site-directed mutagenesis. Additional DNA oligos were synthesized for subcloning and mutagenesis purposes. DNA sequences and the purpose of usage were summarized in this table. Mutation site are highlighted in bold.

Name	Sequence	Purpose
ETCON OU C		cloning b11L5F.1 from e.coli plasmids to
pETCON_SV_for	GAGGCGGAGGG1CGGC1AGCCATATGAGCCG1GC1GC11C1C1G	yeast plasmid
pETCON_SV_rev	GCTTTTGTTCGGATCCGCCCCCCCGAGTTCCTGACGCTGCAGGGTAC	yeast plasmid
SV_M77I_rev	GTTACCCAGAGACGGGTAG	
SV_M77I_for	CTACCCGTCTCTGGGTAACATCAAAGTTCAGGGTCAGATCAC	making b11L5F.1_M77I mutant
SV_S101K_rev	ACCGTCAGAGGTGGTTGCGTC	
SV_S101K_for	GACGCAACCACCTCTGACGGTAAGAAACTGACCGGTACCCTGCAG	making b11L5F.1_S101K mutant
nCC5_N1S_for	CTGGTGCCGCGCGGCAGCTCCTCTCGTGCGGCGCAGCTCCTG	
nCC5_N1S_rev	GGAGCTGCCGCGCGCACCAG	making b11L5F.2_N1S mutant
nCC5_I39V_for	GTTCTCCGTACACCCTGGACGTTGTTGCGCAGGGCACCATTTCTG	
nCC5 I39V rev	GTCCAGGGTGTACGGAGAAC	making b11L5F.2 I39V mutant
nCC5 T96V for	GACCCAGTTCACCTGGAACTCTGTTACCTCTGATGGTAAAAAACTGAC	
nCC5 T96V rev	AGAGTTCCAGGTGAACTGGGTC	making b111.5F 2, T96V mutant
		amplifying the gene with N-term sumo
pCDB24_for	CATTGAAGCCCACCGTGAACAGATTG	tag
b11L5F_before83_rev	CTGACCCTGAACTTTCATGTTAC	
b11L5F_before103_rev	TTTAGAACCGTCAGAGGTGGTAAC	making b11L5F mutations
	GTAACATGAAAGTTCAGGGTCAGATCACCCTGGACTCTCCGACCCAGTTCAAAT	making b11L5F_83I_95G and
b11L5F_83I_95G_for	TCGACGGTACCACCTCTGACGGTTCTAAAG	b11L5F_83I_95G_103L variants
	GTAACATGAAAGTTCAGGGTCAGATCACCCTGGACTCTCCGACCCAGTTCAAAT	making b11L5F_83I_95A and
b11L5F_83I_95A_for	TCGACGCAACCACCTCTGACGGTTCTAAAG	b11L5F_83I_95A_103L variants
	GTAACATGAAAGTTCAGGGTCAGCTGACCCTGGACTCTCCGACCCAGTTCAAAT	
b11L5F_83L_95G_for	TCGAC GGT ACCACCTCTGACGGTTCTAAAG	making b11L5F_83L_95G variant
	GTAACATGAAAGTTCAGGGTCAG CTG ACCCTGGACTCTCCGACCCAGTTCAAAT	making b11L5F_83L_95A and
b11L5F_83L_95A_for		b11L5F_83L_95G_103L variants
h111 5E 82M 05G for		making b11L5F_83M_95G and b11L5E_83M_95G_103L variants
011L3F_83WI_93G_101		making b111 5E 83M 95A and
b11L5F_83M_95A_for	TCGACGCAACCACCTCTGACGGTTCTAAAG	h111.5F 83M 95G 103L variants
b11L5F_83M_95G_103	GTAACATGAAAGTTCAGGGTCAGATGACCCTGGACTCTCCGACCCAGTTCAAAT	
L_for	TCGACGGTACCACCTCTGACGGTTCTAAACTGACCGGTACCCTGCAGCGTCAG	making b11L5F_83I_95G_103L variant
		making b11L5F_103L and all the triple
b11L5F_103L_for	ACCACCTCTGACGGTTCTAAACTGACCGGTACCCTGCAGCGTCAG	variants
pET15_b11_for	CTGGTGCCGCGCGCAGCTCCATGTGCCGTGCTGCTTCTCTGCTG	subcloning to pET15 for thrombin cleavage
M10_P62ED_for	GTAAAGTTACCTGCAAAACC GAM GACACCATGGACGTTGACATC	
M10_P62ED_rev	GGTTTTGCAGGTAACTTTAC	making M10_P62E and P62D mutants
M10_P8NT_for	TGCCGTGCTGCTTCTCTGCTGAMCGGTACCTGGCAGGTTACCATG	
M10_P8NTQ_rev	CAGCAGAGAAGCAGCACG	
M10_P8Q_for	TGCCGTGCTGCTTCTCTGCTGCAGGGTACCTGGCAGGTTACCATG	making M10_P8T, P8N, P8Q mutants*
M10_K40V_Rev	GATCGGACGACCGTCAGAGATGGTACCCTGAGCAACAACGTCCAGGGTGTACG GAG	making M10_K40V mutant
M10_K54Y_For	CCATCTCTGACGGTCGTCCGATCTCTGGTTACGGTAAAGTTACCTGCAAAAC	making M10_K54Y mutant
M10_D68N_Rev	GTTACCCAGAGACGGGTAGGTGATGTTAACGTCCATGGTGTCCGGGGTTTTG	making M10_D68N mutant
M10_K78T_For	CACCTACCCGTCTCTGGGTAACATGACCGTTCAGGGTCAGATCACCCTG	making M10_K78T mutant

M10_D86H_K92T_for	TTCAGGGTCAGATCACCCTGCACTCTCCGACCCAGTTCACCTTCGACGCAACCA CCTCTG	
M10_D86H_K92T_rev	CAGGGTGATCTGACCCTGAAC	making M10_D86H_K92T double mutant
M10_D94V_for	TCTCCGACCCAGTTCAAATTCGTTGCAACCACCTCTGACGGTTC	
M10_D94V_rev	GAATTTGAACTGGGTCGGAG	making M10_D94V mutant
M10_V57A_Rev	GGTGTCCGGGGTTTTGCAGGTTRCTTTACCTTTACCAGAGATCGGAC	making M10_V57A mutant
M10_M65IL_For	ACCTGCAAAACCCCGGACACCMTRGACGTTGACATCACCTACCCGTC	making M10_M65I, M65L mutants
M10_M77VIL_for	CTACCCGTCTCTGGGTAACVTAAAAGTTCAGGGTCAGATCAC	making M10_M77V_M77I_M77I_
M10_M77VIL_rev	GTTACCCAGAGACGGGTAG	mutants
M10_L85YF_for	GTTCAGGGTCAGATCACCTWCGACTCTCCGACCCAGTTCAAATTC	
M10_L85YF_rev	GGTGATCTGACCCTGAAC	making M10_L85Y, L85F mutants
p24_b11_addG_for	CACCGTGAACAGATTGGCGGCGGTTGCCGTGCTGCTTCTCTGCTG	adding G for sumo cleavage
M10sm1_C1SND_for	GTGCCGCGCGGCAGCTCCATG RRC CGTGCTGCTTCTCTGCTGC	
M10sm1_C59V_for	CTCTGGTTACGGTAAAGTTACCGTTAAAAACCCCCGGACACCATG	
M10sm1_C1SND_rev	CATGGAGCTGCCGCGCGCAC	making C1S_C59V, C1N_C59V and C1D_C59V with two surface mutants
M10sm1_C59V_rev	GGTAACTTTACCGTAACCAG	(K40V, K54Y) for M10

*M10 = b11L5F_83I_95A_103L

Supplementary Table 14: List of genes optimized for mammalian expression. DNA encoding sequences of mFAP1 and mFAP2 optimized for mammalian codon usage were synthesized and fused to various subcellular targeting tags. Full-length genes are listed in this table with subcellular targeting tag in bold and fusion linker sequence in Italic.

Name	DNA sequence
	ATGAGCCGCGCCGCCCAGCTGCCCGGCACCTGGCAGGTGACCATGACCAACGAGGACGGCCAGACCAGCCAG
	GCACTTCCAGCCCCGCAGCCCCTACACCCTGGACATCGTGGCCCAGGGCACCATCAGCGACGGCCGCCCCATCACCGGCTACGG
	CAAGGCCACCGTGAAGACCGACGACACCCTGCACGCCAACCTGACCTACCCCAGCCTGGGCAACATCAAGGCCCAGGGCCAGA
	TCACCTACGACAGCCCCACCCAGTTCACCTGGAACAGCACCACCAGCGACGGCAAGAAGCTGACCGGCACCCTGCAGCGCCAG
mFAP1	GAG
	ATGAGCCGCGCCGCCCAGCTGCCCGGCACCTGGCAGGTGACCATGACCAACGAGGACGGCCAGACCAGCCAG
	GCACTTCCAGCCCCGCAGCCCCTACACCATGGACGTGGTGGCCCAGGGCACCATCAGCGACGGCCGCCCCATCAGCGGCTACG
	GCAAGGTGACCGTGAAGACCCCCGACACCCTGGACGTGGACATCACCTACCCCAGCCTGGGCAACATCAAGGCCCAGGGCCAG
	ATCACCATGGACAGCCCCACCCAGTTCAAGTTCGACGCCACCACCAAGGGCGCCGGCAACTTCACCGGCCGCCTGACCGGCAC
mFAP2	CCTGCAGCGCCAGGAG
	ATGGTAGGCCGGAACAGTGCAATCGCGGCGGGGAGTATGTGGTGCGCTGTTCATCGGCTATTGCATTTACTTTGATAGAA
	AGCGGAGATCAGACCCCAACTTCGGCTCTGGTAGCCGCGCCGCCCAGCTGCCGGCACCTGGCAGGTGACCATGACCAA
	CGAGGACGGCCAGACCAGCCAGGGCCAGTGGCACTTCCAGCCCCGCAGCCCCTACACCCTGGACATCGTGGCCCAGGGCACCA
	TCAGCGACGGCCGCCCCATCACCGGCTACGGCAAGGCCACCGTGAAGACCGACGACACCCTGCACGCCAACCTGACCTACCCC
	AGCCTGGGCAACATCAAGGCCCAGGGCCAGATCACCTACGACAGCCCCACCCA
tom20-mFAP1	CAAGAAGCTGACCGGCACCCTGCAGCGCCAGGAG
	ATGGTAGGCCGGAACAGTGCAATCGCGGCGGGGAGTATGTGGTGCGCTGTTCATCGGCTATTGCATTTACTTTGATAGAA
	AGCGGAGATCAGACCCCAACTTCGGCTCTGGTAGCCGCGCCGCCCAGCTGCCCGGCACCTGGCAGGTGACCATGACCAA
	CGAGGACGGCCAGACCAGCCAGGGCCAGATGCACTTCCAGCCCCGCAGCCCCTACACCATGGACGTGGTGGCCCAGGGCACCA
	TCAGCGACGGCCGCCCCATCAGCGGCTACGGCAAGGTGACCGTGAAGACCCCCGACACCCTGGACGTGGACATCACCTACCCC
	AGCCTGGGCAACATCAAGGCCCAGGGCCAGATCACCATGGACAGCCCCACCCA
tom20-mFAP2	CGGCAACTTCACCGGCCGCCTGACCGGCACCCTGCAGCGCCAGGAG
	ATGGATCCTAAGAAAAAGCGCAAGGTTGACCCCAAAAAAAA
	$TCTGGTAGC {\tt GCGCCGCCCAGCTGCCGGCACCTGGCAGGTGACCATGACCAACGAGGACGGCCAGACCAGCCAG$
	GTGGCACTTCCAGCCCCGCAGCCCCTACACCCTGGACATCGTGGCCCAGGGCACCATCAGCGACGGCCGCCCCATCACCGGCTA
3nls-mFAP1	CGGCAAGGCCACCGTGAAGACCGACGACACCCTGCACGCCAACCTGACCTACCCCAGCCTGGGCAACATCAAGGCCCAGGGCC

	AGATCACCTACGACAGCCCCACCCAGTTCACCTGGAACAGCACCACCAGCGACGGCAAGAAGCTGACCGGCACCCTGCAGCGC
	CAGGAG
	ATGGATCCTAAGAAAAAGCGCAAGGTTGACCCCAAAAAAAA
	$TCTGGTAGC {\tt CGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$
	GATGCACTTCCAGCCCCGCAGCCCCTACACCATGGACGTGGTGGCCCAGGGCACCATCAGCGACGGCCGCCCCATCAGCGGCT
	ACGGCAAGGTGACCGTGAAGACCCCCGACACCCTGGACGTGGACATCACCTACCCCAGCCTGGGCAACATCAAGGCCCAGGGC
	CAGATCACCATGGACAGCCCCACCCAGTTCAAGTTCGACGCCACCACCAAGGGCGCCGGCAACTTCACCGGCCGCCTGACCGG
3nls-mFAP2	CACCCTGCAGCGCCAGGAG
	ATGTCCGTCCTGACGCCGCTGCTGCTGCGGGGGCTTGACAGGCTCGGCCCGGCGGCGCCCAGTGCCGCGCGCCAAGATC
	CATTCGTTGGGGGGATCCACCGGTCGGCTCTGGTAGCCGCGCCGCCCAGCTGCCGGCACCTGGCAGGTGACCATGACCA
	ACGAGGACGGCCAGACCAGCCAGGGCCAGTGGCACTTCCAGCCCCGCAGCCCCTACACCCTGGACATCGTGGCCCAGGGCACC
	ATCAGCGACGGCCGCCCCATCACCGGCTACGGCAAGGCCACCGTGAAGACCGACGACACCCTGCACGCCAACCTGACCTACCC
	CAGCCTGGGCAACATCAAGGCCCAGGGCCAGATCACCTACGACAGCCCCACCCA
mts-mFAP1	GCAAGAAGCTGACCGGCACCCTGCAGCGCCAGGAG
	ATGTCCGTCCTGACGCCGCTGCTGCTGCGGGGGCTTGACAGGCTCGGCCCGGCGGCGCCCAGTGCCGCGCGCG
	CATTCGTTGGGGGGATCCACCGGTC <i>GGCTCTGGT</i> AGCCGCGCCGCCAGCTGCCGGCACCTGGCAGGTGACCATGACCA
	ACGAGGACGGCCAGACCAGCCAGGGCCAGATGCACTTCCAGCCCCGCAGCCCCTACACCATGGACGTGGTGGCCCAGGGCACC
	ATCAGCGACGGCCGCCCCATCAGCGGCTACGGCAAGGTGACCGTGAAGACCCCCGACACCCTGGACGTGGACATCACCTACCC
	CAGCCTGGGCAACATCAAGGCCCAGGGCCAGATCACCATGGACAGCCCCACCCA
mts-mFAP2	CCGGCAACTTCACCGGCCGCCTGACCGGCACCCTGCAGCGCCAGGAG
	ATGAGCCGCGCCGCCCAGCTGCCGGCACCTGGCAGGTGACCATGACCAACGAGGACGGCCAGACCAGCCAG
	GCACTTCCAGCCCCGCAGCCCCTACACCCTGGACATCGTGGCCCAGGGCACCATCAGCGACGGCCGCCCCATCACCGGCTACGG
	CAAGGCCACCGTGAAGACCGACGACACCCTGCACGCCAACCTGACCTACCCCAGCCTGGGCAACATCAAGGCCCAGGGCCAGA
	TCACCTACGACAGCCCCACCCAGTTCACCTGGAACAGCACCACCAGCGACGGCAAGAAGCTGACCGGCACCCTGCAGCGCCAG
mFAP1-caax	GAGCGAAAACATAAAGAAAAGATGAGCAAAGATGGTAAAAAGAAGAAGAAAAAGAAGTCAAAGACAAAGTGTGTAATTATGT
	ATGAGCCGCGCCCCAGCTGCTGCCCGGCACCTGGCAGGTGACCATGACCAACGAGGACGGCCAGACCAGCCAG
	GCACTTCCAGCCCCGCAGCCCCTACACCATGGACGTGGTGGCCCAGGGCACCATCAGCGACGGCCGCCCCATCAGCGGCTACG
	GCAAGGTGACCGTGAAGACCCCCGACACCCTGGACGTGGACATCACCTACCCCAGCCTGGGCAACATCAAGGCCCAGGGCCAG
	ATCACCATGGACAGCCCCACCCAGTTCAAGTTCGACGCCACCACCAAGGGCGCCGGCAACTTCACCGGCCGCCTGACCGGCAC
	CCTGCAGCGCCAGGAGCGAAAACATAAAGAAAGATGAGCAAAGATGGTAAAAAGAAGAAGAAAAAGAAGTCAAAGACAAAG
mFAP2-caax	TGTGTAATTATGT
	ATGAGCCGCGCCGCCCAGCTGCCGGCACCTGGCAGGTGACCATGACCAACGAGGACGGCCAGACCAGCCAG
	GCACTTCCAGCCCCGCAGCCCCTACACCCTGGACATCGTGGCCCAGGGCACCATCAGCGACGGCCGCCCCATCACCGGCTACGG
	CAAGGCCACCGTGAAGACCGACGACACCCTGCACGCCAACCTGACCTACCCCAGCCTGGGCAACATCAAGGCCCAGGGCCAGA
	TCACCTACGACAGCCCCACCCAGTTCACCTGGAACAGCACCACCAGCGACGGCAAGAAGCTGACCGGCACCCTGCAGCGCCAG
	GAGATGCCTGGTCCGACCCCAGTGGCACTAACGTGGGATCCTCAGGGCGCTCTCCCAGCAAAGCAGTGGCCGCCCGG
	GCGGCGGGATCCACTGTCCGGCAGAGGAAAAATGCCAGCTGTGGGACAAGGAGTGCAGGCCGCACAACCTCGGCAGGC
	ACCGGGGGGGATGTGGCGATTCTACACAGAAGATTCACCTGGGCTCAAAGTTGGCCCTGTTCCAGTATTGGTTATGAGTC
mFAP1-sec61b	TTCTGTTCATCGCTTCTGTATTTATGTTGCACATTTGGGGGCAAGTACACTCGTTCG
	ATGAGCCGCCGCCCAGCTGCTGCCCGGCACCTGGCAGGTGACCATGACCAACGAGGACGGCCAGACCAGCCAG
	GCACTTCCAGCCCCGCAGCCCCTACACCATGGACGTGGTGGCCCAGGGCACCATCAGCGACGGCCGCCCCATCAGCGGCTACG
	GCAAGGTGACCGTGAAGACCCCCGACACCCTGGACGTGGACATCACCTACCCCAGCCTGGGCAACATCAAGGCCCAGGGCCAG
	ATCACCATGGACAGCCCCACCCAGTTCAAGTTCGACGCCACCACCAAGGGCGCCGGCAACTTCACCGGCCGCCTGACCGGCAC
	CCTGCAGCGCCAGGAGATGCCTGGTCCGACCCCCAGTGGCACTAACGTGGGATCCTCAGGGCGCTCTCCCAGCAAAGCA
	GTGGCCGCCCGGGCGGGGGGGGCCACACTGTCCGGCAGAGGAAAAATGCCAGCTGTGGGACAAGGAGTGCAGGCCGCAC
	AACCTCGGCAGGCACCGGGGGGGGTGTGGGCGATTCTACACAGAAGATTCACCTGGGCTCAAAGTTGGCCCTGTTCCAGTA
mFAP2-sec61b	TTGGTTATGAGTCTTCTGTTCATCGCTTCTGTATTTATGTTGCACATTTGGGGGCAAGTACACTCGTTCG

Supplementary Table 15: List of amino acid sequences of relevant DFHBI-binding fluorescence-activating proteins. Amino acid sequences were used to compare the mutations (Extended Data Fig. 10).

Name

Protein sequence

	CRAASLLPGTWQVTMTNEDGQTSQGQMHFQPRSPYTLDVKAQGTMSDGRPIQGKGKVTCKTPDTMDVDITYSDGKQVQGQVTLDSPT
b11	QFKFDVTTSDGSKVTGTLQRQELE
	CRAASLLPGTWQVTMTNEDGQTSQGQMHFQPRSPYTLDVKAQGTISDGRPISGKGKVTCKTPDTMDVDITYPSLGNMKVQGQVTLDSPT
b11L5F	QFKFDVTTSDGSKVTGTLQRQELE
	SRAASLLPGTWQVTMTNEDGQTSQGQMHFQPRSPYTLDVVAQGTISDGRPISGYGKVTVKTPDTMDVDITYPSLGNMKVQGQITLDSPT
b11L5F.1	QFKFDATTSDGSKLTGTLQRQE
	SRAAQLLPGTWQVTMTNEDGQTSQGQMHFQPRSPYTLDVVAQGTISDGRPISGYGKVTVKTPDTMHVNITYPSLGNIKVQGQITLDSPTQ
b11L5F.2	FTWNSVTSDGKKLTGTLQRQE
	SRAAQLLPGTWQVTMTNEDGQTSQGQMHFQPRSPYTLDIVAQGTISDGRPITGYGKVTVKTDDTLHVNITYPSLGNIKVQGQITMDSPTQ
mFAP0	ATWNSTTSDGKKLTGTLQRQE
	SRAAQLLPGTWQVTMTNEDGQTSQGQWHFQPRSPYTLDIVAQGTISDGRPITGYGKATVKTDDTLHANLTYPSLGNIKAQGQITYDSPTQ
mFAP1	FTWNSTTSDGKKLTGTLQRQE
	SRAAQLLPGTWQVTMTNEDGQTSQGQMHFQPRSPYTMDVVAQGTISDGRPISGYGKVTVKTPDTLDVDITYPSLGNIKAQGQITMDSPT
mFAP2	QFKFDATTKGAGNFTGRLTGTLQRQE

Supplementary Table 16: Flow cytometry statistics. Five yeast libraries were constructed, sorted and sequenced in this study with their description and sorting statistics listed in this table. * indicates that library was deep sequenced by Illumina Miseq sequencer; ** indicates that library was sampled by Sanger sequencing. Sorting mode and sorting efficiency were those provided by Sony SH800 sorter.

	Library				Fluorescence	# of Cells	# of Cells	% Cells	Sorting	Sorting
Library	Size	Parent Library	Child Library	Cell Treatment	Label	Analyzed	Collected	Collected	Mode	Efficiency
		Naïve	FITC_1 *	no special treatment		2,026,233	294,842	17.11%	Purity	85.03%
		Naïve	T243_1 *	0.07µM trypsin		2,022,656	248,270	14.68%	Purity	83.61%
		Naïve	T81_1 *	0.21µM trypsin		2,019,873	166,580	9.95%	Purity	82.86%
		Naïve	T27_1 *	0.63µM trypsin		2,028,557	23,645	1.42%	Purity	82.12%
		Naïve	T9_1 *	1.89µM trypsin		2,019,247	23,792	1.45%	Purity	81.14%
		Naïve	Ch243_1 *	0.08µM chymotrypsin	1:50 dilution	1,834,048	274,542	17.00%	Purity	88.04%
		Naïve	Ch81_1 *	0.24µM chymotrypsin	FITC-conjugate	2,054,811	133,695	7.80%	Purity	83.45%
		Naïve	Ch27_1 *	0.72µM chymotrypsin	d anti-c-Myc	2,044,317	65,756	3.79%	Purity	84.86%
b11L5F_S	2,091	Naïve	Ch9_1 *	2.16µM chymotrypsin	antibody	2,039,805	11194	0.65%	Purity	85.49%
SM librar		Naïve	s1_1			3,143,645	95,310	3.56%	Purity	85.11%
y_rep_1		s1_1	Bind_1 *	no special treatment	100µM DFHBI	2,727,878	15,041	0.69%	Purity	80.43%
		Naïve	FITC_2 *	no special treatment		1,504,471	262,030	20.51%	Purity	84.93%
		Naïve	T243_2 *	0.07µM trypsin		1,536,281	214,908	16.45%	Purity	85.03%
		Naïve	T81_2 *	0.21µM trypsin		1,387,237	138,339	11.68%	Purity	85.41%
		Naïve	T27_2 *	0.63µM trypsin		1,394,728	22,102	1.89%	Purity	83.69%
		Naïve	T9_2 *	1.89µM trypsin	1.50.111.4	1,337,500	25,138	2.23%	Purity	84.45%
		Naïve	Ch243_2 *	0.08µM chymotrypsin		2,105,152	164,295	8.99%	Purity	86.79%
		Naïve	Ch81_2 *	0.24µM chymotrypsin	FITC-conjugate	2,043,617	160,941	9.19%	Purity	85.72%
		Naïve	Ch27_2 *	0.72µM chymotrypsin	d anti-c-Myc	2,457,433	94,532	4.57%	Purity	84.23%
6111 5E S		Naïve	Ch9_2 *	2.16µM chymotrypsin	antibody	2,022,869	10391	0.63%	Purity	82.09%
SM librar		Naïve	s1_2			2,816,735	37,488	1.55%	Purity	85.67%
y_rep_2	2,091	s1_2	Bind_2 *	no special treatment	100µM DFHBI	2,516,899	15,164	0.71%	Purity	85.04%
					1:50 dilution FITC-conjugate					
b11L5F.2		Naïve	b11L5F.2_exp		antibody	57.268.884	16.884.146	34.77%	Normal	84.78%
_combinat		Naïve	b11L5F 2 S1	-	10uM DFHBI	43 520 270	317 251	0.88%	Normal	82.55%
ry	5.50E+07	b11L5F.2 exp	b11L5F.2 exp S1	no special treatment	10µM DFHBI	50,535,467	354,309	0.83%	Normal	84.69%

		b11L5F.2_S1	b11L5F.2_S2		10µM DFHBI	9,390,040	168,311	2.16%	Normal	82.91%
		b11L5F.2_exp_S								
		1	b11L5F.2_S2		10µM DFHBI	11,669,754	110,864	1.16%	Normal	82.16%
		b11L5F.2_S2	b11L5F.2_S3		10µM DFHBI	4,147,893	31,920	0.89%	Purity	86.30%
				0.07µM trypsin,						
		b11L5F.2_S2	b11L5F.2_pro_S3	0.08µM chymotrypsin	10µM DFHBI	4,192,495	57,111	1.65%	Purity	82.40%
		b11L5F.2_S3	b11L5F.2_S4	no special treatment	5µM DFHBI	3,339,138	24,133	0.82%	Purity	88.10%
		b11L5F.2_pro_S		0.21µM trypsin,					-	
		3	b11L5F.2_pro_S4	0.24µM chymotrypsin	10µM DFHBI	2,963,184	24,111	0.92%	Purity	88.54%
		b11L5F.2 S4		no special treatment	5µM DFHBI	4,134,767	20,299	0.57%	Purity	86.06%
		b11L5F.2_pro_S		0.21µM trypsin,					-	
		4	**	0.24µM chymotrypsin	10µM DFHBI	4,976,531	30,097	0.72%	Purity	83.72%
					1:50 dilution					
					FITC-conjugate					
					d anti-c-Myc					
		Naïve	b11L5F.1_exp		antibody	57,945,735	16,309,530	31.91%	Normal	88.20%
		Naïve	b11L5F.1_S1		10µM DFHBI	55,905,778	1,325,730	2.98%	Normal	79.65%
		b11L5F.1_exp	b11L5F.1_exp_S1		10µM DFHBI	42,803,239	1,578,029	4.63%	Normal	79.61%
		b11L5F.1_S1	b11L5F.1_S2		10µM DFHBI	16,615,788	500,395	3.69%	Normal	81.69%
		b11L5F.1_exp_S								
		1	b11L5F.1_S2		10µM DFHBI	15,554,114	195,104	1.52%	Normal	82.50%
		b11L5F.1_S2	b11L5F.1_S3	no special treatment	10µM DFHBI	6,005,774	40,727	0.85%	Purity	79.85%
				0.07µM trypsin,					-	
		b11L5F.1_S2	b11L5F.1_pro_S3	0.08µM chymotrypsin	10µM DFHBI	4,427,412	56,627	1.48%	Purity	86.60%
		b11L5F.1_S3	b11L5F.1_S4	no special treatment	5 μM DFHBI	2,509,911	22,088	0.99%	Purity	88.90%
		b11L5F.1_pro_S		0.21µM trypsin,						
		3	b11L5F.1_pro_S4	0.24µM chymotrypsin	10µM DFHBI	2,924,047	41,170	1.59%	Purity	88.35%
		b11L5F.1_S4	b11L5F.1_S5	no special treatment	5 µM DFHBI	3,945,143	34,923	1.05%	Purity	84.47%
		b11L5F.1_pro_S		0.21µM trypsin,						
b11L5F.1		4	b11L5F.1_pro_S5	0.24µM chymotrypsin	5µM DFHBI	3,370,242	21,185	0.73%	Purity	85.53%
combinat		b11L5F.1_S5			5 μM DFHBI	2,885,994	10,113	0.38%	Purity	91.84%
_ orial_libra		b11L5F.1_pro_S								
ry	8.808E+07	5	**	no special treatment	5 µM DFHBI	6,282,601	13,790	0.28%	Purity	78.31%
					1:50 dilution					
					FITC-conjugate					
					d anti-c-Myc					
		Naïve	ep_exp		antibody	61,035,243	13,651,919	26.58%	Normal	84.16%
		Naïve	ep_S1		10µM DFHBI	46,493,935	1,679,927	4.46%	Normal	81.06%
		ep_exp	ep_exp_S1		10µM DFHBI	46,122,324	1,246,377	3.27%	Normal	82.68%
		ep_S1	ep_S2		10µM DFHBI	16,467,524	275,358	2.10%	Normal	79.48%
		ep_exp_S1	ep_S2		10µM DFHBI	13,634,466	201,031	1.77%	Normal	83.51%
		ep S2	ep S3	no special treatment	10µM DFHBI	4,493,258	35,222	0.93%	Purity	84.68%
				0.07µM trypsin,						
		ep_S2	ep_pro_S3	0.08µM chymotrypsin	10µM DFHBI	3,695,738	56,674	1.74%	Purity	87.93%
		ep_S3	ep_S4	no special treatment	5 µM DFHBI	2,836,705	20,763	0.82%	Purity	89.56%
				0.21µM trypsin,						
		ep_pro_S3	ep_pro_S4	0.24µM chymotrypsin	10µM DFHBI	2,521,459	24,824	1.10%	Purity	89.66%
b11L5F.1		ep_S4		no special treatment	5µM DFHBI	4,695,960	25,038	0.64%	Purity	83.29%
_error_pro				0.21µM trypsin,						
ne_library	6.10E+07	ep_pro_S4	**	0.24µM chymotrypsin	10µM DFHBI	4,257,680	25,170	0.72%	Purity	82.24%

Supplementary Table 17: Amino acid propensities categorized by protein depths and secondary structures. Natural amino acid frequencies in different parts of a protein were analyzed and used for defining the sequence design space (see Supplementary Methods).

Protein Depth	Amino Acid		Count		Propensity		
		C (random coil)	Η (α helix)	E (β sheet)	С	н	Е
	А	63723	123182	40008	-0.40	0.45	-0.40
	С	13643	12396	11689	-0.04	-0.27	0.41
	G	127043	36623	30714	0.82	-1.07	-0.56
	I	35770	64736	63749	-0.77	-0.01	0.74
	L	64253	137273	68219	-0.64	0.36	0.12
	М	17883	29490	14524	-0.36	0.26	0.01
	F	32391	44954	37848	-0.40	-0.02	0.50
	Р	88031	25856	14041	0.89	-0.97	-1.08
	W	11105	16130	11877	-0.38	0.06	0.38
	Y	28590	39100	32725	-0.38	-0.03	0.49
	V	45482	65823	84625	-0.68	-0.24	0.89
	R	46551	68488	31013	-0.22	0.24	-0.13
	Ν	64175	39287	18202	0.51	-0.30	-0.64
	D	86951	57796	22335	0.49	-0.20	-0.80
	Q	34122	55429	19444	-0.24	0.36	-0.38
	E	60432	103442	31537	-0.26	0.42	-0.53
	Н	27427	23809	15246	0.15	-0.15	-0.02
	K	59644	76271	31190	-0.05	0.20	-0.32
	S	80629	57654	35541	0.32	-0.26	-0.19
(all)	Т	62094	46113	44480	0.13	-0.39	0.32
		С	H	E	C	H	E
	A	36354	4/186	7322	-0.66	-0.01	-1.46
	C	5309	2015	1814	-0.84	-1.97	-0.89
	G	77095	11317	5556	0.65	-1.85	-1.64
	I	16333	15515	13389	-1.35	-1.15	-0.12
	L	32710	38136	14770	-1.06	-0.57	-0.70
	М	10444	9389	3699	-0.58	-0.46	-0.57
	F	15054	11312	8496	-0.95	-1.09	-0.27
	Р	59379	16359	6898	0.88	-0.71	-0.72
	W	6107	5908	4387	-0.69	-0.47	0.34
	Y	17698	18160	14140	-0.52	-0.21	0.66
	V	22934	17386	19055	-1.11	-1.24	0.13
	R	39472	56232	23564	0.10	0.88	0.86
	N	49890	27277	9787	0.70	0.10	-0.14
	D	71111	45461	13136	0.75	0.38	-0.18
0.5 () .	Q	28351	43233	12927	0.04	0.92	0.42
0-5 (protein surface)	Е	53718	88301	23717	0.12	1.11	0.45

	Н	19626	14689	7458	0.22	0.08	0.34
	K	55948	69036	26584	0.41	0.98	0.84
	S	54987	32141	13702	0.32	-0.18	-0.17
	Т	43328	23568	21274	0.17	-0.44	0.65
		С	Н	Е	С	Н	Е
	А	25177	69343	27062	0.02	0.81	-0.07
	C	7717	9569	8570	0.90	0.54	0.86
	G	45442	21759	20515	1.09	-0.64	-0.24
	Ι	18431	46458	43318	0.03	0.70	1.08
	L	30072	93791	46343	0.02	1.00	0.46
	М	6879	18612	9120	0.02	0.79	0.24
	F	16501	31913	26000	0.38	0.67	0.85
	Р	26507	8508	6168	0.92	-1.39	-1.37
	W	4760	9771	6912	0.15	0.52	0.50
	Y	10411	20063	17367	-0.08	0.20	0.47
	V	21327	45259	56587	-0.01	0.41	1.21
	R	6722	11730	6971	-1.25	-1.12	-1.39
	Ν	13206	11035	7367	-0.02	-0.94	-1.04
	D	14819	11490	8252	-0.31	-1.34	-1.34
	Q	5303	11330	5833	-1.17	-0.74	-1.22
	Е	6167	14192	7001	-1.80	-1.26	-1.80
	Н	7149	8443	6814	-0.03	-0.46	-0.28
	K	3469	6882	4248	-2.40	-2.08	-2.30
5-10(protein	S	23616	22929	18896	0.31	-0.40	-0.20
core)	Т	17255	20235	20259	0.04	-0.39	0.09

Supplementary Table 18: X-ray crystallography data collection and refinement statistics. X-ray diffraction data for each protein structure were collected on a single crystal and processed as described in Methods.

	BB1	HBI_b_10	b11L5F_LGL	mFAP1	mFAP0
	(PDB ID: 6D0T)	(PDB ID: 6CZJ)	(PDB ID: 6CZG)	(PDB ID: 6CZH)	(PDB ID: 6CZI)
Data collection					
Space group	P 1 21 1	P 1 21 1	C121	P 1 21 1	P 21 21 21
Cell dimensions					
a, b, c (Å)	55.76, 32.27, 81.65	42.9, 36.7, 61.9	84.9, 35.3, 59.6	40.1, 47.9, 52.8	48.1, 59.4, 72.8
a, b, g (°)	90, 100.64, 90	90, 91.1, 90	90, 90.9, 90	90, 91.5, 90	90, 90, 90
Resolution (Å)	27.81-1.63 (1.688-1.63)	50-2.1 (2.14-2.1)	50-2.2 (2.24-2.2)	50-2.3 (2.34-2.3)	40-1.8 (1.87-1.80)
R _{svm} or R _{merge}	0.058 (0.653)	0.020 (0.027)	0.029 (0.064)	0.067 (0.306)	0.063 (0.434)
l/sl	13.1 (1.9)	72.0 (50.4)	60.8 (29.4)	20.9 (3.0)	37.1 (5.0)
Completeness (%)	99.8 (99.8)	97.5 (81.7)	98.5	98.2 (85.1)	98.9 (86.9)
Redundancy	4.0 (4.1)	7.3 (6.0)	7.4 (7.3)	6.9 (4.6)	11.7 (9.2)
Refinement					
Resolution (Å)	1.63	2.1	2.2	2.3	1.8
No. reflections	36147	11219	9067	8895	18915
Rwork / Rfree	0.1515/0.1840	17.89/22.61	21.68/27.52	18.07/21.81	20.59/24.13
No. atoms					
Protein	1892	1589	1634	1631	1625
Ligand/ion	0	15	36	36	36
Water	101	208	84	82	129
B-factors					
Protein	26.46	15.83	26.48	27.94	21.36
Ligand/ion	N/A	35.59	39.59	22.89	13.68
Water	37.46	23.55	31.58	31.1	32.74
R.m.s. deviations					
Bond lengths (Å)	0.01	0.002	0.002	0.009	0.003
Bond angles (°)	1.059	0.52	0.67	1.1	0.7

*Values in parentheses are for highest-resolution shell.

Supplementary Data

EXAMPLE COMMAND LINES

Example command line for selecting/designing the parametric models:

 $PATH_TO_ROSETTA/Rosetta/main/source/bin/remodel.default.linuxgccrelease$

-parser:protocol <protocol.xml> # see Supplementary Data: paramtetric_bb_minpackfilter.xml, parametric_bb_design.xml -database PATH_TO_ROSETTA/Rosetta/main/database -nstruct 10 -linmem ig 10 -use_bicubic_interpolation -use_incorrect_hbond_deriv false -score:weights trp ala mod.wts -no his his pairE -hbond_sp2_correction -score:weights sp2 correction -analytic stable evaluation -icoor 05 2009 -lj_hbond_hdis 1.75 -lj hbond OH donor dis 2.6 -hackelec min dis 2.0 -scale d1 -scale_theta 1 -holes:dalphaball PATH_TO_ROSETTA/Rosetta/main/database/DAlphaBall.icc

Example command line for connecting beta-strands generated from parametric models:

 $PATH_TO_ROSETTA/Rosetta/main/source/bin/remodel.default.linuxgccrelease$

-s <picked.pdb> # selected input pdb -remodel:blueprint <2 2 2 2 2 1 2.bp> # see Supplementary Data: 2 2 2 2 2 1 2.bp -nstruct 5 -database PATH TO ROSETTA/Rosetta/main/database -num trajectory 1 -lh:db_path PATH_TO_FRAGMENT_DATABASE/3to25mer/ -lh_ex_limit 8 -lh:max radius 10 -use_loop_hash -out:user_tag 2_2_2_2_2_1_2 -out:suffix 2_2_2_2_1_2 -out:file:silent picked-2_2_2_2_1_2.silent -ss_pair 1.0 -rsigma 1.0 -hb lrbb 1.5 -remodel:use cart relax -remodel:free relax

Example command line for constructing beta-barrel backbones based on the 2D map:

PATH_TO_ROSETTA/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease

-parser:protocol <bb_2D_assembly.xml> **# see Supplementary Data: bb_2D_assembly.xml** -database PATH_TO_ROSETTA/Rosetta/main/database/ -s <input_dipeptide.pdb> **# an arbitrary dipeptide to define the start and end of the protein chain** -picking_old_max_score 1 -maxruntime 14400 -nstruct 100 -seed_offset 4 -holes:dalphaball PATH_TO_ROSETTA/Rosetta/main/database/DAlphaBall.icc

Example command line for designing sequences after fragment assembly:

PATH_TO_ROSETTA/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease -parser:protocol <bb_2D_design.xml> # see Supplementary Data: bb_2D_design.xml -database PATH_TO_ROSETTA/Rosetta/main/database/ -s <input_dipeptide.pdb> -picking_old_max_score 1 -maxruntime 74000 -nstruct 5 -rama_prepro_steep -beta

Example command line for designing disulfide bonds:

PATH TO ROSETTA/Rosetta/main/source/bin/remodel.static.linuxgccrelease

-database PATH_TO_ROSETTA/Rosetta/main/database/ -s <input.pdb> -remodel:blueprint <helix_remodel.bp> # see Supplementary Data: helix_remodel.bp -remodel:build_disulf -save_top 20 -remodel:use_pose_relax -num_trajectory 250 -bypass_closure -match_rt_limit 2.5

Example command line for correcting small molecule partial charges:

PATH_TO_AMBER/amber12/AmberTools/bin/antechamber -i <input.mol2> -fi mol2 -o <output.mol2> -fo mol2 -c bcc -at sybyl -nc <charge>

Example command line for generating ligand .param files:

PATH_TO_ROSETTA/Rosetta/main/source/scripts/python/public/molfile_to_params.py -n HBI <input.mol2>

Example command line for running RIFgen:

PATH_TO_RIF/rifgen @rifgen_options rifgen_options:

target and params here
-rifgen:target PATH_TO_TARGET/HBIh_0001.pdb
-extra_res_fa_PATH_TO_TARGET/HBIh.params

names of output file and directory
-rifgen:outdir OUTPUT_FOLDER
-rifgen:data_cache_dir PATH_TO_RIF/data/scheme_data
-rifgen:outfile OUTPUT_FILE_NAME.gz
-rifgen:apores VAL ILE LEU MET PHE # apolar residue types
-rifgen:donres SER THR TYR GLN ASN HIS HIS_D # donor residue types
-rifgen:accres HBI # acceptor residue types

options for dumping pdbs condaining a small fraction of the RIF residues for inspection -rifgen:rif_hbond_dump_fraction 0.00001 -rifgen:rif_apo_dump_fraction 0.00001

mutiplier for default hydrophobic residue score cut

this will largely determine how long rif generation takes and

how large the resulting rif is. lowering this number will cause

more possible hydrophobic interactions to be found, but will make

the rif bigger and make the search take longer. if you don't care

much about hydrophobic interactions, or only want a few good ones

raise this number to maybe 1.2 (fine to play with it) OR if you

aren't getting good hydrophobic packing, lower it to maybe 0.8 or 0.7.

-rifgen:score_cut_adjust 1.0

-rifgen:score_threshold -0.5 # max acceptable score to go in rif

-rifgen:hbond_weight 2.0 # max score per-hbond

-rifgen:upweight_multi_hbond 1.0 # extra score factor for bidentate hbonds

params for super-fussy hbonder search -rifgen:tip_tol_deg 30.0 # hbonds off-ideal by this much angle -rifgen:rot_samp_resl 3.75 # angular sampling covering radius -hbond_cart_sample_hack_range 0.50 # cart search for hbonders up to this far away -hbond_cart_sample_hack_resl_0.25 # cart search for hbonders at this resl -hash_cart_resl 0.7 # main rif hash table cart resolution -hash angle resl 14.0 # main rif hash table angle resolution -rifgen::rif type RotScoreSat # if you don't want satisfaction constraints, use "RotScore" -rifgen::rf_oversample 2 # number of samples per base-grid cell -rifgen::rosetta_field_resl 0.125 # base resolution of energy grids #-rifgen::search resolutions 4.0 2.0 1.0 0.5 # apo residue position 6D search resls -rifgen::search_resolutions 3.0 1.5 0.75 # apo residue position 6D search resls

memory request depends on the computers
-rif_accum_scratch_size_M 24000 # 250gb, jojo only!

-rifgen:beam_size_M 10000.0 -rifgen:hash_preallocate_mult 0.125 -rifgen:max_rf_bounding_ratio 4.0 -add_orbitals -renumber_pdb -database PATH_TO_ROSETTA_DATABASE/database

-rifgen:hash_cart_resls 16.0 8.0 4.0 2.0 1.0 -rifgen:hash_cart_bounds 512 512 512 512 512 -rifgen:lever_bounds 16.0 8.0 4.0 2.0 1.0 -rifgen:hash_ang_resls 38.8 24.4 17.2 13.6 11.8 -rifgen:lever_radii 23.6 18.785501 13.324600 8.425850 4.855575

Example command line for running RIFdock:

PATH_TO_	_RIF/rif_dock_test						
-scaffolds L	IST_OF_SCAFFOLDS						
-scaffold_re	s LIST_OF_POSITION_I	FILES					
@rifdock_h	bi.flags						
rifdock_hbi	i.flags						
#	# the block below comes f	rom the bottom of the log file from	m rif generation	, just copy it			
#	# if you are running the do	cking in a different place than wh	nere you ran rif g	generation,			
#	# you will have to adjust th	nese paths!					
#		H#####################################	what	you	need	for	docking
##########	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	H##############					
-	rif_dock:target_pdb	./rifgen_hbi/hbi_resl0.7_sca0.8	_hb30_6_hb2un	h1_sat5.rif.gz_	target.pdb		
-	in:file:extra_res_fa	./test_input/hbi/HBIh.params					
-	rif_dock:target_rf_resl	0.125					
-	rif_dock:target_rf_cache	./rifgen_hbi/RF_HBIh_000	1.pdb_CEN_trh	ash54435770_r	esl0.125_osamp	2_replonlybdry	y
-	rif_dock:target_bounding	_xmaps ./rifgen_hbi/hbi_resl0.7_	sca0.8_hb30_6_	hb2umh1_sat5.	rif.gz_BOUNDI	NG_RIF_16.x	.map.gz
-	rif_dock:target_bounding	_xmaps ./rifgen_hbi/hbi_resl0.7_	sca0.8_hb30_6_	hb2umh1_sat5.	rif.gz_BOUNDI	NG_RIF_08.x	.map.gz
-	rif_dock:target_bounding	_xmaps ./rifgen_hbi/hbi_resl0.7_	sca0.8_hb30_6_	hb2umh1_sat5.	rif.gz_BOUNDI	NG_RIF_04.x	.map.gz
-	rif_dock:target_bounding	_xmaps ./rifgen_hbi/hbi_resl0.7_	sca0.8_hb30_6_	hb2umh1_sat5.	rif.gz_BOUNDI	NG_RIF_02.x	.map.gz
-	rif_dock:target_bounding	_xmaps ./rifgen_hbi/hbi_resl0.7_	sca0.8_hb30_6_	hb2umh1_sat5.	rif.gz_BOUNDI	NG_RIF_01.x	.map.gz
-	rif_dock:target_rif	./rifgen_hbi/hbi_resl0.7_sca0.8_l	hb30_6_hb2umł	n1_sat5.rif.gz			
#		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		+#############	#############	###########	+###########

##

this is where the output will go, and how much -rif_dock:outdir OUTPUT_FOLDER -rif_dock:dokfile all.dok

-rif dock:n pdb out 20 # max number of output pdbs # set this to the number of hbonds to the target which are required -require satisfaction 4 # these flags control the overall time the search will take a few alternate options are included # setting the require_satisfaction flag above to a high vale will make search faster across the # board, so experiment with that also # reasonable defaults: -beam size M 5 -hsearch scale factor 1.2 # # very fast search, probably with low quality results #-beam size M1 # -hsearch_scale_factor 1.6 # # slow thorough search #-beam size M 30 #-hsearch scale factor 1.0 # score cut for the rosetta "score," which is kinda a ddg, but with hbond weighs highern -rif_dock:rosetta_score_cut -10.0 # make this number higher to have less redundant results or lower to have more similar results # this is NOT a proper rmsd (yet), unfortunately, so if you want to tweak it you'll have to experiment -rif_dock:redundancy_filter_mag 1.5 # rotamer packing options -rif dock::pack iter mult 4.0 -rif_dock:hack_pack_frac 0.20 -hack_pack true -rif_dock::rf_resl 0.5 -rif dock::rf oversample 2 -rif_dock:rotrf_resl 0.3 -rif dock:rotrf spread 0.0 -rif dock:rotrf scale atr 1.0 -rif_dock:rotrf_cache_dir PATH TO ROTAMER TABLE -rif_dock:data_cache_dir_SCAFFOLD_CACHE_FOLDER -rif dock:use scaffold bounding grids 0 -rif dock:cache scaffold data true -rif dock:upweight iface 1.3 -rif_dock:hbond_weight 3.0 # value of 1.0 could up to double hbscore if bidentate, triple if tridentate... best in conjunction with low-ish starting hbweight -rif dock:upweight multi hbond 1.0 -rif dock:rosetta score fraction 0.01 -rif_dock:rosetta_min_fraction 0.14 -rif_dock:pdb_info_pikaa false -rif dock:align output to scaffold true -rif_dock:global_score_cut -10.0 -rif_dock:scaffold_to_ala true # change output sequence backbone to poly-ala -rif_dock:scaffold_to_ala_selonly false -add_native_scaffold_rots_when_packing 0 #1 if scaffold input sequence is meaningful (eg. natural proteins as scaffolds) -bonus_to_native_scaffold_res 0 # -0.5 if scaffold input sequence is meaningful -add_orbitals -database PATH_TO_ROSETTA_DATABASE/database #-rif_dock:target_tag conf01 # for multiple ligand conformers -rif_dock:target_rf_oversample 2 -mute core.scoring.ScoreFunctionFactory Position file used for docking DFHBI into beta barrel: 15 17 21 23 41 45 49 51 69 71 75 77 93 95 99 101

Example command line for running sequence design after RIF docking:

 $PATH_TO_ROSETTA/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease$

-parser:protocol <design_protocol>.xml #see Supplementary Data: hbi_p2_rectBarrel.xml, hbi_p2_rectBarrel_aacomp.xml, hbi_p2_rectBarrel_releaserif.xml, resfile_design.xml, pocket_loop_redesign.xml, 2ndround_design.xml

```
-in:file:s <input>.pdb
           @HBI_design.flags
HBI_design.flags
           -beta
           -rama prepro steep
           -run::preserve header
           -packing::use_input_sc
           -packing:extrachi cutoff 18
           -packing::ex1
           -packing::ex2
           -linmem_ig 10
           -nblist autoupdate
           -ignore unrecognized res
           -no_optH false
                                   #no optH is to avoid optimizing proton position for His which should be set False.
           -enzdes
              -detect_design_interface
           -enzdes::minimize ligand torsions 5.0
           -flip HNQ
                                 #Flip between different protonated states for amino acids H, N and Q
           -no_his_his_pairE
                                #Histine is always favored by Rosetta since it can be buried or exposed to solvate. This flag is set to avoid
putting in a lot of paired His.
```

-chemical:exclude_patches LowerDNA UpperDNA Cterm_amidation VirtualBB ShoveBB VirtualDNAPhosphate VirtualNTerm CTermConnect sc_orbitals pro_hydroxylated_case1 pro_hydroxylated_case2 ser_phosphorylated thr_phosphorylated tyr_phosphorylated tyr_sulfated lys_dimethylated lys_monomethylated lys_trimethylated lys_acetylated glu_carboxylated cys_acetylated tyr_diiodinated N_acetylated C_methylamidated MethylatedProteinCterm

```
-nstruct 5  # generating 5 outputs for each input
-jd2:ntrials 1
-extra_res_fa PATH_TO_PARAM_FILE/HBI_rch.params
-database PATH_TO_ROSETTA/Rosetta/main/database
-holes:dalphaball_DAlphaBall.gcc # Rosetta hole definition file
```

Example command lines for running MD-based model refinement:

1) Preparation & equilibration

NOTE: Required input scripts highlighted with underlines are fully described at the bottom of each section

1-1. Prepare & minimize protein

\$AMBERHOME/bin/tleap -s -f \$AMBERHOME/dat/leap/cmd/leaprc.ff12SB -s prep.txt \$AMBERHOME/bin/sander -O -i <u>minimize.in</u> -p vacuum.prmtop -c vacuum.inpcrd -r min.rst -ref vacuum.inpcrd \$AMBERHOME/bin/ambpdb -p vacuum.prmtop < min.rst > minimized.pdb

1-2. Solvate & minimize whole system

\$AMBERHOME/bin/tleap -s -f \$AMBERHOME/dat/leap/cmd/leaprc.ff12SB -f mpiexec -np 12 \$AMBERHOME/bin/pmemd.MPI -O -i <u>minimize.in</u> -p solv.prmtop -c solv.inpcrd -r solvent_minimized.rst -ref solv.inpcrd

1-3. Short MD to heat up whole system

mpiexec -np 12 \$AMBERHOME/bin/pmemd.MPI -O -i heat.in -p solv.prmtop -r eq.rst -ref solvent_minimized.rst -c solvent_minimized.rst -ref solvent_minimized.rst

<prep.txt> source leaprc.gaff loadoff ions08.lib prt = loadpdb [input.pdb] # pdb used for input

saveamberparm prt vacuum.prmtop vacuum.inpcrd
quit
<solvate.txt>
source leaprc.gaff

```
loadoff ions08.lib
loadamberparams fremod.ionsjc_tip3p
PRT = loadpdb minimized.pdb
solvateBox PRT TIP3PBOX 10
addions PRT Na+ 0
addions PRT Cl- 0
saveamberparm PRT solv.prmtop solv.inpcrd
quit
<minimize.in>
&cntrl
imin = 1, maxcyc = 5000, ncyc = 2500, ntr = 1, ntb = 1, cut = 10.0
/
500.0
RES 1 [nres] #nres = total number of residues in protein
END
END
<heat.in>
&cntrl
imin = 0,irest = 0,ntx = 1,ntb = 1,cut = 10.0,ntr = 1,restraint_wt = 0.1,
ntc = 2,ntf = 2,tempi = 50.0,temp0 = 300.0,ntt = 3,gamma_ln = 1.0,
nstlim = 25000, dt = 0.002,ntpr = 5000, ntwx = 5000, ntwr = 5000
/
1.0
RES 1 [nres] #nres = total number of residues in protein
END
END
```

2) Production run (repeat 5 times with X=1~5)

mpiexec -np 12 \$AMBERHOME/bin/pmemd.MPI -O -i md.in -p solv.prmtop -c eq.rst -r md.rst -ref eq.rst -x mdcrd.[X]

```
<md.in>
&cntrl
imin = 0, irest = 1, ntx = 5, iwrap=1,ntb = 2, pres0 = 1.0, ntp = 1,
taup = 2.0,ig=-1,cut = 10.0, ntr = 1,ntc = 2, ntf = 2,
restraintmask = ':1-[nres]@CA',restraint_wt = 0.05, #nres = total number of residues in protein
tempi = 300, temp0 = 300, ntt = 3, gamma_ln = 1.0,
nstlim = 5000000, dt = 0.002,ntpr = 25000, ntwx = 25000, ntwr = 25000
```

3) Structural averaging and regularization

\$AMBERHOME/bin/ptraj solv.prmtop < trjavrg.in
\$ROSETTA/source/bin/relax.linuxgccrelease -s trjavrg.pdb -score:weights ref2015_cart \
-set_weights coordinate_constraint 10.0 -constrain_relax_to_start_coords \
-relax:script cart2r.script -database \$ROSETTA/database</pre>

in wrg.in>trajin mdcrd.1 1 1000 1trajin mdcrd.2 1 1000 1trajin mdcrd.3 1 1000 1trajin mdcrd.4 1 1000 1trajin mdcrd.5 1 1000 1strip :WATstrip :Na+strip :Cl-average trjavrg.pdb pdb<cart2r.script>switch:cartesian

```
repeat 2
ramp_repack_min 0.02 0.01 1.0 50
ramp_repack_min 0.250 0.01 0.5 50
ramp_repack_min 0.550 0.01 0.1 100
ramp_repack_min 1 0.00001 0.1 200
Accept_to_best
endrepeat
```

Example command line for running RosettaLigand docking:

Please see examples in: G Lemmon and J Meiler, RosettaLigand docking with flexible XML protocols, Methods Mol Biol 2012, 819: 143-155.

Example command line for building the new loop L5F for b11:

```
PATH_TO_ROSETTA/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease
```

```
-parser:protocol remodel_L5F.xml # see Supplementary data: remodel_L5F.xml
-input b11.pdb
-database PATH_TO_ROSETTA/Rosetta/main/database
-save_top 20
-remodel:use_pose_relax
-num_trajectory 50
-extra_res_fa HBI.fa.params
-extra_res_cen HBI.cen.params # see Supplementary data: HBI.cen.params and HBI.fa.params
-vall pipette7s.vall.gz # Supplementary data: custom fragment library
-beta
-cst_file L5F.cst # see Supplementary data: L5F.cst
-hb_lrbb 0.75
-ex1
-ex2
```

EXAMPLE ROSETTASCRIPTS XML FILES

RosettaScripts XML file used for minimizing, packing and filtering of disconnected parametric strands arrangements:

```
paramtetric bb minpackfilter.xml
<ROSETTASCRIPTS>
    <SCOREFXNS>
           <hard weights=trp_ala3_mod.wts />
          <soft weights=soft_rep_trp_ala/>
          <hard_ele weights=trp_ala2_ele2.wts />
          <hard bb weights=bb only.wts >
               <Reweight scoretype=hbond_lr_bb weight=5. />
           </hard bb>
    </SCOREFXNS>
    <TASKOPERATIONS>
          <ReadResfile name=resfile filename=bb_param.res/> # see Supplementary Data: bb_param.res
          <IncludeCurrent name=current/>
          <LimitAromaChi2 name=arochi />
          <ExtraRotamersGeneric name=ex1 ex2 ex1=1 ex2=1/>
          <ExtraRotamersGeneric name=ex1 ex1=1/>
          <LayerDesign name=all_layers layer=other make_pymol_script=1 >
               <CombinedTasks name=barrel core>
                   <SelectBySASA state=bound mode=mc core=1 probe radius=2.0 core asa=35 surface asa=45 verbose=1/>
                </CombinedTasks>
```

```
<barrel core>
         <all copy_layer=core />
       </barrel core>
       <CombinedTasks name=barrel_surface>
           <SelectBySASA state=bound mode=mc surface=1 probe_radius=2.0 core_asa=35 surface_asa=45 verbose=1/>
      </CombinedTasks>
      <barrel_surface>
          <all copy layer=surface />
      </barrel s urface>
       <CombinedTasks name=barrel boundary>
          <SelectBySASA state=bound mode=mc boundary=1 probe radius=2.0 core asa=35 surface asa=45 verbose=1/>
      </CombinedTasks>
      <barrel boundarv>
          <all copy_layer=boundary />
      </barrel boundary>
</LayerDesign>
```

<SelectBySASA name=select_core state=bound mode=mc core=1 probe_radius=2.0 core_asa=30 surface_asa=45 verbose=1/> <SelectBySASA name=select_boundary state=bound mode=mc boundary=1 probe_radius=2.0 core_asa=35 surface_asa=45

verbose=1/>

<SelectBySASA name=select_surface state=bound mode=mc surface=1 probe_radius=2.0 core_asa=35 surface_asa=40 verbose=1/> <RestrictAbsentCanonicalAAS name=ala_only resnum=0 keep_aas="A" />

</TASKOPERATIONS>

<FILTERS>

<Holes name=holes threshold=3.0 confidence=0/>

<PackStat name=packstat threshold=0.65 confidence=0/>

</FILTERS>

<MOVERS>

<PackRotamersMover name=softpack_core scorefxn=soft task_operations=all_layers,select_core,current,arochi/>

<PackRotamersMover name=softpack surface scorefxn=soft task operations=all layers,select surface,current,arochi/>

<PackRotamersMover name=hardpack surface scorefxn=hard ele task operations=all layers, select surface, current, arochi, ex1/>

<PackRotamersMover name=hardpack core scorefxn=hard task operations=all layers, select core, current, arochi, ex1/>

<PackRotamersMover name=softpack_boundary scorefxn=soft task_operations=all_layers,select_boundary,current,arochi/>

<PackRotamersMover name=hardpack boundary scorefxn=hard

task_operations=all_layers,select_boundary,current,arochi,ex1_ex2/>

<MinMover name=hardmin_cart scorefxn=hard type=lbfgs_armijo_nonmonotone tolerance=0.0001 chi=1 bb=1 bondangle=1 bondlength=1 jump=all cartesian=1/>

<AddConstraintsToCurrentConformationMover name=add_cst use_distance_cst=0 max_distance=12. coord_dev=5.0 min_seq_sep=8

/>

<ClearConstraintsMover name="clearconstraints"/>

```
<PDBReload name=reload />
```

<MinMover name=hardmin_bb scorefxn=hard_bb type=lbfgs_armijo_nonmonotone tolerance=0.0001 chi=1 bb=1 bondangle=1 bondlength=1 jump=all cartesian=1/>

<PackRotamersMover name=transform_sc scorefxn=hard task_operations=ala_only/>

</MOVERS>

<APPLY_TO_POSE>

</APPLY_TO_POSE>

<PROTOCOLS>

// Minimization to enforce backbone interactions//

```
<Add mover=transform_sc/>
```

<Add mover=add_cst/>

<Add mover=hardmin_bb/>

<Add mover=clearconstraints/>

// Sidechains design //

<Add mover=softpack_core/>
<Add mover=softpack_boundary/>
<Add mover=softpack_surface/>
<Add mover=hardmin_sconly/>
<Add mover=hardpack_core/>
<Add mover=hardpack_boundary/>
<Add mover=hardpack_surface/>
</Add mover=hardpack_surface/>
</Add mover=hardpack_surface/>
</ROSETTASCRIPTS>

RosettaScripts XML file used for sequence design of parametrically generated beta-barrels:

parametric bb design.xml

<ROSETTASCRIPTS> <SCOREFXNS> <hard weights=talaris2013.B.wts /> </SCOREFXNS> <TASKOPERATIONS> <ReadResfile name=resfile filename=bb_param.res/> # see Supplementary Data: bb_param.res <LimitAromaChi2 name=limitchi2 /> <LayerDesign name=all_layers layer=other make_pymol_script=1 > <CombinedTasks name=barrel core> <SelectBySASA state=bound mode=mc core=1 probe_radius=2.0 core_asa=35 surface_asa=45 verbose=1/> </CombinedTasks> <barrel_core> <all copy_layer=core /> </barrel core> <CombinedTasks name=barrel_surface> <SelectBySASA state=bound mode=mc surface=1 probe_radius=2.0 core_asa=35 surface_asa=45 verbose=1/> </CombinedTasks> <barrel surface> <all copy_layer=surface /> </barrel_surface> <CombinedTasks name=barrel boundary> <SelectBySASA state=bound mode=mc boundary=1 probe_radius=2.0 core_asa=35 surface_asa=45 verbose=1/> </CombinedTasks> <barrel boundary> <all copy_layer=boundary /> </barrel_boundary> </LayerDesign> </TASKOPERATIONS> <FILTERS> <SSPrediction name="sspred" confidence="0" threshold=0.4 use_svm="1" use_probability="1"/> <Holes name=holes threshold=3.0 confidence=0/> <PackStat name=packstat threshold=0.65 confidence=0/> <ScoreType name="rama" score_type="rama" threshold=0.0 confidence="0" /> <ScoreType name="score" score_type="total_score" threshold=0.0 confidence="0" /> <Geometry name=geo omega=165 cart_bonded=35 confidence=1/>

```
</FILTERS>
```

<MOVERS>

<Dssp name=dssp/>

<FastRelax name=relax />

<FastDesign name="fdesign" task_operations="resfile,limitchi2,all_layers" scorefxn="hard" allow_design="1"

only_design_worst_region="0" design_by_psipred="0" design_by_frag_qual="0" repeats="1" clear_designable_residues="0" dumpall="0" max_redesigns="2000" ramp_design_constraints="0" />

<ParsedProtocol name=design >

```
<Add mover name=fdesign />
                <Add mover name=relax />
                <Add mover_name=dssp />
       </ParsedProtocol>
</MOVERS>
<APPLY TO POSE>
</APPLY_TO_POSE>
<PROTOCOLS>
       <Add mover=design />
       <Add filter=holes/>
       <Add filter=packstat/>
       <Add filter=geo/>
       <Add filter name=score />
       <Add filter_name=rama />
       <Add filter_name=sspred />
</PROTOCOLS>
```

```
</ROSETTASCRIPTS>
```

RosettaScripts XML file used for generating beta-barrel backbones based on the 2D map:

bb_2D_assembly.xml

```
# see Supplementary Data: bb_2d.bp, bb_2d.cst
<ROSETTASCRIPTS>
         <SCOREFXNS>
         <ScoreFunction name="SFXN1" weights="fldsgn_cen_omega02.wts" >
                   <Reweight scoretype="atom_pair_constraint" weight="1.0" />
                   <Reweight scoretype="angle_constraint" weight="1.0" />
                   <Reweight scoretype="dihedral constraint" weight="1.0" />
                   <Reweight scoretype="coordinate constraint" weight="1.0" />
          </ScoreFunction>
         </SCOREFXNS>
         <FILTERS>
                   <SecondaryStructure name="ss1" use_abego="0" blueprint="bb_2d.bp" confidence="1" cutoff="0.9" />
                   <SheetTopology
                                   name="st1" topology="1-2.A.99;2-3.A.99;3-4.A.99;4-5.A.99;5-6.A.99;6-7.A.99;7-8.A.99;1-8.A.99"
blueprint="blueprint" confidence="1"/>
                   <CompoundStatement name="secst1">
                             <AND filter name="ss1" />
                             <AND filter_name="st1" />
                   </CompoundStatement>
                   <ScoreType name="cen total" scorefxn="SFXN1" score type="total score" threshold="1000000" />
                   <ScoreType name="vdw" scorefxn="SFXN1" score_type="vdw" threshold="1000000" />
                   <ScoreType name="rg" scorefxn="SFXN1" score_type="rg" threshold="1000000" />
                   <ScoreType name="cen_rama" scorefxn="SFXN1" score_type="rama" threshold="1000000" />
                   <ScoreType name="sspair" scorefxn="SFXN1" score_type="ss_pair" threshold="1000000" />
                   <ScoreType name="rsigma" scorefxn="SFXN1" score_type="rsigma" threshold="1000000" />
         </FILTERS>
         <TASKOPERATIONS>
         </TASKOPERATIONS>
         <MOVERS>
```

```
// General movers//
                 <Dssp name="dssp"/>
                  <SwitchResidueTypeSetMover name="fullatom" set="fa_standard"/>
                  <SwitchResidueTypeSetMover name="cent" set="centroid"/>
                 // SHEET-BUILDING //
                 name="bdr1"
                                                      scorefxn="SFXN1"
                                                                            use_abego_bias="1"
                                                                                                   blueprint="bb 2d.bp"
                  <BluePrintBDR
constraint_file="bb_2d.cst"/>
                  <ConstraintSetMover name="addcst1" add_constraints="1" cst_file="bb_2d.cst"/>
                  <MinMover name="min1" scorefxn="SFXN1" chi="1" bb="1" type="dfpmin armijo nonmonotone atol"
tolerance="0.0001"/>
                  <ParsedProtocol name="cenmin1">
                           <Add mover name="cent" />
                           <Add mover name="addcst1" />
                           <Add mover_name="min1" />
                           <Add mover_name="fullatom" />
                  </ParsedProtocol>
                  <ParsedProtocol name="bdr1ss">
                           <Add mover_name="bdr1" />
                           <Add mover_name="cenmin1" />
                           <Add mover_name="dssp" />
                  </ParsedProtocol>
                  <LoopOver
                                name="loop1"
                                                mover_name="bdr1ss"
                                                                       filter_name="secst1"
                                                                                             drift="0"
                                                                                                         iterations="20"
ms_whenfail="FAIL_DO_NOT_RETRY"/>
         </MOVERS>
         <APPLY_TO_POSE>
         </APPLY TO POSE>
         <PROTOCOLS>
                 <Add mover name="loop1"/>
                 <Add mover name="fullatom" />
                 <Add filter_name="cen_total" />
                  <Add filter name="vdw" />
                  <Add filter name="rg" />
                  <Add filter name="cen rama"/>
                  <Add filter_name="sspair" />
                  <Add filter_name="rsigma" />
         </PROTOCOLS>
</ROSETTASCRIPTS>
```

RosettaScripts XML file used for sequence design of beta-barrel backbones from 2D map-based fragment assembly:

bb_2D_design.xml

see Supplementary Data: bb_2d.res, cst_trp.cst <ROSETTASCRIPTS> <SCOREFXNS> <SFX2 weights=beta_nov15_cst.wts> </SFX2>

</SCOREFXNS>

```
<TASKOPERATIONS>
```

```
<LayerDesign name=all_layers layer=all pore_radius=2.0 use_sidechain_neighbors="True" make_pymol_script=1 core=2.1
```

surface=1.0>

```
<core>
                    <all append="M" specification="designable" operation="design" />
          </core>
          <surface>
                    <all specification="designable" operation="design" />
          </surface>
          <boundary>
                    <all specification="designable" operation="design" />
          </boundary>
          <OperateOnResidueSubset name="gly_pro" >
                    <PreventRepackingRLT/>
                    <Index resnums="8,9,20,25,31,34,43,48,50,53,55,62,74,79,86,98,103"/>
                    <all specification="fixed" operation="omit" />
          </OperateOnResidueSubset>
          <OperateOnResidueSubset name="no_design">
                    <PreventRepackingRLT/>
                    <Index resnums="107,11" />
                    <all specification="fixed" operation="omit" />
          </OperateOnResidueSubset>
  </LayerDesign>
  <OperateOnResidueSubset name="exclude_pro_gly">
          <RestrictToRepackingRLT/>
          <Index resnums="8,9,20,25,31,34,43,48,50,53,55,62,74,79,86,98,103"/>
 </OperateOnResidueSubset>
 <ReadResfile name="resfile" filename="bb_2d.res" />
</TASKOPERATIONS>
<FILTERS>
          <Geometry name=geo omega=165 cart bonded=20 confidence=0 />
         <PackStat name=packstat threshold=0.4 confidence=0 />
          <SSPrediction name="sspred" confidence="0" threshold=0.4 use_svm="1" use_probability="1"/>
</FILTERS>
<MOVERS>
          <Dssp name=dssp/>
          <FastDesign
                            name="fdesign"
                                                  task_operations=all_layers,exclude_pro_gly,resfile
                                                                                                        scorefxn="SFX2"
max redesigns="2000" cst file="cst trp.cst" ramp down constraints="1" />
          <MutateResidue name="Pro31" target="31A" new_res="PRO" />
          <MutateResidue name="Pro50" target="50A" new_res="PRO" />
          <MutateResidue name="Pro34" target="34A" new_res="PRO" />
          <MutateResidue name="Pro62" target="62A" new res="PRO" />
          <MutateResidue name="Pro86" target="86A" new_res="PRO" />
          <MutateResidue name="Pro8" target="8A" new_res="PRO" />
</MOVERS>
<APPLY TO POSE>
</APPLY_TO_POSE>
<PROTOCOLS>
          <Add mover_name="Pro31" />
          <Add mover_name="Pro50" />
          <Add mover name="Pro34" />
          <Add mover name="Pro62" />
          <Add mover name="Pro86" />
          <Add mover name="Pro8" />
          <Add mover_name="fdesign" />
          <Add filter=packstat/>
```

```
<Add filter=geo/>
<Add filter_name=sspred />
</PROTOCOLS>
</ROSETTASCRIPTS>
```

RosettaScripts XML files used for designing DFHBI-binding beta-barrels:

hbi p2 rectBarrel.xml (used for performing 2-step iterative design calculations)

(see Supplementary Data for rectBarrel.resfile) <ROSETTASCRIPTS> <SCOREFXNS> <beta weights="beta" /> </SCOREFXNS> <RESIDUE SELECTORS> ###### Basic Residue Selectors####### # rif residues <ResiduePDBInfoHasLabel name="rifRes" property="RIFRES" /> # ligand neighborhood <Neighborhood name="ligNeighborRes" distance="10.0" > <Chain chains="B" /> </Neighborhood> # core, boundary, surface, cutoff values are specific for beta barrels <Layer name="coreRes" select core="true" use sidechain neighbors="true" core cutoff="2.1" surface cutoff="1.0"/> <Layer name="boundRes" select_boundary="true" use_sidechain_neighbors="true" core_cutoff="2.1" surface_cutoff="1.0"/> <Layer name="surfRes" select_surface="true" use_sidechain_neighbors="true" core_cutoff="2.1" surface_cutoff="1.0"/> # secondary structure, specific to your scaffold <SecondaryStructure name="all" ss="HEL" EELLEEEEEEEELLLEEEEEEEEL"/> <SecondarvStructure name="helix" ss="H" EELLEEEEEEEELLLEEEEEEEEL"/> <SecondaryStructure name="strand" ss="E" EELLEEEEEEEELLLEEEEEEEEL"/> <SecondaryStructure name="loop" ss="L" EELLEEEEEEEELLLEEEEEEEEL"/> # resfile residue <Index name="resfile res" resnums = "8,9,11,18,19,20,25,29,31,32,33,34,35,43,46,47,48,50,53,55,59,60,61,62,63,72,73,74,75,79,83,84,85,86,87,97,98,103,107"/><Not name="nonresfile_res" selector="resfile_res"/> # amino acids <ResidueName name="polarAA" residue_name3="ASP,GLU,ASN,GLN,LYS,ARG,SER,HIS,THR,TYR" /> ##### Combinatotiral Selectors ##### <And name="coreAll" selectors="coreRes,all,nonresfile_res" /> <And name="coreH" selectors="coreRes,helix,nonresfile_res" /> <And name="coreE" selectors="coreRes,strand,nonresfile_res" /> <And name="coreL" selectors="coreRes,loop,nonresfile_res" /> <And name="boundAll" selectors="boundRes,all,nonresfile res" /> <And name="boundH" selectors="boundRes,helix,nonresfile res" /> <And name="boundE" selectors="boundRes,strand,nonresfile res" />

<And name="boundL" selectors="boundRes,loop,nonresfile_res" />

<And name="surfAll" selectors="surfRes,all,nonresfile_res" />

<And name="surfH" selectors="surfRes,helix,nonresfile_res" />

```
<And name="surfE" selectors="surfRes,strand,nonresfile_res" />
```

<And name="surfL" selectors="surfRes,loop,nonresfile_res" />

<And name="coreLigZone" selectors="coreRes,ligNeighborRes,nonresfile_res" />

```
<And name="boundLigZone" selectors="boundRes,ligNeighborRes,nonresfile_res" />
```

<And name="surfLigZone" selectors="surfRes,ligNeighborRes,nonresfile_res" />

<Or name="pocket" selectors="coreLigZone,boundLigZone"/>

```
<Not name="nonpocket" selector="pocket"/>
```

<And name="nonpocket_nonres" selectors="nonpocket,nonresfile_res"/>

<And name="polarRifRes" selectors="rifRes,polarAA"/>

</RESIDUE_SELECTORS>

<TASKOPERATIONS>

<LimitAromaChi2 name="limchi2"/>

<InitializeFromCommandline name="init"/>

<ReadResfile name="resfile" filename="rectBarrel.resfile"/>

- <IncludeCurrent name="includeCurrent"/>
- <RestrictToRepacking name="repack_only" />
- # to test each selector
- <OperateOnResidueSubset name="test" selector="boundRes" >
- <PreventRepackingRLT/>
- </OperateOnResidueSubset>
- <OperateOnResidueSubset name="fix_rifRes" selector="rifRes" >
- <PreventRepackingRLT/>
- </OperateOnResidueSubset>

```
# for pocket
```

```
</OperateOnResidueSubset>
```

```
<OperateOnResidueSubset name="repack_pocketRes" selector="pocket" >
<RestrictToRepackingRLT/>
```

</OperateOnResidueSubset>

```
<OperateOnResidueSubset name="repack_nonpocketRes" selector="nonpocket" > 
<RestrictToRepackingRLT/>
```

- </OperateOnResidueSubset>
- <OperateOnResidueSubset name="repack_nonpocket_nonres_Res" selector="nonpocket_nonres" > <RestrictToRepackingRLT/>
- </OperateOnResidueSubset>

```
# for structure elements
```

```
<OperateOnResidueSubset name="design_allCore_AA" selector="coreAll" > 
<RestrictAbsentCanonicalAASRLT aas="AFILVWYM"/>
```

```
</OperateOnResidueSubset>
```

```
<OperateOnResidueSubset name="design_helixCore_AA" selector="coreH" > 
<RestrictAbsentCanonicalAASRLT aas="AFILVM"/>
```

```
</OperateOnResidueSubset>
```

```
<OperateOnResidueSubset name="design_strandCore_AA" selector="coreE" > 
<RestrictAbsentCanonicalAASRLT aas="FILVM"/>
```

</OperateOnResidueSubset>

```
<OperateOnResidueSubset name="design_loopCore_AA" selector="coreL" > 
<RestrictAbsentCanonicalAASRLT aas="AGFILPVWYM"/>
```

```
</OperateOnResidueSubset>
```

```
</OperateOnResidueSubset>
```

```
<OperateOnResidueSubset name="design_helixBound_AA" selector="boundH" >
```

```
<RestrictAbsentCanonicalAASRLT aas="AILNQSTVY"/>
                    </OperateOnResidueSubset>
                    <OperateOnResidueSubset name="design_strandBound_AA" selector="boundE" >
                             <RestrictAbsentCanonicalAASRLT aas="ILNQSTVY"/>
                    </OperateOnResidueSubset>
                    <OperateOnResidueSubset name="design_loopBound_AA" selector="boundL" >
                             <RestrictAbsentCanonicalAASRLT aas="ADEFGIKLNPQRSTVY"/>
                    </OperateOnResidueSubset>
                    <OperateOnResidueSubset name="design_allSurf_AA" selector="surfAll" >
                             <RestrictAbsentCanonicalAASRLT aas="DEGHKNPQRST"/>
                    </OperateOnResidueSubset>
                    <OperateOnResidueSubset name="design helixSurf AA" selector="surfH" >
                             <RestrictAbsentCanonicalAASRLT aas="DEHKNQRST"/>
                   </OperateOnResidueSubset>
                    <OperateOnResidueSubset name="design_strandSurf_AA" selector="surfE" >
                             <RestrictAbsentCanonicalAASRLT aas="DHKNQRT"/>
                    </OperateOnResidueSubset>
                    <OperateOnResidueSubset name="design_loopSurf_AA" selector="surfL" >
                             <RestrictAbsentCanonicalAASRLT aas="DEGHKNPQRST"/>
                    </OperateOnResidueSubset>
          </TASKOPERATIONS>
          <FILTERS>
                    <LigInterfaceEnergy name="interfE" scorefxn="beta" energy_cutoff="9999"/>
                   <ShapeComplementarity name="SC" min sc="0" min interface="0" verbose="0" quick="0" jump="1"/>
                   <ScoreType name="totalscore" scorefxn="beta" threshold="9999" confidence="1"/>
                   <ResidueCount name="nres" confidence="1" />
                    <CalculatorFilter name="res_totalscore" confidence="1" equation="SCORE/NRES" threshold="0">
                             <SCORE name="SCORE" filter_name="totalscore" />
                             <NRES name="NRES" filter_name="nres" />
                   </CalculatorFilter>
                   <BuriedUnsatHbonds2 name="interf uhb2" cutoff="200" scorefxn="beta" jump number="1" />
                   <RepackWithoutLigand name="rwl" scorefxn="beta" target res="all repacked" rms threshold="999"/>
                   #DFHBI specific atom hbond filters
                   <HbondsToAtom name="O1 hbond" partners="0" energy cutoff="-0.5" backbone="0" bb bb="0" sidechain="1"
atomname="O1" res num="110"/>
                    <HbondsToAtom name="O2 hbond" partners="0" energy cutoff="-0.5" backbone="0" bb bb="0" sidechain="1"
atomname="O2" res_num="110"/>
                   <HbondsToAtom name="N1_hbond" partners="0" energy_cutoff="-0.5" backbone="0" bb_bb="0" sidechain="1"
atomname="N1" res num="110"/>
         </FILTERS>
          <MOVERS>
                    <EnzRepackMinimize name="desmin_fixrif_pocket" design="1" repack_only="0" scorefxn_minimize="beta"
scorefxn repack="beta" minimize rb=1 minimize sc=1 minimize bb=0 cycles=1 minimize lig=1 min in stages=0 backrub=0
task\_operations="init,limchi2, fix\_rifRes, resfile, design\_coreLigZone\_AA, design\_boundLigZone\_AA, repack\_nonpocket\_nonres\_Res"/>
                    <FastDesign name="fdesign_nonpocket"
task_operations="init,limchi2,resfile,fix_rifRes,includeCurrent,repack_pocketRes,design_helixCore_AA,design_strandCore_AA,design_loopCor
e_AA,design_helixBound_AA,design_strandBound_AA,design_loopBound_AA,design_helixSurf_AA,design_strandSurf_AA,design_loopSurf_
AA" scorefxn="beta" repeats="1" clear_designable_residues="0" />
                   #calculate a myriad of ligand specific scores
                    <InterfaceScoreCalculator name="add_scores" chains="B" scorefxn="beta"/>
          </MOVERS>
          <PROTOCOLS>
```

<Add filter_name="SC"/> <Add filter_name="interfE"/> <Add mover_name="desmin_fixrif_pocket"/> <Add mover_name="fdesign_nonpocket"/> <Add filter_name="SC"/>

```
<Add filter name="interfE"/>
                   <Add filter_name="res_totalscore"/>
                   <Add mover_name="desmin_fixrif_pocket"/>
                   <Add mover_name="fdesign_nonpocket"/>
                   <Add filter name="SC"/>
                   <Add filter_name="interfE"/>
                   <Add filter_name="res_totalscore"/>
                   <Add mover name="desmin fixrif pocket"/>
                   <Add mover_name="fdesign_nonpocket"/>
                   <Add filter name="SC"/>
                   <Add filter name="interfE"/>
                   <Add filter name="interf uhb2"/>
                   <Add filter name="rwl"/>
                   <Add filter_name="res_totalscore"/>
                   <Add filter name="O1 hbond"/>
                   <Add filter name="O2 hbond"/>
                   <Add filter name="N1 hbond"/>
                   <Add mover_name="add_scores"/>
          </PROTOCOLS>
</ROSETTASCRIPTS>
```

hbi_p2_rectBarrel_aacomp.xml (added an additional mover to control amino acid composition in the packing core that favors aromatic residues and disfavors Methionine)

(see Supplementary Data for favour_core_aromatics.comp)

</ScoreFunction>

</SCOREFXNS>

<RESIDUE_SELECTORS>

Basic Residue Selectors#######

rif residues

<ResiduePDBInfoHasLabel name="rifRes" property="RIFRES" />

ligand neighborhood

<Neighborhood name="ligNeighborRes" distance="10.0" >

<Chain chains="B" />

</Neighborhood>

core, boundary, surface, cutoff values are specific for beta barrels

 $<\!\!Layer name="coreRes" select_core="true" use_sidechain_neighbors="true" core_cutoff="2.1" surface_cutoff="1.0"/>$

<Layer name="boundRes" select_boundary="true" use_sidechain_neighbors="true" core_cutoff="2.1"

surface_cutoff="1.0"/>

<Layer name="surfRes" select_surface="true" use_sidechain_neighbors="true" core_cutoff="2.1" surface_cutoff="1.0"/>

secondary structure, specific to your scaffold

<SecondaryStructure name="all" ss="HEL"

<SecondaryStructure name="helix" ss="H"

<SecondaryStructure name="strand" ss="E"

<SecondaryStructure name="loop" ss="L" EELLEEEEEEEELLLEEEEEEEEL"/> # resfile residue <Index name="resfile res" resnums = "8,9,11,18,19,20,25,29,31,32,33,34,35,43,46,47,48,50,53,55,59,60,61,62,63,72,73,74,75,79,83,84,85,86,87,97,98,103,107"/><Not name="nonresfile_res" selector="resfile_res"/> # amino acids <ResidueName name="polarAA" residue_name3="ASP,GLU,ASN,GLN,LYS,ARG,SER,HIS,THR,TYR" /> # aa composition <Index name="packing_core" resnums="3,7,13,27,37,39,57,65,67,81,89,91,105"/> ##### Combinatorial Selectors ##### <And name="coreAll" selectors="coreRes,all,nonresfile res" /> <And name="coreH" selectors="coreRes,helix,nonresfile_res" /> <And name="coreE" selectors="coreRes,strand,nonresfile_res" /> <And name="coreL" selectors="coreRes,loop,nonresfile res" /> <And name="boundAll" selectors="boundRes,all,nonresfile_res" /> <And name="boundH" selectors="boundRes,helix,nonresfile_res" /> <And name="boundE" selectors="boundRes,strand,nonresfile_res" /> <And name="boundL" selectors="boundRes,loop,nonresfile res" /> <And name="surfAll" selectors="surfRes,all,nonresfile_res" /> <And name="surfH" selectors="surfRes,helix,nonresfile_res" /> <And name="surfE" selectors="surfRes,strand,nonresfile_res" /> <And name="surfL" selectors="surfRes,loop,nonresfile res" /> <And name="coreLigZone" selectors="coreRes,ligNeighborRes,nonresfile_res" /> <And name="boundLigZone" selectors="boundRes,ligNeighborRes,nonresfile_res" /> <And name="surfLigZone" selectors="surfRes,ligNeighborRes,nonresfile_res" /> <Or name="pocket" selectors="coreLigZone,boundLigZone"/> <Not name="nonpocket" selector="pocket"/> <And name="nonpocket nonres" selectors="nonpocket,nonresfile res"/> <And name="polarRifRes" selectors="rifRes,polarAA"/> </RESIDUE SELECTORS> <TASKOPERATIONS> <LimitAromaChi2 name="limchi2"/> <InitializeFromCommandline name="init"/> <ReadResfile name="resfile" filename="rectBarrel.resfile"/> <IncludeCurrent name="includeCurrent"/> <RestrictToRepacking name="repack_only" /> # to test each selector <OperateOnResidueSubset name="test" selector="boundRes" > <PreventRepackingRLT/> </OperateOnResidueSubset> <OperateOnResidueSubset name="fix_rifRes" selector="rifRes" > <PreventRepackingRLT/> </OperateOnResidueSubset> <OperateOnResidueSubset name="repack_rifRes" selector="rifRes" > <RestrictToRepackingRLT/> </OperateOnResidueSubset> # for pocket <OperateOnResidueSubset name="design_coreLigZone_AA" selector="coreLigZone" > <RestrictAbsentCanonicalAASRLT aas="ASTFVYMILNQHW"/> </OperateOnResidueSubset> <OperateOnResidueSubset name="design_boundLigZone_AA" selector="boundLigZone" > <RestrictAbsentCanonicalAASRLT aas="ASTFVYMILNQHW"/> </OperateOnResidueSubset>

<OperateOnResidueSubset name="repack_pocketRes" selector="pocket" >

<RestrictToRepackingRLT/>

```
</OperateOnResidueSubset>
         <OperateOnResidueSubset name="repack_nonpocketRes" selector="nonpocket" >
                   <RestrictToRepackingRLT/>
         </OperateOnResidueSubset>
         # for structure elements
         <OperateOnResidueSubset name="design_allCore_AA" selector="coreAll" >
                   <RestrictAbsentCanonicalAASRLT aas="AFILVWYM"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design helixCore AA" selector="coreH" >
                   <RestrictAbsentCanonicalAASRLT aas="AFILVM"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_strandCore_AA" selector="coreE" >
                   <RestrictAbsentCanonicalAASRLT aas="FILVM"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_loopCore_AA" selector="coreL" >
                   <RestrictAbsentCanonicalAASRLT aas="AGFILPVWYM"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_allBound_AA" selector="boundAll" >
                   <RestrictAbsentCanonicalAASRLT aas="ADEFGIKLNPQRSTVY"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_helixBound_AA" selector="boundH" >
                   <RestrictAbsentCanonicalAASRLT aas="AILNQSTVY"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_strandBound_AA" selector="boundE" >
                   <RestrictAbsentCanonicalAASRLT aas="ILNQSTVY"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_loopBound_AA" selector="boundL" >
                   <RestrictAbsentCanonicalAASRLT aas="ADEFGIKLNPQRSTVY"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_allSurf_AA" selector="surfAll" >
                   <RestrictAbsentCanonicalAASRLT aas="DEGHKNPQRST"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_helixSurf_AA" selector="surfH" >
                   <RestrictAbsentCanonicalAASRLT aas="DEHKNQRST"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_strandSurf_AA" selector="surfE" >
                   <RestrictAbsentCanonicalAASRLT aas="DHKNQRT"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_loopSurf_AA" selector="surfL" >
                   <RestrictAbsentCanonicalAASRLT aas="DEGHKNPQRST"/>
         </OperateOnResidueSubset>
</TASKOPERATIONS>
<FILTERS>
         <LigInterfaceEnergy name="interfE" scorefxn="beta" energy_cutoff="9999"/>
         <ShapeComplementarity name="SC" min_sc="0" min_interface="0" verbose="0" quick="0" jump="1"/>
         <ScoreType name="totalscore" scorefxn="beta" threshold="9999" confidence="1"/>
         <ResidueCount name="nres" confidence="1" />
         <CalculatorFilter name="res_totalscore" confidence="1" equation="SCORE/NRES" threshold="0">
                   <Var name="SCORE" filter_name="totalscore" />
                   <Var name="NRES" filter_name="nres" />
         </CalculatorFilter>
         <BuriedUnsatHbonds2 name="interf_uhb2" cutoff="200" scorefxn="beta" jump_number="1" />
         <RepackWithoutLigand name="rwl" scorefxn="beta" target_res="all_repacked" rms_threshold="999"/>
         #DFHBI specific atom hbond filters
```

<HbondsToAtom name="01_hbond" partners="0" energy_cutoff="-0.5" backbone="0" bb_bb="0" sidechain="1"

atomname="O1" res_num="110"/>

```
<HbondsToAtom name="O2 hbond" partners="0" energy cutoff="-0.5" backbone="0" bb bb="0" sidechain="1"
atomname="O2" res num="110"/>
                   <HbondsToAtom name="N1_hbond" partners="0" energy_cutoff="-0.5" backbone="0" bb_bb="0" sidechain="1"
atomname="N1" res num="110"/>
         </FILTERS>
          <MOVERS>
                    <AddCompositionConstraintMover name="core_arom_AA" filename="favour_core_aromatics.comp"
selector="packing core" />
                   <ClearCompositionConstraintsMover name="clear AA constraints"/>
                   <EnzRepackMinimize name="desmin_fixrif_pocket" design="1" repack_only="0" scorefxn_minimize="beta"
scorefxn repack="beta" minimize rb="1" minimize sc="1" minimize bb="0" cycles="1" minimize lig="1" min in stages="0" backrub="0"
task operations="init,limchi2,fix rifRes,resfile,design coreLigZone AA,design boundLigZone AA,repack nonpocket nonres Res"/>
                   <FastDesign name="fdesign nonpocket"
                             task_operations="init,limchi2,resfile,fix_rifRes,includeCurrent,repack_pocketRes,design_helixCore_AA,design
                              strandCore AA,design loopCore AA,design helixBound AA,design strandBound AA,design loopBound
                             AA,design helixSurf AA,design strandSurf AA,design loopSurf AA"
                             scorefxn="beta aa"
                             repeats="1"
                             clear designable residues="0" />
                   #calculate a myriad of ligand specific scores
                    <InterfaceScoreCalculator name="add scores" chains="B" scorefxn="beta"/>
          </MOVERS>
          <PROTOCOLS>
                   <Add mover name="core arom AA"/>
                   <Add mover_name="desmin_fixrif_pocket"/>
                   <Add mover_name="fdesign_nonpocket"/>
                             <Add filter_name="SC"/>
                             <Add filter name="interfE"/>
                             <Add filter_name="res_totalscore"/>
                   <Add mover name="desmin fixrif pocket"/>
                   <Add mover name="fdesign nonpocket"/>
                             <Add filter name="SC"/>
                             <Add filter name="interfE"/>
                             <Add filter name="res totalscore"/>
                             <Add mover name="desmin fixrif pocket"/>
                             <Add mover name="fdesign nonpocket"/>
                             <Add mover_name="clear_AA_constraints"/>
                             <Add filter name="SC"/>
                             <Add filter name="interfE"/>
                             <Add filter name="interf uhb2"/>
                             <Add filter_name="res_totalscore"/>
                             <Add filter name="O1 hbond"/>
                             <Add filter name="O2 hbond"/>
                             <Add filter_name="N1_hbond"/>
                   <Add mover_name="add_scores"/>
         </PROTOCOLS>
</ROSETTASCRIPTS>
```

hbi_p2_rectBarrel_releaserif.xml (rotamer fixation constraints were released for RIF coordinating residues)

(identical to hbi_p2_rectBarrel_aacomp.xml except for the definition of FastDesign)

<FastDesign name="fdesign_nonpocket"

task_operations="init,limchi2,resfile,repack_rifRes,includeCurrent,repack_pocketRes,design_helixCore_AA,design_strandCore_AA,design_loopCore_AA,design_helixBound_AA,design_strandBound_AA,design_loopBound_AA,design_helixSurf_AA,design_strandS urf_AA,design_loopSurf_AA" scorefxn="beta aa"

```
repeats="1"
clear_designable_residues="0" />
```

resfile_design.xml (used to perform profile-based sequence design for clustered designs)

(see Supplementary Data for favour_core_aromatics.comp final.resfile) <ROSETTASCRIPTS> <SCOREFXNS> <beta weights="beta" /> <beta_aa weights="beta" > <Reweight scoretype="aa_composition" weight="1.0" /> <Set aa_composition_setup_file="favour_core_aromatics.comp" /> </beta aa> </SCOREFXNS> <RESIDUE_SELECTORS> <ResidueName name="polarAA" residue name3="ASP,GLU,ASN,GLN,LYS,ARG,SER,HIS" /> <ResidueName name="Phe" residue name3="PHE" /> <ResidueName name="Met" residue name3="MET" /> <Index name="packing_core" resnums="3,7,13,27,37,39,57,65,67,81,89,91,105"/> </RESIDUE SELECTORS> <TASKOPERATIONS> <LimitAromaChi2 name="limchi2"/> <InitializeFromCommandline name="init"/> <ReadResfile name="resfile" filename="final.resfile"/> </TASKOPERATIONS> <FILTERS> <LigInterfaceEnergy name="interfE" scorefxn="beta" energy cutoff="0.0"/> <ShapeComplementarity name="SC" min_sc=0.1 min_interface=0 verbose=0 quick=0 jump=1/> <ScoreType name="totalscore" scorefxn="beta" threshold="0" confidence=1/> <ResidueCount name="nres" confidence="1" /> <CalculatorFilter name="res totalscore" confidence="1" equation="SCORE/NRES" threshold="0"> <SCORE name="SCORE" filter_name="totalscore" /> <NRES name="NRES" filter_name="nres" /> </CalculatorFilter> #buried unsatisfied polar <BuriedUnsatHbonds2 name="interf_uhb2" cutoff="200" scorefxn="beta" jump_number="1" /> #DFHBI specific atom hbond filters <HbondsToAtom name="01 hbond" partners="0" energy cutoff="-0.5" backbone="0" bb bb="0" sidechain="1"</pre> atomname="O1" res num="110"/> <HbondsToAtom name="O2 hbond" partners="0" energy cutoff="-0.5" backbone="0" bb bb="0" sidechain="1" atomname="O2" res num="110"/> <HbondsToAtom name="N1 hbond" partners="0" energy cutoff="-0.5" backbone="0" bb bb="0" sidechain="1"</pre> atomname="N1" res num="110"/> <ResidueCount name="packing_F" residue_types="PHE" residue_selector="packing_core" /> <ResidueCount name="packing_M" residue_types="MET" residue_selector="packing_core" /> <CavityVolume name="cavity" /> <InterfaceHoles name="interface_hole" jump="1" threshold=200/> <PackStat name="packstat_complex" threshold="0" chain="0" repeats=1/> <PackStat name="packstat_apo" threshold="0" chain="1" repeats=1/> </FILTERS> <MOVERS> <AddCompositionConstraintMover name="core_arom_AA" filename="favour_core_aromatics.comp" selector="packing_core" /> <ClearCompositionConstraintsMover name="clear AA constraints" /> <FastDesign name="fdesign_complex" task_operations="init,limchi2,resfile" scorefxn="beta_aa" repeats="3"

```
clear designable residues="0" />
                   <InterfaceScoreCalculator name="add_scores" chains="B" scorefxn="beta"/>
         </MOVERS>
         <PROTOCOLS>
                   <Add mover_name="core_arom_AA"/>
                   <Add mover_name="fdesign_complex"/>
                   <Add mover_name="clear_AA_constraints"/>
                             <Add filter name="SC"/>
                             <Add filter name="interfE"/>
                             <Add filter name="res totalscore"/>
                             <Add filter name="interf uhb2"/>
                             <Add filter name="O1 hbond"/>
                             <Add filter name="N1 hbond"/>
                             <Add filter name="O2 hbond"/>
                             <Add filter name="packing F"/>
                             <Add filter name="packing M"/>
                             <Add filter name="cavity"/>
                             <Add filter_name="interface_hole"/>
                             <Add filter_name="packstat_complex"/>
                             <Add filter_name="packstat_apo"/>
                   <Add mover_name="add_scores"/>
          </PROTOCOLS>
</ROSETTASCRIPTS>
```

RosettaScripts XML file used for building loop 5F:

remodel_L5F.xml

```
(see Supplementary Data for loop5F.bp)
<ROSETTASCRIPTS>
         <SCOREFXNS>
                  <SFX1 weights="beta nov15 cst.wts">
                   </SFX1>
         </SCOREFXNS>
         <TASKOPERATIONS>
         </TASKOPERATIONS>
         <FILTERS>
                  <LigInterfaceEnergy name="interfE" scorefxn="SFX1" energy_cutoff="9999"/>
                  <ShapeComplementarity name="SC" min_sc="0" min_interface="0" verbose="0" quick="0" jump="1"/>
                  <BuriedUnsatHbonds2 name="interf uhb2" cutoff="200" scorefxn="SFX1" jump number="1" />
                  <HbondsToAtom name="01_hbond" partners="0" energy_cutoff="-0.5" backbone="0" bb_bb="0" sidechain="1"</pre>
atomname="O1" res_num="114"/>
                   <HbondsToAtom name="O2_hbond" partners="0" energy_cutoff="-0.5" backbone="0" bb_bb="0" sidechain="1"</pre>
atomname="O2" res num="114"/>
                  <HbondsToAtom name="N1_hbond" partners="0" energy_cutoff="-0.5" backbone="0" bb_bb="0" sidechain="1"</pre>
atomname="N1" res_num="114"/>
         </FILTERS>
         <MOVERS>
                  <RemodelMover name="remodel" blueprint="loop5F.bp" quick_and_dirty="0" />
         </MOVERS>
         <APPLY_TO_POSE>
         </APPLY_TO_POSE>
         <PROTOCOLS>
                  <Add mover name="remodel" />
                  <Add filter name="interfE" />
                  <Add filter name="SC" />
                  <Add filter name="interf uhb2" />
                  <Add filter_name="O1_hbond" />
```

```
<Add filter_name="O2_hbond" />
<Add filter_name="N1_hbond" />
</PROTOCOLS>
</ROSETTASCRIPTS>
```

RosettaScripts XML file used for designing sequences for loop 5F:

pocket_loop_redesign.xml

```
(see Supplementary Data: loop5F.resfile)
<ROSETTASCRIPTS>
          <SCOREFXNS>
                    <beta weights="beta" />
                    <beta soft weights="beta nov15 soft" />
          </SCOREFXNS>
<RESIDUE SELECTORS>
          # ligand neighborhood
          <Neighborhood name="ligNeighborRes" distance="9.0" >
                    <Chain chains="B" />
          </Neighborhood>
          # core, boundary, surface, cutoff values are specific for beta barrels
          <Layer name="coreRes" select_core="true" use_sidechain_neighbors="true" core_cutoff="2.1" surface_cutoff="1.0"/>
          <Layer name="boundRes" select_boundary="true" use_sidechain_neighbors="true" core_cutoff="2.1" surface_cutoff="1.0"/>
          <Layer name="surfRes" select_surface="true" use_sidechain_neighbors="true" core_cutoff="2.1" surface_cutoff="1.0"/>
          <Index name="resfile res" resnums="70,71,72,73,74,75,76,77,78,52,21,79,19,47,99,51,45"/>
          <Not name="nonresfile_res" selector="resfile_res"/>
          <And name="coreLigZone" selectors="coreRes,ligNeighborRes" />
          <And name="boundLigZone" selectors="boundRes,ligNeighborRes" />
          <And name="surfLigZone" selectors="surfRes,ligNeighborRes" />
          <Or name="pocket" selectors="coreLigZone,boundLigZone"/>
          <Not name="nonpocket" selector="pocket"/>
          # to be fixed during ligandbinding design, repackable during fast design
          <And name="nonpocket nonresfile" selectors="nonpocket,nonresfile res"/>
          # to be designed during ligandbinding design; repackable during fast design
          <And name="pocket resfile" selectors="pocket,resfile res"/>
          # to be repackage during ligand binding design; to be designed during fast design;
          <And name="nonpocket resfile" selectors="nonpocket,resfile res"/>
          # to be repackable during ligand binding design;
          <And name="pocket nonresfile" selectors="pocket,nonresfile res"/>
 </RESIDUE SELECTORS>
 <TASKOPERATIONS>
          <LimitAromaChi2 name="limchi2"/>
          <InitializeFromCommandline name="init"/>
          <ReadResfile name="resfile" filename="./loop5F.resfile"/>
          <IncludeCurrent name="includeCurrent"/>
          <RestrictToRepacking name="repack_only" />
          # to test each selector
          <OperateOnResidueSubset name="test" selector="boundRes" >
                    <PreventRepackingRLT/>
          </OperateOnResidueSubset>
          <OperateOnResidueSubset name="fix_nonpocketnonresfileRes" selector="nonpocket_nonresfile" >
                     <PreventRepackingRLT/>
          </OperateOnResidueSubset>
          <OperateOnResidueSubset name="repack nonpocketnonresfileRes" selector="nonpocket nonresfile" >
                    <RestrictToRepackingRLT/>
          </OperateOnResidueSubset>
          <OperateOnResidueSubset name="repack_nonpocketresfileRes" selector="nonpocket_resfile" >
                    <RestrictToRepackingRLT/>
```

```
</OperateOnResidueSubset>
```

<OperateOnResidueSubset name="repack_pocketnonresfileRes" selector="pocket_nonresfile" >

<RestrictToRepackingRLT/>

</OperateOnResidueSubset>

<OperateOnResidueSubset name="repack_pocketRes" selector="pocket" >

<RestrictToRepackingRLT/>

```
</OperateOnResidueSubset>
```

<OperateOnResidueSubset name="repack_nonresfileRes" selector="nonresfile_res" >

<RestrictToRepackingRLT/>

</OperateOnResidueSubset>

</TASKOPERATIONS>

<FILTERS>

<LigInterfaceEnergy name="interfE" scorefxn="beta" energy_cutoff="9999"/>

<ShapeComplementarity name="SC" min_sc="0" min_interface="0" verbose="0" quick="0" jump="1"/>

<ScoreType name="totalscore" scorefxn="beta" threshold="9999" confidence="1"/>

<ResidueCount name="nres" confidence="1" />

<CalculatorFilter name="res_totalscore" confidence="1" equation="SCORE/NRES" threshold="0">

<SCORE name="SCORE" filter_name="totalscore" />

<NRES name="NRES" filter_name="nres" />

</CalculatorFilter>

<BuriedUnsatHbonds2 name="interf_uhb2" cutoff="200" scorefxn="beta" jump_number="1" />

<RepackWithoutLigand name="rwl" scorefxn="beta" target_res="all_repacked" rms_threshold="999"/>

#DFHBI specific atom hbond filters

<HbondsToAtom name="O1_hbond" partners="0" energy_cutoff="-0.25" backbone="0" bb_bb="0" sidechain="1" atomname="O1"
res_num="112"/>

<HbondsToAtom name="O2_hbond" partners="0" energy_cutoff="-0.25" backbone="0" bb_bb="0" sidechain="1" atomname="O2"
res_num="112"/>

<HbondsToAtom name="N1_hbond" partners="0" energy_cutoff="-0.25" backbone="0" bb_bb="0" sidechain="1" atomname="N1"
res_num="112"/>

<CavityVolume name="cavity" />

<InterfaceHoles name="interface hole" jump="1" threshold="200"/>

<PackStat name="packstat complex" threshold="0" chain="0" repeats="1"/>

</FILTERS>

<MOVERS>

<EnzRepackMinimize name="desmin loop pocket" design="1" repack only="0" scorefxn minimize="beta"

scorefxn_repack="beta_soft" minimize_rb="1" minimize_sc="1" minimize_bb="0" cycles="1" minimize_lig="1" min_in_stages="0" backrub="0"

task_operations="init,includeCurrent,resfile,repack_pocketnonresfileRes,repack_nonpocketresfileRes,fix_nonpocketnonresfileRes"/>

<FastDesign name="fdesign_loop"

- task_operations="init,limchi2,resfile,includeCurrent,repack_pocketRes"
- scorefxn="beta"

repeats="1"

clear_designable_residues="0" />

#calculate a myriad of ligand specific scores

<InterfaceScoreCalculator name="add_scores" chains="B" scorefxn="beta"/>

</MOVERS>

<PROTOCOLS>

<Add mover_name="desmin_loop_pocket"/>

<Add mover_name="fdesign_loop"/>

<Add mover_name="desmin_loop_pocket"/>

<Add mover_name="fdesign_loop"/>

<Add filter name="SC"/>

<Add filter_name="interfE"/>

<Add filter_name="interf_uhb2"/>

<Add filter_name="res_totalscore"/>

- <Add filter_name="O1_hbond"/>
- <Add filter_name="O2_hbond"/>

```
<Add filter_name="N1_hbond"/>
<Add filter_name="cavity"/>
<Add filter_name="interface_hole"/>
<Add filter_name="packstat_complex"/>
<Add mover_name="add_scores"/>
</PROTOCOLS>
</ROSETTASCRIPTS>
```

RosettaScripts XML file used for re-designing b11L5F.1:

fixed_hbi_p2_rectBarrel.xml

<ROSETTASCRIPTS>

<SCOREFXNS>

<ScoreFunction name="beta" weights="beta"/>

</SCOREFXNS>

<RESIDUE_SELECTORS>

<ResiduePDBInfoHasLabel name="rifRes" property="RIFRES"/>

<Neighborhood distance="10.0" name="ligNeighborRes">

<Chain chains="B"/>

</Neighborhood>

<Layer core_cutoff="2.1" name="coreRes" select_core="true" surface_cutoff="1.0" use_sidechain_neighbors="true"/> <Layer core_cutoff="2.1" name="boundRes" select_boundary="true" surface_cutoff="1.0"

use_sidechain_neighbors="true"/>

<Layer core_cutoff="2.1" name="surfRes" select_surface="true" surface_cutoff="1.0" use_sidechain_neighbors="true"/> <SecondaryStructure name="all"

<SecondaryStructure name="helix"

SecondaryStructure name="strand"

<SecondaryStructure name="loop"

<Index name="resfile_res"

resnums="8,9,11,18,19,20,25,29,31,32,33,34,35,43,46,47,48,50,53,55,59,60,61,62,63,70,71,72,73,81,86,87,88,89,99,100,105,109"/>

<Not name="nonresfile_res" selector="resfile_res"/>

<ResidueName name="polarAA" residue_name3="ASP,GLU,ASN,GLN,LYS,ARG,SER,HIS,THR,TYR"/>

<And name="coreAll" selectors="coreRes,all,nonresfile_res"/>

<And name="coreH" selectors="coreRes,helix,nonresfile_res"/>

<And name="coreE" selectors="coreRes,strand,nonresfile_res"/>

<And name="coreL" selectors="coreRes,loop,nonresfile_res"/>

<And name="boundAll" selectors="boundRes,all,nonresfile_res"/>

<And name="boundH" selectors="boundRes,helix,nonresfile_res"/>

 $<\!\!And name="boundE" selectors="boundRes, strand, nonresfile_res"/\!\!>$

<And name="boundL" selectors="boundRes,loop,nonresfile_res"/>

<And name="surfAll" selectors="surfRes,all,nonresfile_res"/>

<And name="surfH" selectors="surfRes,helix,nonresfile_res"/>

 $<\!\!And name="surfE" selectors="surfRes, strand, nonresfile_res"/\!\!>$

<And name="surfL" selectors="surfRes,loop,nonresfile_res"/>

<And name="coreLigZone" selectors="coreRes,ligNeighborRes,nonresfile_res"/>

<And name="boundLigZone" selectors="boundRes,ligNeighborRes,nonresfile_res"/>

<And name="surfLigZone" selectors="surfRes,ligNeighborRes,nonresfile_res"/>

<Or name="pocket" selectors="coreLigZone,boundLigZone"/>

```
<Not name="nonpocket" selector="pocket"/>
         <And name="nonpocket_nonres" selectors="nonpocket,nonresfile_res"/>
         <And name="polarRifRes" selectors="rifRes,polarAA"/>
</RESIDUE_SELECTORS>
<TASKOPERATIONS>
         <LimitAromaChi2 name="limchi2"/>
         <InitializeFromCommandline name="init"/>
         <ReadResfile filename="./rectBarrel.resfile" name="resfile"/>
         <IncludeCurrent name="includeCurrent"/>
         <RestrictToRepacking name="repack_only"/>
         <OperateOnResidueSubset name="test" selector="boundRes">
                   <PreventRepackingRLT/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="fix_rifRes" selector="rifRes">
                   <PreventRepackingRLT/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_coreLigZone_AA" selector="coreLigZone">
                   <RestrictAbsentCanonicalAASRLT aas="ASTFVYMILNQHW"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_boundLigZone_AA" selector="boundLigZone">
                   <RestrictAbsentCanonicalAASRLT aas="ASTFVYMILNQHW"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="repack_pocketRes" selector="pocket">
                   <RestrictToRepackingRLT/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="repack_nonpocketRes" selector="nonpocket">
                   <RestrictToRepackingRLT/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="repack_nonpocket_nonres_Res" selector="nonpocket_nonres">
                   <RestrictToRepackingRLT/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_allCore_AA" selector="coreAll">
                   <RestrictAbsentCanonicalAASRLT aas="AFILVWYM"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design helixCore AA" selector="coreH">
                   <RestrictAbsentCanonicalAASRLT aas="AFILVM"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_strandCore_AA" selector="coreE">
                   <RestrictAbsentCanonicalAASRLT aas="FILVM"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_loopCore_AA" selector="coreL">
                   <RestrictAbsentCanonicalAASRLT aas="AGFILPVWYM"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_allBound_AA" selector="boundAll">
                   <RestrictAbsentCanonicalAASRLT aas="ADEFGIKLNPQRSTVY"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_helixBound_AA" selector="boundH">
                   <RestrictAbsentCanonicalAASRLT aas="AILNQSTVY"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_strandBound_AA" selector="boundE">
                   <RestrictAbsentCanonicalAASRLT aas="ILNQSTVY"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_loopBound_AA" selector="boundL">
                   <RestrictAbsentCanonicalAASRLT aas="ADEFGIKLNPQRSTVY"/>
         </OperateOnResidueSubset>
         <OperateOnResidueSubset name="design_allSurf_AA" selector="surfAll">
                   <RestrictAbsentCanonicalAASRLT aas="DEGHKNPQRST"/>
```
</OperateOnResidueSubset>

<OperateOnResidueSubset name="design_helixSurf_AA" selector="surfH"> <RestrictAbsentCanonicalAASRLT aas="DEHKNQRST"/>

</OperateOnResidueSubset>

<OperateOnResidueSubset name="design_strandSurf_AA" selector="surfE"> <RestrictAbsentCanonicalAASRLT aas="HKNQRT"/>

</OperateOnResidueSubset>

<OperateOnResidueSubset name="design_loopSurf_AA" selector="surfL">

<RestrictAbsentCanonicalAASRLT aas="DEGHKNPQRST"/>

</OperateOnResidueSubset>

</TASKOPERATIONS>

<FILTERS>

<LigInterfaceEnergy energy_cutoff="9999" name="interfE" scorefxn="beta"/>

<ShapeComplementarity jump="1" min_interface="0" min_sc="0" name="SC" quick="0" verbose="0"/>

<ScoreType confidence="1" name="totalscore" scorefxn="beta" threshold="9999"/>

<ResidueCount confidence="1" name="nres"/>

<CalculatorFilter confidence="1" equation="SCORE/NRES" name="res totalscore" threshold="0">

<Var filter_name="totalscore" name="SCORE"/>

<Var filter_name="nres" name="NRES"/>

</CalculatorFilter>

<BuriedUnsatHbonds2 cutoff="200" jump_number="1" name="interf_uhb2" scorefxn="beta"/>

<RepackWithoutLigand name="rwl" rms_threshold="999" scorefxn="beta" target_res="all_repacked"/>

<hr/>
 <hr/>

<HbondsToAtom atomname="O2" backbone="0" bb_bb="0" energy_cutoff="-0.5" name="O2_hbond" partners="0" res_num="112" sidechain="1"/>

<hr/>
 <hr/>

</FILTERS>

<MOVERS>

<EnzRepackMinimize backrub="0" cycles="1" design="1" min_in_stages="0" minimize_bb="0" minimize_lig="1" minimize_rb="1" minimize_sc="1" name="desmin_fixrif_pocket" repack_only="0" scorefxn_minimize="beta" scorefxn_repack="beta" task_operations="init,limchi2,fix_rifRes,resfile,design_coreLigZone_AA,design_boundLigZone_AA,repack_nonpocket_nonres_Res"/>

<FastDesign clear_designable_residues="0" name="fdesign_nonpocket" repeats="1" scorefxn="beta" task_operations="init,limchi2,resfile,fix_rifRes,includeCurrent,repack_pocketRes,design_helixCore_AA,design_strandCore_AA,design_loopCor e_AA,design_helixBound_AA,design_strandBound_AA,design_loopBound_AA,design_helixSurf_AA,design_strandSurf_AA,design_loopSurf_ AA"/>

<InterfaceScoreCalculator chains="B" name="add_scores" scorefxn="beta"/>

</MOVERS>

<PROTOCOLS>

<Add filter_name="SC"/> <Add filter name="interfE"/> <Add mover name="desmin fixrif pocket"/> <Add mover_name="fdesign_nonpocket"/> <Add filter_name="SC"/> <Add filter_name="interfE"/> <Add filter name="res totalscore"/> <Add mover_name="desmin_fixrif_pocket"/> <Add mover_name="fdesign_nonpocket"/> <Add filter_name="SC"/> <Add filter_name="interfE"/> <Add filter_name="res_totalscore"/> <Add mover name="desmin fixrif pocket"/> <Add mover name="fdesign nonpocket"/> <Add filter name="SC"/> <Add filter name="interfE"/> <Add filter_name="interf_uhb2"/>

```
<Add filter_name="rwl"/>
<Add filter_name="res_totalscore"/>
<Add filter_name="O1_hbond"/>
<Add filter_name="O2_hbond"/>
<Add filter_name="N1_hbond"/>
<Add mover_name="add_scores"/>
</PROTOCOLS>
```

RosettaScripts XML file used for modeling mutations from library selection:

make_mutations.xml

<ROSETTASCRIPTS> <SCOREFXNS> <beta weights="beta" /> </SCOREFXNS> <RESIDUE SELECTORS> ###### Basic Residue Selectors####### # rif residues <ResiduePDBInfoHasLabel name="rifRes" property="RIFRES" /> # ligand neighborhood <Neighborhood name="ligNeighborRes" distance="10.0" > <Chain chains="B" /> </Neighborhood> # core, boundary, surface, cutoff values are specific for beta barrels <Layer name="coreRes" select_core="true" use_sidechain_neighbors="true" core_cutoff="2.1" surface_cutoff="1.0"/> <Layer name="boundRes" select_boundary="true" use_sidechain_neighbors="true" core_cutoff="2.1" surface_cutoff="1.0"/> <Layer name="surfRes" select_surface="true" use_sidechain_neighbors="true" core_cutoff="2.1" surface_cutoff="1.0"/> </RESIDUE SELECTORS> <TASKOPERATIONS> <LimitAromaChi2 name="limchi2"/> <InitializeFromCommandline name="init"/> <IncludeCurrent name="includeCurrent"/> <RestrictToRepacking name="repack only" /> <OperateOnResidueSubset name="fix rifRes" selector="rifRes" > <PreventRepackingRLT/> </OperateOnResidueSubset> </TASKOPERATIONS> <FILTERS> <LigInterfaceEnergy name="interfE" scorefxn="beta" energy cutoff="0.0"/> <ShapeComplementarity name="SC" min_sc="0.1" min_interface="0" verbose="0" quick="0" jump="1"/> <ScoreType name="totalscore" scorefxn="beta" threshold="0" confidence="1"/> <ResidueCount name="nres" confidence="1" /> # energy per residue <CalculatorFilter name="res_totalscore" confidence="1" equation="SCORE/NRES" threshold="0"> <SCORE name="SCORE" filter_name="totalscore" /> <NRES name="NRES" filter name="nres" /> </CalculatorFilter> #buried unsatisfied polar <BuriedUnsatHbonds2 name="interf_uhb2" cutoff="200" scorefxn="beta" jump_number="1" /> #DFHBI specific atom hbond filters <HbondsToAtom name="O1 hbond" partners="0" energy cutoff="-0.5" backbone="0" bb bb="0" sidechain="1" atomname="O1" res num="110"/> <HbondsToAtom name="O2 hbond" partners="0" energy cutoff="-0.5" backbone="0" bb ="0" sidechain="1" atomname="O2" res num="110"/> <HbondsToAtom name="N1_hbond" partners="0" energy_cutoff="-0.5" backbone="0" bb_bb="0" sidechain="1" atomname="N1" res num="110"/>

```
</FILTERS>
<MOVERS>
         <MutateResidue name="V103L" target="103A" new_res="LEU"/>
         <MutateResidue name="V83L" target="83A" new_res="LEU"/>
         <MutateResidue name="V83M" target="83A" new_res="MET"/>
         <MutateResidue name="F93W" target="93A" new_res="TRP"/>
         <MutateResidue name="V95A" target="95A" new_res="ALA"/>
         <MutateResidue name="V95G" target="95A" new res="GLY"/>
         <FastRelax name="relax holo"
                   task_operations="init,limchi2,includeCurrent"
                   scorefxn="beta"
                   repeats="3" />
         #calculate a myriad of ligand specific scores
<InterfaceScoreCalculator name="add_scores" chains="B" scorefxn="beta"/>
</MOVERS>
<PROTOCOLS>
         <Add mover_name="V83M"/>
         <Add mover_name="V95G"/>
         <Add mover_name="V103L"/>
         <Add mover_name="relax_holo"/>
         <Add filter_name="SC"/>
         <Add filter_name="interfE"/>
         <Add filter_name="res_totalscore"/>
         <Add filter_name="interf_uhb2"/>
         <Add filter_name="O1_hbond"/>
         <Add filter_name="N1_hbond"/>
         <Add filter_name="O2_hbond"/>
         <Add mover_name="add_scores"/>
</PROTOCOLS>
```

</ROSETTASCRIPTS>

BLUEPRINT FILES

Blueprint file for loop closure of parametrial beta-barrel backbones:

2_2_2_2_1_2.bp
1 G .
2 G .
3 G .
4 G .
5 G .
6 G .
7 G .
8 G E
9 G E
0 x L
0 x L
10 G E
11 G E
12 G .
13 G .
14 G .
15 G .
16 G .
17 G E
18 G E

0 x L
19 G E
20 G E
21 G .
22 G .
23 G .
24 G .
25 G .
26 G E
27 G E
0 x L
0 x L
28 G F
20 C E
29 G E
30 G .
31 G .
32 G .
33 G .
34 G .
35 G E
36 G E
0 x L
0 x L
37 G E
38 G E
39 G .
40 G .
41 G .
42 G .
43 G .
44 G E
45 G E
0 x L
46 G F
40 G E 47 G E
47 G L 48 G
40 C
49 G .
50 G .
51 G .
52 G .
53 G E
54 G E
0 x L
0 x L
55 G E
56 G E
57 G .
58 G .
59 G .
60 G .
61 G .
62 G E
63 G E
0 x L
0 x L
64 G E
65 G E

66 G . 67 G . 68 G . 69 G . 70 G . 71 G E 72 G E

Blueprint file for building beta-barrel backbones based on the 2D map:

bb 2d.bp SSPAIR 1-2.A.-4;2-3.A.3 1 V L . 0 V L R 0 V H R 0 V H R 0 V H R 0 V H R 0 V L R 0 V L R 0 G EE R 0 V EB R 0 V LA R 0 V LA R 0 V LG R 0 V EB R 0 V EB R 0 V EB R 0 V EB R 0 G EE R 0 V EB R 0 V EA R 0 V EB R 0 V LA R 0 V LA R 0 V EB R 0 G EB R 0 V EB R 0 V EB R

0	v	LA	R
0	V	LA	R
0	v	LG	R
0	v	FR	R
0	v	ED	л р
0	V V	EB ED	к
0	V	EB	ĸ
0	V	EB	R
0	G	EE	R
0	V	EB	R
0	G	EE	R
0	V	EB	R
0	V	EB	R
0	V	EB	R
0	v	ER	R
õ	v	EV	p
0	v V	ED	D
0	V 1	ъъ	ĸ
U	V	LA	- R
0	V	LA	R
0	V	EB	R
0	V	EB	R
0	V	EB	R
0	V	EB	R
0	v	EB	R
0	v	FR	P
0	v 17	ED	п
0	v	EВ	ĸ
0	V	EB	R
0	V	LA	R
0	V	LA	R
0	V	LG	R
0	V	EB	R
0	V	EB	R
0	v	EB	R
õ	v	FR	R
0	G	EE	P
0	U	EE	ĸ
0	V	EB	ĸ
0	V	EB	R
0	V	EB	R
0	V	EB	R
0	V	EA	R
0	V	EB	R
0	v	LA	R
õ	v	T A	P
0	V 17	LA	л р
0	V 1	сB	ĸ
0	V	EB	ĸ
0	V	EB	R
0	V	EB	R
0	V	EB	R
0	V	EB	R
0	V	EB	R
0	v	ER	R
0	v	T A	P
0	V 1.7	LA	л г
0	V 		ĸ
0	V	LU 55	ĸ
0	V	EB	R
Δ	V	EB	R
0			
0	V	EB	R

 0
 G
 EE
 R

 0
 V
 EB
 R

Blueprint file for building N-terminal disulfide bonds:

helix_remodel.bp 1 K L 2 N L 3 A L $4 \mathrm{A} \mathrm{H}$ 5 T H 6 A H 7F. 8 P . 9G. 10 T . 11 W . 12 D . 13 A . 14 T . 15 F . 16 T . 17 A . 18 E . 19 D . 20 G . 21 S . 22 T . 23 F . 24 Q . 25 G . 26 K . 27 L . 28 D . 29 I . 30 Q . 31 P . 32 T . 33 T . 34 P . 35 D . 36 R . 37 V . 38 T . 39 V . 40 T . 41 V . 42 K . 43 G . 44 T . 45 Q .

 $46 \mathrm{S}$.

47 D .
48 G .
49 K
50 P
501.
51 A .
52 D .
53 G .
54 Q .
55 G
56 T
571
37 L .
58 Q .
59 L .
60 K .
61 T .
62 P .
63 T
64 T
041.
65 M .
66 Q .
67 V .
68 T .
69 I .
70 R
70 K.
71 1 . 72 G
72 S .
73 D .
74 G .
75 K .
76 D .
77 Δ
79 T
78 T . 70 C
/9 G .
80 Y .
81 M .
82 T .
83 M .
84 T .
85 T
86 D
80 F .
8/1.
88 T .
89 M .
90 T .
91 A .
92 D
93 A
94.0
74 Q.
95 L .
96 A .
97 D .
98 G .
99 A .
100 K
101 \$
101 S.
102 1 .
103 G

104 Q . 105 F . 106 T .

107 R .

108 K . 109 E .

Blueprint file for inserting loop 5F:

loop5F.bp

2 E . 3 V . 4 A . 5Q. 6 V . 7L. 8P. 9G. 10 D . 11 W . 12 Q . 13 V . 14 H . 15 M . 16 T . 17 N . 18 E . 19 D . 20 G . 21 Q . 22 T . 23 S . 24 T . 25 G . 26 T. 27 V . 28 T . 29 F . 30 Q . 31 P . 32 R . 33 S . 34 P . 35 Y . 36 T . 37 F . 38 D . 39 V . 40 K . 41 F . 42 K . 43 G . 44 T . 45 M .

46 S . 47 D . 48 G . 49 R . 50 P . 51 I . 52 T . 53 G . 54 K . 55 G . 56 K . 57 M . 58 T . 59 M . 60 K . 61 T . 62 P . 63 D . 64 T . 65 M . 66 D . 67 I . 68 D . 69 V . 70 T . 71 Y . 72 S L ALLAA 73 D L NOTAA PG 0 x L PIKAA LIVAYFW 0 x L PIKAA G 74 G L POLAR 75 K L NOTAA PG 76 K L PIKAA K 77 V . 78 T . 79 G . 80 K . 81 V . 82 T . 83 M . 84 K . 85 S . 86 P . 87 T . 88 Q . 89 L . 90 D . 91 W . 92 D . 93 L . 94 T . 95 T . 96 S . 97 D . 98 G . 99 S . 100 K . 101 V . 102 T .

103 G . 104 T . 105 S . 106 H . 107 R . 108 V . 109 E .

CONSTRAIN FILES:

Constrain file used for assembling beta barrels based on the 2D map:

bb_2d.cst

all the hydrogen bond constraints ## angle N-H-O constraints were commented out for constructing the set 2 scaffolds for RIF docking AtomPair N 17 O 21 HARMONIC 3.0 0.5 Angle N 17 H 17 O 21 CIRCULARHARMONIC 3.1 0.3 Angle H 17 O 21 C 21 CIRCULARHARMONIC 3.1 0.3 AtomPair N 20 O 17 HARMONIC 3.0 0.5 Angle N 20 H 20 O 17 CIRCULARHARMONIC 3.1 0.3 Angle H 20 O 17 C 17 CIRCULARHARMONIC 3.1 0.3 AtomPair N 15 O 23 HARMONIC 3.0 0.5 Angle N 15 H 15 O 23 CIRCULARHARMONIC 3.1 0.3 Angle H 15 O 23 C 23 CIRCULARHARMONIC 3.1 0.3 AtomPair N 23 O 15 HARMONIC 3.0 0.5 Angle N 23 H 23 O 15 CIRCULARHARMONIC 3.1 0.3 Angle H 23 O 15 C 15 CIRCULARHARMONIC 3.1 0.3 AtomPair N 13 O 25 HARMONIC 3.0 0.5 Angle N 13 H 13 O 25 CIRCULARHARMONIC 3.1 0.3 Angle H 13 O 25 C 25 CIRCULARHARMONIC 3.1 0.3 AtomPair N 25 O 13 HARMONIC 3.0 0.5 Angle N 25 H 25 O 13 CIRCULARHARMONIC 3.1 0.3 Angle H 25 O 13 C 13 CIRCULARHARMONIC 3.1 0.3 AtomPair N 11 O 27 HARMONIC 3.0 0.5 Angle N 11 H 11 O 27 CIRCULARHARMONIC 3.1 0.3 Angle H 11 O 27 C 27 CIRCULARHARMONIC 3.1 0.3 AtomPair N 27 O 11 HARMONIC 3.0 0.5 Angle N 27 H 27 O 11 CIRCULARHARMONIC 3.1 0.3 Angle H 27 O 11 C 11 CIRCULARHARMONIC 3.1 0.3 AtomPair N 9 O 29 HARMONIC 3.0 0.5 Angle N 9 H 9 O 29 CIRCULARHARMONIC 3.1 0.3 Angle H 9 O 29 C 29 CIRCULARHARMONIC 3.1 0.3 AtomPair N 29 O 9 HARMONIC 3.0 0.5 Angle N 29 H 29 O 9 CIRCULARHARMONIC 3.1 0.3 Angle H 29 O 9 C 9 CIRCULARHARMONIC 3.1 0.3 AtomPair N 32 O 36 HARMONIC 3.0 0.5 Angle N 32 H 32 O 36 CIRCULARHARMONIC 3.1 0.3 Angle H 32 O 36 C 36 CIRCULARHARMONIC 3.1 0.3 AtomPair N 33 O 36 HARMONIC 3.0 0.5 Angle N 33 H 33 O 36 CIRCULARHARMONIC 3.1 0.3 Angle H 33 O 36 C 36 CIRCULARHARMONIC 3.1 0.3 AtomPair N 36 O 33 HARMONIC 3.0 0.5 Angle N 36 H 36 O 33 CIRCULARHARMONIC 3.1 0.3 Angle H 36 O 33 C 33 CIRCULARHARMONIC 3.1 0.3 AtomPair N 30 O 38 HARMONIC 3.0 0.5 Angle N 30 H 30 O 38 CIRCULARHARMONIC 3.1 0.3 Angle H 30 O 38 C 38 CIRCULARHARMONIC 3.1 0.3

AtomPair N 38 O 30 HARMONIC 3.0 0.5 Angle N 38 H 38 O 30 CIRCULARHARMONIC 3.1 0.3 Angle H 38 O 30 C 30 CIRCULARHARMONIC 3.1 0.3 AtomPair N 28 O 40 HARMONIC 3.0 0.5 Angle N 28 H 28 O 40 CIRCULARHARMONIC 3.1 0.3 Angle H 28 O 40 C 40 CIRCULARHARMONIC 3.1 0.3 AtomPair N 40 O 28 HARMONIC 3.0 0.5 Angle N 40 H 40 O 28 CIRCULARHARMONIC 3.1 0.3 Angle H 40 O 28 C 28 CIRCULARHARMONIC 3.1 0.3 AtomPair N 26 O 42 HARMONIC 3.0 0.5 Angle N 26 H 26 O 42 CIRCULARHARMONIC 3.1 0.3 Angle H 26 O 42 C 42 CIRCULARHARMONIC 3.1 0.3 AtomPair N 42 O 26 HARMONIC 3.0 0.5 Angle N 42 H 42 O 26 CIRCULARHARMONIC 3.1 0.3 Angle H 42 O 26 C 26 CIRCULARHARMONIC 3.1 0.3 AtomPair N 24 O 44 HARMONIC 3.0 0.5 Angle N 24 H 24 O 44 CIRCULARHARMONIC 3.1 0.3 Angle H 24 O 44 C 44 CIRCULARHARMONIC 3.1 0.3 AtomPair N 44 O 24 HARMONIC 3.0 0.5 Angle N 44 H 44 O 24 CIRCULARHARMONIC 3.1 0.3 Angle H 44 O 24 C 24 CIRCULARHARMONIC 3.1 0.3 AtomPair N 46 O 22 HARMONIC 3.0 0.5 Angle N 46 H 46 O 22 CIRCULARHARMONIC 3.1 0.3 Angle H 46 O 22 C 22 CIRCULARHARMONIC 3.1 0.3 AtomPair N 45 O 49 HARMONIC 3.0 0.5 Angle N 45 H 45 O 49 CIRCULARHARMONIC 3.1 0.3 Angle H 45 O 49 C 49 CIRCULARHARMONIC 3.1 0.3 AtomPair N 49 O 45 HARMONIC 3.0 0.5 Angle N 49 H 49 O 45 CIRCULARHARMONIC 3.1 0.3 Angle H 49 O 45 C 45 CIRCULARHARMONIC 3.1 0.3 AtomPair N 43 O 51 HARMONIC 3.0 0.5 Angle N 43 H 43 O 51 CIRCULARHARMONIC 3.1 0.3 Angle H 43 O 51 C 51 CIRCULARHARMONIC 3.1 0.3 AtomPair N 51 O 43 HARMONIC 3.0 0.5 Angle N 51 H 51 O 43 CIRCULARHARMONIC 3.1 0.3 Angle H 51 O 43 C 43 CIRCULARHARMONIC 3.1 0.3 AtomPair N 41 O 53 HARMONIC 3.0 0.5 Angle N 41 H 41 O 53 CIRCULARHARMONIC 3.1 0.3 Angle H 41 O 53 C 53 CIRCULARHARMONIC 3.1 0.3 AtomPair N 53 O 41 HARMONIC 3.0 0.5 Angle N 53 H 53 O 41 CIRCULARHARMONIC 3.1 0.3 Angle H 53 O 41 C 41 CIRCULARHARMONIC 3.1 0.3 AtomPair N 39 O 55 HARMONIC 3.0 0.5 Angle N 39 H 39 O 55 CIRCULARHARMONIC 3.1 0.3 Angle H 39 O 55 C 55 CIRCULARHARMONIC 3.1 0.3 AtomPair N 55 O 39 HARMONIC 3.0 0.5 Angle N 55 H 55 O 39 CIRCULARHARMONIC 3.1 0.3 Angle H 55 O 39 C 39 CIRCULARHARMONIC 3.1 0.3 AtomPair N 37 O 57 HARMONIC 3.0 0.5 Angle N 37 H 37 O 57 CIRCULARHARMONIC 3.1 0.3 Angle H 37 O 57 C 57 CIRCULARHARMONIC 3.1 0.3 AtomPair N 59 O 35 HARMONIC 3.0 0.5 Angle N 59 H 59 O 35 CIRCULARHARMONIC 3.1 0.3 Angle H 59 O 35 C 35 CIRCULARHARMONIC 3.1 0.3 AtomPair N 57 O 37 HARMONIC 3.0 0.5 Angle N 57 H 57 O 37 CIRCULARHARMONIC 3.1 0.3 Angle H 57 O 37 C 37 CIRCULARHARMONIC 3.1 0.3 AtomPair N 60 O 64 HARMONIC 3.0 0.5 Angle N 60 H 60 O 64 CIRCULARHARMONIC 3.1 0.3 Angle H 60 O 64 C 64 CIRCULARHARMONIC 3.1 0.3 AtomPair N 61 O 64 HARMONIC 3.0 0.5 Angle N 61 H 61 O 64 CIRCULARHARMONIC 3.1 0.3 Angle H 61 O 64 C 64 CIRCULARHARMONIC 3.1 0.3 AtomPair N 64 O 61 HARMONIC 3.0 0.5 Angle N 64 H 64 O 61 CIRCULARHARMONIC 3.1 0.3 Angle H 64 O 61 C 61 CIRCULARHARMONIC 3.1 0.3 AtomPair N 58 O 66 HARMONIC 3.0 0.5 Angle N 58 H 58 O 66 CIRCULARHARMONIC 3.1 0.3 Angle H 58 O 66 C 66 CIRCULARHARMONIC 3.1 0.3 AtomPair N 66 O 58 HARMONIC 3.0 0.5 Angle N 66 H 66 O 58 CIRCULARHARMONIC 3.1 0.3 Angle H 66 O 58 C 58 CIRCULARHARMONIC 3.1 0.3 AtomPair N 56 O 68 HARMONIC 3.0 0.5 Angle N 56 H 56 O 68 CIRCULARHARMONIC 3.1 0.3 Angle H 56 O 68 C 68 CIRCULARHARMONIC 3.1 0.3 AtomPair N 68 O 56 HARMONIC 3.0 0.5 Angle N 68 H 68 O 56 CIRCULARHARMONIC 3.1 0.3 Angle H 68 O 56 C 56 CIRCULARHARMONIC 3.1 0.3 AtomPair N 54 O 70 HARMONIC 3.0 0.5 Angle N 54 H 54 O 70 CIRCULARHARMONIC 3.1 0.3 Angle H 54 O 70 C 70 CIRCULARHARMONIC 3.1 0.3 AtomPair N 70 O 54 HARMONIC 3.0 0.5 Angle N 70 H 70 O 54 CIRCULARHARMONIC 3.1 0.3 Angle H 70 O 54 C 54 CIRCULARHARMONIC 3.1 0.3 AtomPair N 72 O 52 HARMONIC 3.0 0.5 Angle N 72 H 72 O 52 CIRCULARHARMONIC 3.1 0.3 Angle H 72 O 52 C 52 CIRCULARHARMONIC 3.1 0.3 AtomPair N 71 O 75 HARMONIC 3.0 0.5 Angle N 71 H 71 O 75 CIRCULARHARMONIC 3.1 0.3 Angle H 71 O 75 C 75 CIRCULARHARMONIC 3.1 0.3 AtomPair N 74 O 71 HARMONIC 3.0 0.5 Angle N 74 H 74 O 71 CIRCULARHARMONIC 3.1 0.3 Angle H 74 O 71 C 71 CIRCULARHARMONIC 3.1 0.3 AtomPair N 69 O 77 HARMONIC 3.0 0.5 Angle N 69 H 69 O 77 CIRCULARHARMONIC 3.1 0.3 Angle H 69 O 77 C 77 CIRCULARHARMONIC 3.1 0.3 AtomPair N 77 O 69 HARMONIC 3.0 0.5 Angle N 77 H 77 O 69 CIRCULARHARMONIC 3.1 0.3 Angle H 77 O 69 C 69 CIRCULARHARMONIC 3.1 0.3 AtomPair N 67 O 79 HARMONIC 3.0 0.5 Angle N 67 H 67 O 79 CIRCULARHARMONIC 3.1 0.3 Angle H 67 O 79 C 79 CIRCULARHARMONIC 3.1 0.3 AtomPair N 79 O 67 HARMONIC 3.0 0.5 Angle N 79 H 79 O 67 CIRCULARHARMONIC 3.1 0.3 Angle H 79 O 67 C 67 CIRCULARHARMONIC 3.1 0.3 AtomPair N 65 O 81 HARMONIC 3.0 0.5 Angle N 65 H 65 O 81 CIRCULARHARMONIC 3.1 0.3 Angle H 65 O 81 C 81 CIRCULARHARMONIC 3.1 0.3 AtomPair N 81 O 65 HARMONIC 3.0 0.5 Angle N 81 H 81 O 65 CIRCULARHARMONIC 3.1 0.3 Angle H 81 O 65 C 65 CIRCULARHARMONIC 3.1 0.3 AtomPair N 83 O 63 HARMONIC 3.0 0.5 Angle N 83 H 83 O 63 CIRCULARHARMONIC 3.1 0.3 Angle H 83 O 63 C 63 CIRCULARHARMONIC 3.1 0.3

AtomPair N 85 O 88 HARMONIC 3.0 0.5 Angle N 85 H 85 O 88 CIRCULARHARMONIC 3.1 0.3 Angle H 85 O 88 C 88 CIRCULARHARMONIC 3.1 0.3 AtomPair N 88 O 85 HARMONIC 3.0 0.5 Angle N 88 H 88 O 85 CIRCULARHARMONIC 3.1 0.3 Angle H 88 O 85 C 85 CIRCULARHARMONIC 3.1 0.3 AtomPair N 84 O 88 HARMONIC 3.0 0.5 Angle N 84 H 84 O 88 CIRCULARHARMONIC 3.1 0.3 Angle H 84 O 88 C 88 CIRCULARHARMONIC 3.1 0.3 AtomPair N 82 O 90 HARMONIC 3.0 0.5 Angle N 82 H 82 O 90 CIRCULARHARMONIC 3.1 0.3 Angle H 82 O 90 C 90 CIRCULARHARMONIC 3.1 0.3 AtomPair N 90 O 82 HARMONIC 3.0 0.5 Angle N 90 H 90 O 82 CIRCULARHARMONIC 3.1 0.3 Angle H 90 O 82 C 82 CIRCULARHARMONIC 3.1 0.3 AtomPair N 80 O 92 HARMONIC 3.0 0.5 Angle N 80 H 80 O 92 CIRCULARHARMONIC 3.1 0.3 Angle H 80 O 92 C 92 CIRCULARHARMONIC 3.1 0.3 AtomPair N 92 O 80 HARMONIC 3.0 0.5 Angle N 92 H 92 O 80 CIRCULARHARMONIC 3.1 0.3 Angle H 92 O 80 C 80 CIRCULARHARMONIC 3.1 0.3 AtomPair N 78 O 94 HARMONIC 3.0 0.5 Angle N 78 H 78 O 94 CIRCULARHARMONIC 3.1 0.3 Angle H 78 O 94 C 94 CIRCULARHARMONIC 3.1 0.3 AtomPair N 94 O 78 HARMONIC 3.0 0.5 Angle N 94 H 94 O 78 CIRCULARHARMONIC 3.1 0.3 Angle H 94 O 78 C 78 CIRCULARHARMONIC 3.1 0.3 AtomPair N 96 O 76 HARMONIC 3.0 0.5 Angle N 96 H 96 O 76 CIRCULARHARMONIC 3.1 0.3 Angle H 96 O 76 C 76 CIRCULARHARMONIC 3.1 0.3 AtomPair N 95 O 99 HARMONIC 3.0 0.5 Angle N 95 H 95 O 99 CIRCULARHARMONIC 3.1 0.3 Angle H 95 O 99 C 99 CIRCULARHARMONIC 3.1 0.3 AtomPair N 98 O 95 HARMONIC 3.0 0.5 Angle N 98 H 98 O 95 CIRCULARHARMONIC 3.1 0.3 Angle H 98 O 95 C 95 CIRCULARHARMONIC 3.1 0.3 AtomPair N 93 O 101 HARMONIC 3.0 0.5 Angle N 93 H 93 O 101 CIRCULARHARMONIC 3.1 0.3 Angle H 93 O 101 C 101 CIRCULARHARMONIC 3.1 0.3 AtomPair N 101 O 93 HARMONIC 3.0 0.5 Angle N 101 H 101 O 93 CIRCULARHARMONIC 3.1 0.3 Angle H 101 O 93 C 93 CIRCULARHARMONIC 3.1 0.3 AtomPair N 91 O 103 HARMONIC 3.0 0.5 Angle N 91 H 91 O 103 CIRCULARHARMONIC 3.1 0.3 Angle H 91 O 103 C 103 CIRCULARHARMONIC 3.1 0.3 AtomPair N 103 O 91 HARMONIC 3.0 0.5 Angle N 103 H 103 O 91 CIRCULARHARMONIC 3.1 0.3 Angle H 103 O 91 C 91 CIRCULARHARMONIC 3.1 0.3 AtomPair N 89 O 105 HARMONIC 3.0 0.5 Angle N 89 H 89 O 105 CIRCULARHARMONIC 3.1 0.3 Angle H 89 O 105 C 105 CIRCULARHARMONIC 3.1 0.3 AtomPair N 105 O 89 HARMONIC 3.0 0.5 Angle N 105 H 105 O 89 CIRCULARHARMONIC 3.1 0.3 Angle H 105 O 89 C 89 CIRCULARHARMONIC 3.1 0.3 AtomPair N 107 O 87 HARMONIC 3.0 0.5 Angle N 107 H 107 O 87 CIRCULARHARMONIC 3.1 0.3 Angle H 107 O 87 C 87 CIRCULARHARMONIC 3.1 0.3

AtomPair N 16 O 102 HARMONIC 3.0 0.5 Angle N 16 H 16 O 102 CIRCULARHARMONIC 3.1 0.3 Angle H 16 O 102 C 102 CIRCULARHARMONIC 3.1 0.3 AtomPair N 18 O 100 HARMONIC 3.0 0.5 Angle N 18 H 18 O 100 CIRCULARHARMONIC 3.1 0.3 Angle H 18 O 100 C 100 CIRCULARHARMONIC 3.1 0.3 AtomPair N 102 O 16 HARMONIC 3.0 0.5 Angle N 102 H 102 O 16 CIRCULARHARMONIC 3.1 0.3 Angle H 102 O 16 C 16 CIRCULARHARMONIC 3.1 0.3 AtomPair N 14 O 104 HARMONIC 3.0 0.5 Angle N 14 H 14 O 104 CIRCULARHARMONIC 3.1 0.3 Angle H 14 O 104 C 104 CIRCULARHARMONIC 3.1 0.3 AtomPair N 104 O 14 HARMONIC 3.0 0.5 Angle N 104 H 104 O 14 CIRCULARHARMONIC 3.1 0.3 Angle H 104 O 14 C 14 CIRCULARHARMONIC 3.1 0.3 AtomPair N 12 O 106 HARMONIC 3.0 0.5 Angle N 12 H 12 O 106 CIRCULARHARMONIC 3.1 0.3 Angle H 12 O 106 C 106 CIRCULARHARMONIC 3.1 0.3 AtomPair N 106 O 12 HARMONIC 3.0 0.5 Angle N 106 H 106 O 12 CIRCULARHARMONIC 3.1 0.3 Angle H 106 O 12 C 12 CIRCULARHARMONIC 3.1 0.3 AtomPair N 10 O 108 HARMONIC 3.0 0.5 Angle N 10 H 10 O 108 CIRCULARHARMONIC 3.1 0.3 Angle H 10 O 108 C 108 CIRCULARHARMONIC 3.1 0.3 AtomPair N 108 O 10 HARMONIC 3.0 0.5 Angle N 108 H 108 O 10 CIRCULARHARMONIC 3.1 0.3 Angle H 108 O 10 C 10 CIRCULARHARMONIC 3.1 0.3

The following constraints were used to define the backbone geometry of the tryptophan corner and capping N-terminal helix. ## Torsion angle constraints for residues Trp-4 and trp-3 (supplementary figure)

Dihedral N 8 CA 8 C 8 N 9 CIRCULARHARMONIC 2.35 0.25 Dihedral C 7 N 8 CA 8 C 8 CIRCULARHARMONIC 5.20 0.25 Dihedral N 7 CA 7 C 7 N 8 CIRCULARHARMONIC 5.75 0.25 Dihedral C 6 N 7 CA 7 C 7 CIRCULARHARMONIC 4.90 0.25

Distance constraint mimicking the tryptophan to backbone carbonyl hydrogen bond

AtomPair CA 11 O 8 BOUNDED 6.9 7.5 0.5

Distance constraints to place the residue in the center of the barrel to get good hydrophobic packing around it

AtomPair CA 7 CA 62 BOUNDED 9.5 10.5 0.5

AtomPair CA 7 CA 86 BOUNDED 7.0 8.0 0.5

AtomPair CA 6 CA 34 HARMONIC 12.0 0.5

AtomPair CA 6 CA 62 HARMONIC 9.5 0.5

AtomPair CA 6 CA 86 HARMONIC 9.5 0.5

Distance constraints mimicking the Arginine to backbone hydrogen bonds

AtomPair CA 7 CA 107 BOUNDED 8.5 10.0 0.5 AtomPair O 6 CA 107 HARMONIC 8.5 0.5

Constrain file used for designing beta barrels based on the 2D map:

cst_trp.cst

AtomPair NE1 11 O 7 HARMONIC 3.0 0.5

Constrain file used for building the new loop for b11L5F:

L5F.cst AtomPair O 77 N 71 BOUNDED 2.5 3.5 0.5 TAG AtomPair O 71 N 74 BOUNDED 2.5 3.5 0.5 TAG AtomPair O 71 N 76 BOUNDED 2.5 3.5 0.5 TAG AtomPair O 74 N 77 BOUNDED 2.5 3.5 0.5 TAG

RESFILE FILES:

Resfile used for designing nonfunctional beta barrels from parametric models:

bb param.res

ALLAA start **8 A PIKAA ITVYWF** 9 A PIKAA ITVYWF 10 A PIKAA GNDS 11 A PIKAA GNDS 12 A PIKAA ITVYWF 13 A PIKAA ITVYWF 16 A PIKAA ITVYWF 17 A PIKAA ITVYWF 18 A PIKAA G 19 A PIKAA NDS 20 A PIKAA ITVYWF 21 A PIKAA ITVYWF 44 A PIKAA ITVYWF 45 A PIKAA ITVYWF 46 A PIKAA G 47 A PIKAA NDS 48 A PIKAA ITVYWF 49 A PIKAA ITVYWF 52 A PIKAA ITVYWF 53 A PIKAA ITVYWF 54 A PIKAA GNDS 55 A PIKAA GNDS 56 A PIKAA ITVYWF 57 A PIKAA ITVYWF 61 A PIKAA ITVYWF 62 A PIKAA ITVYWF 63 A PIKAA GNDS 64 A PIKAA GNDS 65 A PIKAA GNDS 66 A PIKAA GNDS 67 A PIKAA ITVYWF 68 A PIKAA ITVYWF 72 A PIKAA ITVYWF 73 A PIKAA ITVYWF 74 A PIKAA G 75 A PIKAA NDS 76 A PIKAA ITVYWF 77 A PIKAA ITVYWF

Resfile used for designing nonfunctional beta barrels from 2D-map assembly:

bb_2d.res ALLAA start 8 A PIKAA P 9 A PIKAA G 11 A PIKAA W 17 A PIKAA W 17 A PIKAA ELSRT 18 A PIKAA AEKS 19 A PIKAA D 20 A PIKAA G 21 A PIKAA AKRS 25 A PIKAA G 29 A PIKAA ILMV 31 A PIKAA P 32 A POLAR 33 A PIKAA ST 34 A PIKAA P 35 A PIKAA DEHTY 43 A PIKAA G 45 A PIKAA ELRST 46 A PIKAA AEKS 47 A PIKAA D 48 A PIKAA G 49 A PIKAA AKRS 50 A PIKAA P 53 A PIKAA G 55 A PIKAA G 59 A PIKAA ILMV 60 A POLAR 61 A PIKAA ST 62 A PIKAA P 63 A PIKAA DEHTY 71 A PIKAA ELRST 72 A PIKAA AEKS 73 A PIKAA D 74 A PIKAA G 75 A PIKAA AKRS 79 A PIKAA G 83 A PIKAA ILMV 84 A POLAR 85 A PIKAA ST 86 A PIKAA P 87 A PIKAA DEHTY 97 A PIKAA D 98 A PIKAA G 103 A PIKAA G 107 A PIKAA R

Resfile used for designing DFHBI-binding beta barrels:

rectBarrel.resfile

ALLAA start 8 A PIKAA P 9 A PIKAA G 11 A PIKAA W 18 A PIKAA AEKS 19 A PIKAA D 20 A PIKAA G 25 A PIKAA G 29 A PIKAA ILMV 31 A PIKAA P 32 A POLAR 33 A PIKAA ST 34 A PIKAA P 35 A PIKAA DEHTY 43 A PIKAA G

46 A PIKAA AEKS 47 A PIKAA D 48 A PIKAA G 50 A PIKAA P 53 A PIKAA G 55 A PIKAA G 59 A PIKAA ILMV 60 A POLAR 61 A PIKAA ST 62 A PIKAA P 63 A PIKAA DEHTY 72 A PIKAA AEKS 73 A PIKAA D 74 A PIKAA G 75 A PIKAA AKRS 79 A PIKAA G 83 A PIKAA ILMV 84 A POLAR 85 A PIKAA ST 86 A PIKAA P 87 A PIKAA DEHTY 97 A PIKAA D 98 A PIKAA G 103 A PIKAA G 107 A PIKAA R

Resfile used for profile-based sequence design:

final.resfile (final.resfile is different for each sequence cluster. This example is for designs based on 14_input_0065 input scaffold that yielded successful binders b11 and b32) ALLAA start 1 A PIKAA QA 2 A PIKAA QEYK 3 A PIKAA V 4 A PIKAA AVF 5 A PIKAA Q 6 A PIKAA V 7 A PIKAA LMVIF 8 A PIKAA P 9 A PIKAA G 10 A PIKAA KRNTD 11 A PIKAA W 12 A PIKAA KDNQ 13 A PIKAA IV 14 A PIKAA TRHN 15 A PIKAA MF 16 A PIKAA TK 17 A PIKAA N 18 A PIKAA ES 19 A PIKAA D 20 A PIKAA G

21 A PIKAA TQVL 22 A PIKAA T 23 A PIKAA S 24 A PIKAA QT 25 A PIKAA G 26 A PIKAA TQH 27 A PIKAA MIFLV 28 A PIKAA TNHR 29 A PIKAA VIMF 30 A PIKAA Q 31 A PIKAA P 32 A PIKAA KR 33 A PIKAA S 34 A PIKAA P 35 A PIKAA Y 36 A PIKAA T 37 A PIKAA VLF 38 A PIKAA D **39 A PIKAA VIFL** 40 A PIKAA QTKR 41 A PIKAA WAF 42 A PIKAA OTKR 43 A PIKAA G 44 A PIKAA T 45 A PIKAA LIM 46 A PIKAA S 47 A PIKAA D 48 A PIKAA G 49 A PIKAA R 50 A PIKAA P 51 A PIKAA I 52 A PIKAA QTKR 53 A PIKAA G 54 A PIKAA KTQN 55 A PIKAA G 56 A PIKAA QK 57 A PIKAA LVMF 58 A PIKAA T 59 A PIKAA M 60 A PIKAA RKHD 61 A PIKAA T 62 A PIKAA P 63 A PIKAA DTH 64 A PIKAA T 65 A PIKAA ML 66 A PIKAA QDT 67 A PIKAA VFLI 68 A PIKAA D 69 A PIKAA VIFL 70 A PIKAA TK 71 A PIKAA Y 72 A PIKAA S 73 A PIKAA D 74 A PIKAA G 75 A PIKAA K 76 A PIKAA KQ 77 A PIKAA VIMF 78 A PIKAA TKQ 79 A PIKAA G 80 A PIKAA OKH 81 A PIKAA VMF 82 A PIKAA T

83 A PIKAA LM 84 A PIKAA RKDHE 85 A PIKAA S 86 A PIKAA P 87 A PIKAA TE 88 A PIKAA KQ 89 A PIKAA LFI 90 A PIKAA TDQRK 91 A PIKAA IFLW 92 A PIKAA D 93 A PIKAA LFVI 94 A PIKAA T 95 A PIKAA T 96 A PIKAA IAS 97 A PIKAA D 98 A PIKAA G 99 A PIKAA LVTS 100 A PIKAA KQ 101 A PIKAA V 102 A PIKAA T 103 A PIKAA G 104 A PIKAA HT 105 A PIKAA LFVT # backup Trp91 106 A PIKAA TRQHK 107 A PIKAA R 108 A PIKAA VLI 109 A PIKAA EK

Resfile used to design sequences for loop5F:

loop5F.resfile

NATAA start 70 A POLAR 71 A PIKAA Y #(phi, psi)=(-117, 95) allowed for pre-pro 72 A PIKAA P 73 A PIKAA STAVIL # new interacting residue but can be structural cross-strand interaction 74 A PIKAA LIVAYFWM # new interacting residue 75 A PIKAA G 76 A POLAR 77 A PIKAA ASTCMLI 78 A POLAR # re-configure boundary interactions 52 A POLAR # for potential cross-strand interaction 21 A NOTAA PGKR 79 A PIKAA VTSA # TS for hbonding 97T, VA for reconfigured pocket 51 A PIKAA ILY 45 A PIKAA VLIFMST 19 A PIKAA DNERKHST 47 A PIKAA DNERKHST 99 A PIKAA DNERKHST

OTHER FILES USED IN THE DESIGN CALCULATION

Parameters used to build disconnected beta-barrel backbones based on the hyperboloid model:

N 8 #number of strands S 10 #shear number of the barrel a 3.3 #default distance between Ca along a beta-strand (parameter d)
b 4.20-4.60:0.05 #distance between beta-strands in A and sampled around the ideal value derived from the PDB (parameter D)
nres 9 #number of residues per strand
topology 1,2,3,4,5,6,7,8 #topology - up-and-down beta-barrel
dr 0.9-1.1:0.05 #ratio applied on each of the elliptical radii, sampled around the ideal radius of a barrel of type (n=n; S=S)
dtw 0.9-1.1:0.05 #ratio applied on the staggering angle between the beta-strands and the Z axis, sampled around the ideal value for a

barrel of type (N; S).

Improved Rosetta energy function weights used to assemble beta-barrel backbones with near-native torsion angle distributions:

```
vdw 1.0
rg 1.0
rama 0.15
ss_pair 1.0
rsigma 1.0
omega 0.5
hbond_sr_bb 1.0
hbond_lr_bb 1.0
STRAND_STRAND_WEIGHTS 1 11
```

Criteria used for selecting assembled backbones for sequence designs:

'vdw' < 1 'omega' < 14 'hbond_lr_bb' < -58 'rama' < 0

Rosetta full-atom parameter file(.param) for DFHBI:

(3-letter code for DFHBI is HBI; F atoms were replace by H for RIF docking calculation since its database was not supporting F atoms at the time)

HBI_rch.param (HBI_fa.param)

NAME HBI IO STRING HBI Z TYPE LIGAND AA UNK ATOM C4 aroC Х 0.12 ATOM C2 aroC Х -0.16 ATOM N1 Nhis Х -0.54 C11 aroC 0.34 ATOM Х ATOM C1 CH3 Х -0.10 ATOM H2 Х 0.04 Hapo ATOM H3 Х 0.04 Наро H10.04 ATOM Наро Х ATOM N2 Npro Х -0.44 C3 CH3 0.11 ATOM Х Н5 Х 0.03 ATOM Наро 0.03 H6 Наро Х ATOM ATOM H4 Наро Х 0.03 ATOM C12 CNH2 Х 0.68 ONH2 ATOM O2 Х -0.68 C5 -0.25 ATOM aroC Х ATOM C6 aroC Х -0.05 ATOM C8 aroC Х -0.08 ATOM F1 F Х -0.17 ATOM C10 aroC 0.56 Х

ATOM O1	OOC	Х	-0.67	
ATOM C9	aroC	Х	-0.08	
ATOM C7	aroC	Х	-0.05	
ATOM H7	Haro	Х	0.13	
ATOM F2	F	Х	-0.17	
ATOM H8	Haro	Х	0.13	
ATOM H9	Haro	Х	0.12	
BOND_TYPE C1	H2 1			
BOND_TYPE C1	H3 1			
BOND_TYPE C1	H1 1			
BOND_TYPE C1	C11 1			
BOND_TYPE N1	C11 2			
BOND_TYPE N1	C2 1			
BOND_TYPE O1	C10 1			
BOND_TYPE C2	C4 2			
BOND_TYPE C2	C12 1			
BOND_TYPE N2	C11 1			
BOND_TYPE N2	C3 1			
BOND_TYPE N2	C12 4			
BOND_TYPE O2	C12 2			
BOND_TYPE C3	H5 1			
BOND_TYPE C3	H6 1			
BOND_TYPE C3	H4 1			
BOND_TYPE C4	C5 1			
BOND_TYPE C4	H9 I			
BOND_TYPE C5	C6 4			
BOND_TYPE C5	C/4			
BOND_TYPE_C6				
BOND_TYPE_C7	C0 4			
BOND TYPE C7	U9 4 H7 1			
BOND TYPE C8	F1 1			
BOND TYPE C8	C10.4			
BOND TYPE C9	C10 4			
BOND TYPE C9	F2 1			
#CHI1 C2 C4 C	5 C6			
NBR ATOM C4				
NBR RADIUS 5.60	52129			
ICOOR INTERNA	L	C4	0.000000	0.000000
ICOOR_INTERNA	L	C2	0.000000	180.000000
ICOOR_INTERNA	L	N1	-0.000001	52.329407
ICOOR_INTERNA	L	C11	-179.910440	71.991456
ICOOR_INTERNA	L	C1	-177.859132	57.151621
ICOOR_INTERNA	L	H2	-0.565778	56.187873
ICOOR_INTERNA	L	H3	-116.360238	67.723486
ICOOR_INTERNA	L	H1	-125.915669	65.309896
ICOOR_INTERNA	L	N2	177.947519	68.599173
ICOOR_INTERNA	L	C3	179.906282	54.510752
ICOOR_INTERNA	L	H5	-59.896679	70.508523
ICOOR_INTERNA	L	H6	119.707222	70.408523
ICOOR_INTERNA	L	H4	120.206443	68.909056
ICOOR_INTERNA	L	C12	179.997516	72.740427
ICOOR_INTERNA	L	02	-179.974742	54.971911
ICOOR_INTERNA	L	C5	-0.010405	52.749806
ICOOR_INTERNA	L	C6	-0.385418	55.997/554
ICOUK_INTERNA	L	C8	170.00001	59.554822
ICOOK_INTERNA	L	ГІ	-1/9.900001	00.244299

H2

0.000000 C4

1.349077 C4

1.416959 C2

1.292976 N1

1.521362 C11

1.209217 C1

1.136701 C1

1.419331 C11

1.445059 N2

1.110663 C3

1.109885 C3

1.110946 C3

1.340786 N2

1.221955 C12

1.497857 C4

1.413715 C5

1.398770 C6

1.356498 C8

1.140332

C2

C2

C4

C2

N1

C11

C1

C11

N1

C11

N2

N2

N2

C11

N2

C2

C4

C5

C6

N1

N1

N1

C4

C2

N1

C11

H3

C1

N1

C11

H5

H6

C3

C11

N1

C2

C4

C5

ICOOR_INTERNAL	C10	179.977668	59.717550	1.397908 C8	C6	F1	
ICOOR_INTERNAL	01	179.994297	59.945959	1.344216 C10	C8	C6	
ICOOR_INTERNAL	C9	-179.932109	60.138841	1.396190 C10	C8	01	
ICOOR_INTERNAL	C7	-0.078832	59.911335	1.397451	C9	C10	C8
ICOOR_INTERNAL	H7	-179.951647	61.144133	1.083859 C7	C9	C10	
ICOOR_INTERNAL	F2	-179.906656	59.913978	1.356367 C9	C10	C7	
ICOOR_INTERNAL	H8	-179.989428	57.828087	1.072240 C6	C5	C8	
ICOOR_INTERNAL	H9	179.867077	63.647869	1.087977 C4	C2	C5	

Rosetta centroid parameter file(.param) for DFHBI:

HBI.cen.param AME HBI IO STRING HBI Z TYPE LIGAND AA UNK ATOM C4 CAbb X 0.04 ATOM C2 CAbb X 0.03 ATOM N1 OCbb X -0.79 ATOM C11 CAbb X 0.70 ATOM C1 CAbb X -0.53 ATOM N2 Nbb X -1.10 ATOM C3 CAbb X -0.17 ATOM C12 CAbb X 1.08 ATOM O2 OCbb X -0.83 ATOM C5 CAbb X -0.26 ATOM C6 CAbb X -0.15 ATOM C8 CAbb X 0.35 ATOM F1 CAbb X -0.46 ATOM C10 CAbb X 0.38 ATOM O1 OCbb X -0.83 ATOM C9 CAbb X 0.35 ATOM C7 CAbb X -0.16 ATOM F2 CAbb X -0.46 BOND TYPE C1 C111 BOND_TYPE N1 C112 BOND_TYPE N1 C2 1 BOND_TYPE O1 C101 BOND TYPE C2 C4 2 BOND_TYPE C2 C121 BOND_TYPE N2 C111 BOND_TYPE N2 C3 1 BOND_TYPE N2 C12 4 BOND_TYPE O2 C12 2 BOND_TYPE C4 C5 1 BOND_TYPE C5 C6 4 BOND_TYPE C5 C7 4 BOND_TYPE C6 C8 4 BOND_TYPE C7 C9 4 BOND_TYPE C8 F1 1 BOND_TYPE C8 C104 BOND_TYPE C9 C104 BOND_TYPE C9 F2 1 #CHI1 C2 C4 C5 C6 NBR ATOM C4 NBR_RADIUS 5.662663 ICOOR_INTERNAL C4 0.000000

0.000000 0.000000 C4 C2 N1

ICOOR_INTERNAL C2 0.000000 180.000000	1.349492 C4	C2	N1
ICOOR_INTERNAL N1 0.000000 52.312127	1.416411 C2	C4	N1
ICOOR_INTERNAL C11 -179.876986 71.981668	1.292864 N1	C2 C4	
ICOOR_INTERNAL C1 -177.823063 57.141926	1.521803 C11 N1	C2	
ICOOR_INTERNAL N2 177.824660 68.608152	1.418583 C11 N1	C1	
ICOOR_INTERNAL C3 179.909099 54.484510	1.445087 N2	C11 N1	
ICOOR_INTERNAL C12 -179.933962 72.728853	1.340776 N2	C11 C3	
ICOOR_INTERNAL O2 179.964406 54.938317	1.222126 C12 N2	C11	
ICOOR_INTERNAL C5 0.003093 52.791761	1.497704 C4	C2	N1
ICOOR_INTERNAL C6 -0.352261 55.946592	1.413198 C5	C4	C2
ICOOR_INTERNAL C8 179.949796 59.531212	1.399355 C6	C5	C4
ICOOR_INTERNAL F1 -179.990868 60.282211	1.356833 C8	C6	C5
ICOOR_INTERNAL C10 179.985408 59.719418	1.396930 C8	C6	F1
ICOOR_INTERNAL O1 -179.980291 59.936638	1.344611 C10 C8	C6	
ICOOR_INTERNAL C9 -179.990699 60.126809	1.396219 C10 C8	01	
ICOOR_INTERNAL C7 -0.021432 59.905469	1.397765 C9	C10 C8	
ICOOR_INTERNAL F2 -179.975061 59.878212	1.356616 C9	C10 C7	

Amino acids composition file used for biasing aromatic residues during sequence design for DFHBI-binding beta barrels

favour core aromatics.comp

PENALTY_DEFINITION # Define residue types to control PROPERTIES AROMATIC NOT_PROPERTIES POLAR CHARGED # Declare desired quantity of these residues FRACTION 0.15 # Set the penalty for having too few, at the desired number, and too many of the specified residues PENALTIES 100 0 100 FRACT_DELTA_START -0.05 #DELTA_START -1 FRACT_DELTA_END 0.1 #DELTA_END 2 #set how the penalties are applied BEFORE_FUNCTION CONSTANT AFTER FUNCTION CONSTANT END_PENALTY_DEFINITION

57. Huang, P.-S. et al. High thermodynamic stability of parametrically designed helical bundles. Science

346, 481–485 (2014).

58. Koga, N. et al. Principles for designing ideal protein structures. Nature 491, 222–227 (2012).

- Craveur, P., Joseph, A. P., Rebehmed, J. & de Brevern, A. G. β-bulges: Extensive structural analyses of β-sheets irregularities. *Protein Sci.* (2013). doi:10.1002/pro.2324
- 60. Milner-White, E. J. Beta-bulges within loops as recurring features of protein structure. *Biochimica et Biophysica Acta (BBA) Protein Structure and Molecular Enzymology* **911**, 261–265 (1987).
- 61. Leader, D. P. & Milner-White, E. J. Motivated proteins: a web application for studying small three-dimensional protein motifs. *BMC Bioinformatics* **10**, 60 (2009).
- James Milner-White, E. & Poet, R. Loops, bulges, turns and hairpins in proteins. *Trends Biochem. Sci.* 12, 189–192 (1987).
- Greene, L. H. *et al.* Role of conserved residues in structure and stability: Tryptophans of human serum retinol-binding protein, a model for the lipocalin superfamily. *Protein Sci.* 10, 2301–2316 (2009).
- 64. Huang, P.-S. *et al.* De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. *Nat. Chem. Biol.* **12**, 29–34 (2015).
- Wang, G. & Dunbrack, R. L., Jr. PISCES: a protein sequence culling server. *Bioinformatics* 19, 1589–1591 (2003).
- Kozma, D., Simon, I. & Tusnády, G. E. PDBTM: Protein Data Bank of transmembrane proteins after 8 years. *Nucleic Acids Res.* 41, D524–9 (2013).
- 67. Burley, S. K. *et al.* RCSB Protein Data Bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education. *Protein Sci.* **27**, 316–330 (2018).
- 68. Heinig, M. & Frishman, D. STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. *Nucleic Acids Res.* **32**, W500–W502 (2004).
- 69. Chakravarty, S. & Varadarajan, R. Residue depth: a novel parameter for the analysis of protein structure and stability. *Structure* **7**, 723–732 (1999).
- 70. Lemmon, G. & Meiler, J. Rosetta Ligand docking with flexible XML protocols. Methods Mol. Biol.

819, 143–155 (2012).

- Fleishman, S. J. *et al.* RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. *PLoS One* 6, e20161 (2011).
- 72. Hoover, D. M. & Lubkowski, J. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. *Nucleic Acids Res.* **30**, e43 (2002).
- 73. Fleishman, S. J. *et al.* Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. *Science* **332**, 816–821 (2011).
- 74. Bhardwaj, G. *et al.* Accurate de novo design of hyperstable constrained peptides. *Nature* 538, 329–335 (2016).
- Würth, C., Grabolle, M., Pauli, J., Spieles, M. & Resch-Genger, U. Relative and absolute determination of fluorescence quantum yields of transparent samples. *Nat. Protoc.* 8, 1535–1550 (2013).
- Olmsted, J. Calorimetric determinations of absolute fluorescence quantum yields. J. Phys. Chem. 83, 2581–2584 (1979).
- Sjöback, R., Nygren, J. & Kubista, M. Absorption and fluorescence properties of fluorescein. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, L7–L21 (1995).
- 78. R Development Core Team. The R Reference Manual: Base Package. (Network Theory., 2003).