TABLE S1 Read numbers of *amoA/pmoA* genes of AOA, AOB, comammox and MOB in various environmental samples from metagenomic or metatranscriptomic datasets in the NCBI SRA database. (Excel file format)

TABLE S2 Read numbers of *amoA/pmoA* genes of AOA, AOB, comammox and MOB in marine samples from metagenomic or metatranscriptomic datasets in the CAMERA database. (Excel file format)

Communication of	No. of	clad	le A	.1. I. D		Othors	
Sample type	reads	clade A.1	clade A.2	- clade B	AOB	Others	
Soil							
Dry land soil	57722	129	3626	125	51985	1857	
Coal mine soil	17448	100	2334	10	13303	1701	
Landfill soil	99747	5478	2111	182	91829	147	
Paddy soil	147776	16311	11990	23340	96103	32	
Plateau soil	20440	4715	143	13102	2477	3	
Forest soil	41931	86	1368	38149	2325	3	
Sediment							
Tidal flat sediment	6853	5193	1126	10	522	2	
Saltmarsh sediment	20498	10483	6982	683	2319	31	
Coastal sediment	36591	18909	8926	39	8714	3	
River sediment	20132	7933	2930	7657	1609	3	
Lake sediment	198760	175734	12033	2404	8526	63	
Sludge							
Activated sludge	17130	372	43	13	16699	3	
Anaerobic sludge	19194	13027	896	14	5247	10	
Water							
Tap water	27302	3302	23663	27	305	5	
Coastal water	29191	25144	3911	63	67	6	
River water	22134	11156	8466	182	2324	6	
Lake water	4958	4252	341	7	47	311	
Leaf							
Leaf surface	28839	13899	7211	718	6991	20	

TABLE S3 Read numbers of comammox and AOB in 18 different environmental samples (amplification failed for the other three of the 21 samples) analyzed via partial nested PCR amplification of the comammox-specific *amoA* gene.

TABLE S4 The 30 major OTUs ($\geq 0.7\%$) of the comammox *amoA* gene with 90% similarity cutoff for each environment sample. Please see Figure 3 for the phylogeny of these major OTUs. (Excel file format)

TABLE S5 Amino acid similarity matrix of different comammox OTUs identified with a 90% similarity cutoff. (Excel file format)

TABLE S6 Diversity indices with 97% or 90% similarity cutoffs for comammox, AOB and AOA *amoA* gene sequences in each of the 12 environmental samples after rarifying read numbers to 1900 for each sample. (Excel file format)

Sample	Sample name	Sample type	Location	Longitude and	Sample description	Sampling time	pН	NO ₃ -	NH ₃
ID				latitude				(µmol/g)	(µmol/g)
1	Dry land soil	soil	Chongming Island,	121°36' E,	0-5 cm of surface soil planted with	Oct. 2013	_ a	-	-
			Shanghai, China (Yangtze	31°36' N	wheat				
			River estuary)						
2	Coal mine soil	soil	Shanxi Province, China	109°35' E,	0-5 cm of surface soil covered by	May 2012	7.9	0.10	0.00
			(the Loess Plateau)	38°26' N	grass near the operating fan outlet				
3	Landfill soil	soil	Disused municipal solid	121°52' E,	0-5 cm of surface soil planted with	Apr. 2011	7.1	4.22	0.50
			waste landfill, Shanghai,	31° 02' N	shrubs				
			China						
4	Paddy soil	soil	Chongming Island,	121°36' E,	0-5 cm of surface soil planted with	Oct. 2011	7.64	0.70	1.16
			Shanghai, China	31°36' N	rice				
5	Glacier soil	soil	Xinjiang Province, China	86°50' E,	0-5 cm of surface soil covered by ice	Aug. 2009	-	-	-
				43°07' N					
6	Plateau soil	soil	Tibet, China (high	94°25' E, 29°38'	0-5 cm of surface soil planted with	Aug. 2009	8.7	0.09	0.13
			elevation)	Ν	grass				
7	Forest soil	soil	Forest Park, Shanghai,	121°33' E,	0-5 cm of surface soil planted with	Oct. 2013	8.1	2.08	0.39
			China	31°19' N	deciduous trees				
9	Tidal flat	sediment	Chongming Island,	121°59' E,	0-5 cm of surface sediment (no plant)	Oct. 2013	7.32	0.09	0.05
	sediment		Shanghai, China	31°29' N					
10	Saltmarsh	sediment	Chongming Island,	121°57' E,	0-5 cm of surface sediment planted	Oct. 2013	7.6	0.02	0.21
	sediment		Shanghai, China	31°31' N	with reed at intertidal region				
11	Coastal sediment	sediment	East China Sea, China	122°07' E, 31°	0-10 cm of surface sediment at 20 m	Jul. 2011	7.45	0.03	0.07
			(Near Shanghai)	02′ N	of water depth				

TABLE S7 Characteristics of various environmental samples analyzed in this study

12	River sediment	sediment	Lower reach of Yangtze	121°45' E,	0-5 cm of surface sediment at 0.5 m	Oct. 2013	7.6	3.88	0.00
			River, Shanghai, China	31°28' N	of water depth				
13	Lake sediment	sediment	Ping Lake, Zhejiang	120°01' E,	0-5 cm of surface sediment at 2 m of	Aug. 2012	7.5	9.66	1.37
			Province, China (Middle-	30°41' N	water depth				
			Lower Yangtze Plain)						
14	Wetland	sediment	Songduo wetland, Tibet,	100°35' E,	0-5 cm of surface sediment of plateau	Aug. 2009	7.46	20.78	5.65
	sediment		China (Tibetan Plateau)	32°15' N	wetland covered by grass				
15	Hot spring	sediment	Riduo hotspring, Tibet,	99°40' E, 35°13'	0-5 cm of surface sediment at 60°C	Aug. 2009	7.84	0.35	0.00
	sediment		China (Tibetan Plateau)	Ν					
16	Activated sludge	sludge	Hongkou Qu,	121°29' E,	Aeration tank of a sewage treatment	Jun. 2009	7.52	0.24	16.06
			Shanghai, China	31°17' N	plant				
17	Anaerobic sludge	sludge	Brewage wastewater	121°33' E,	Recycling sludge from anaerobic	Jun. 2009	7.6	1.10	13.87
			treatment plant, Shanghai,	31° 04' N	digestion plant				
			China						
18	Tap water	water (filter)	Fudan University,	121°31′E,	1 L water filtered through a 0.22- μ m	Sep. 2015	7.5	0.00	0.00
			Shanghai, China	31° 18′ N	nitrocellulose filter				
19	Coastal water	water (filter)	Coast of East China Sea,	122° 13′ E,	1 L water filtered through a 0.22- μ m	Jul. 2011	-	-	-
			China (near Zhejiang	28° 45′ N	nitrocellulose filter				
			Province)						
20	River water	water (filter)	Lower reach of Yangtze	121°45' E,	0.5 L surface water filtered through a	Oct. 2013	-	-	-
			River, Shanghai, China	31°28' N	0.22-µm nitrocellulose filter				
21	Lake water	water (filter)	Ping Lake, Zhejiang	120°01' E,	1 L of 0-5 cm surface water filtered	Aug. 2012	-	-	-
			Province, China (Middle-	30°41' N	through a 0.22-µm nitrocellulose				
			Lower Yangtze Plain)		filter				
22	Leaf surface	water (filter)	Pond in Fudan University,	121°29' E,	1 L sterile water shaken with 3 pieces	May, 2011	-	-	-
			Shanghai, China	31°18' N	of lotus leaves (~ 0.3 m^2 total surface)				

and filtered through a 0.22- μ m

nitrocellulose filter

^a -: not determined.

FIG S1 A ternary plot of the relative abundances of comammox, AOB, and AOA in 90 metatranscriptomic datasets of different environmental samples from the NCBI SRA database with *amoA* gene sequence read numbers of at least 30. The numbers directed by arrows in the figure indicate the numbers of overlapping specific color squares. The numbers in parentheses denote the numbers of datasets used in this analysis for specific environmental types. For detailed information on each of the datasets, please see Table S1.

FIG S2 Gel image of different PCR products from river sediment, forest soil, and plateau soil samples. Lanes M and N indicate the marker and negative control for partial nested PCR, respectively, and lanes 1-5 indicate the PCR product using different methods with the different samples mentioned above. Lane 1: partial nested PCR; Lane 2: PCR with degenerate primers for clade A; Lane 3: PCR with mixed primers for clade B; Lane 4: PCR with degenerate primers for clade B; Lane 5: PCR with mixed primers for clade B. The PCR primers and amplification conditions for Lane 1 are described in the Materials and methods section, and those for Lanes 2-5 are described in Pjevac *et al.* (Pjevac et al., Front Microbiol 8:e1508, 2017).

).

FIG S3 Neighbor-joining phylogenetic tree for comammox AmoA retrieved by partial nested PCR developed in this study and *Nitrospira amoA*-specific degenerate primers developed by Pjevac *et al.* (Pjevac et al., Front Microbiol 8:e1508, 2017). Characters "A", "B" and "N" in the OTU names indicate the degenerate primers for clade A, degenerate primers for clade B and primers for partial nested PCR, respectively. Characters "P", "R" and "F" in the parentheses indicate plateau soil, river sediment and forest soil, respectively. The number after the sample symbol character indicates the percentage of the sequences in this OTU of this sample compared to the total sequence number retrieved using the same PCR primers for this sample (from all OTUs).

FIG S4 Rarefaction curves of the number of OTUs, the Chao1 estimator and the Shannon index using OTU similarity thresholds of 90% with same region of the *amoA* gene for comparisons of comammox and AOB (A) and comammox and AOA (B) based on a combination of 1900 randomly selected reads from each of the 12 different environmental samples.

Primer A682 reverse complement)	NGCSTTC-5´ (re	STTCTTCTC	3'-G(
Clade A.1	•••• <u>T</u> (21/21)		
	(45/96)	G.	Τ.
Clade A.2	A T (33/96)	AG.	Τ.
J	(10/96)	AG.	Т.

FIG S5 Evaluation of the coverage of primer A682 for comammox bacteria. The sequences were obtained from seven clone libraries of comammox *amoAB* genes amplified using the THDP-PCR method from tidal flat sediment, rice soil, forest soil, leaf surface, tap water, sea water, and activated sludge samples. The data in parentheses indicate the frequency of each sequence in the total sequence sets of clade A.1 and clade A.2.