
GigaScience
 

Comprehensive evaluation of RNA-Seq analysis pipelines in diploid and polyploid
species

--Manuscript Draft--
 

Manuscript Number: GIGA-D-18-00140R1

Full Title: Comprehensive evaluation of RNA-Seq analysis pipelines in diploid and polyploid
species

Article Type: Research

Funding Information: National Institute of Food and Agriculture
(2009–02533)

Dr. Margaret Staton

Agricultural Research Service
(58–6062–5-004)

Dr. Margaret Staton

Abstract: Background

The usual analysis of RNA-Seq reads is based on an existing reference genome and
annotated gene models. However, when a reference for the sequenced species is not
available, alternatives include using a reference genome from a related species or
reconstructing transcript sequences with de novo assembly. In addition, researchers
are faced with many options for RNA-Seq data processing and limited information on
how their decisions will impact the final outcome. Using both a diploid and polyploid
species with a distant reference genome, we have tested the influence of different tools
at various steps of a typical RNA-Seq analysis workflow on the recovery of useful
processed data available for downstream analysis.

Findings

At the preprocessing step, we found error correction has a strong influence on de novo
assembly but not on mapping results. After trimming, a greater percentage of reads
were able to be used in downstream analysis by selecting gentle quality trimming
performed with Skewer instead of strict quality trimming with Trimmomatic. This
availability of reads correlated with size, quality and completeness of de novo
assemblies, and number of mapped reads. When selecting a reference genome from a
related species to map reads, outcome was significantly improved when using
mapping software tolerant of greater sequence divergence, such as Stampy or
GSNAP.

Conclusions

The selection of bioinformatic software tools for RNA-Seq data analysis can maximize
quality parameters on de novo assemblies and availability of reads in downstream
analysis.
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Response to Reviewers: Reviewer reports:

>Reviewer #1: General Comments.

>The idea of comparing different assembly and mapping strategies is compelling. It is
true, that there are few resources about the effects of polyplody on tools designed
mostly for diploids. Since the mappings are already done, you could explore in more
detail how multiple homoeologues may be mapping to the same "unigene", or you
could try to figure out if the homoeologues are removed/merged into single unigenes. If
that is the case, you may be mapping the tetraploid to a reference closer to a diploid. If
the duplication event is recent, you can expect almost double of the genes in the
tetraploid transcriptome, compared to the diploid.

We attempted a comparison between transcripts from the tetraploid and diploid gene
models, but results were difficult to interpret. To date, there is no tetraploid Vaccinium
genome to use for the sequences for homoeolog genes to distinguish between
isoforms and homoeologues. Thus, we used the BUSCO tool (benchmark universal
single copy orthologs) to explore the relative duplication of transcriptomes, considering
that similar homoeologues may be hits to the same BUSCO protein, and also we
discuss how clustering reduces duplication; however, whether these duplicates are
homoeologues or isoforms remains uncertain. In relation to when the duplication event
took place, although cytogenetic studies have been done to assess blueberry ploidy
(Sakhanokho 2018), we couldn’t find any information on specific timing (recent or not)
in the literature. Figure 5 A&B, Lines 517-520.

>The idea behind figure 1, that shows all the tools is nice. However, it can be improved
to make the order of the pipeline more explicit.

Figure 1 is modified and now contains arrows to help follow the pipeline.

>Also, the kind of algorithms, drawbacks, advantages, etc of each program used is
scatter all over the place. It would be nice to have a table with all that information
summarized, including one column with a short description of the final effect in each
step of the analysis. A row could look like (with more rows, one for each step in the
pipeline)
>Tool: Trimmomatic
>De Novo Assembly: Improves in 5% on VC (or whatever you find)
>Mapping to genome: Limited effect.

As suggested, a new supplementary table including pre-processing tools, assemblers,
clustering methods and aligners has been added. (Table S1)

The figures require a lot of work to make them look consistent (same colours for same
variables across the paper, for example).

>Colors have been made consistent among figures.

>Specific comments.

>Figure 1.
>General: It is confusing what are characteristics of the analysis (like
individual/combined), programs (Is Rcorrector a program? A typo?). Some colour/font
style change could help to distinguish them.  The legend requires a lot of work, as it is
not very descriptive of the elements represented. Also, the colours could be improved
to reduce confusion. Yellow seems to represent "cor trim" and reference genome. Grey
is for Cor skewer, but it is also used for Clustering.
>Panel A: Cor skewer is not present in the diagram. Also, there is no explanation of
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what the crosses mean. Rcorrector is not defined in legend.  The figure seems to
suggest that Rcorrector and Trimmomatic/Skewer are two different pipelines, where in
the text it is described as Rcorrector+Trimmmatic or Rcorrector+Skewer
>Panel B: The boxes don't need to be colour coded, as the colours are not used
elsewhere to link, and adds confusion as green are blue are used to represent
transcripts and reads elsewhere in the figure.
>Panel C: It is not clear that the top and the bottom diagrams are different things (De
Novo vs reference guided).

Considering the comments of the reviewer, Figure 1 has been modified and the legend
is now fully descriptive.

>Line 72. Illumina may still be cheaper, but it may be worth mentioning Iso-Seq, from
PacBio that are already able to retrieve full transcripts. I understand it is beyond the
scope of the paper, but it is worth mentioning.

A line commenting on Iso-Seq for transcriptome studies is added (Line 85-88).

>Line 89. A supplementary figure showing how the different errors affect the assembly
could help the unexperienced reader to understand why the errors happen.

A short description and an additional citation are included to help readers with this
(Line 104-105).

>Line 93. It is commonly selected, agreed. But how do you define good performance?
Having used it before, the pipeline writes several temporary files, which
computationally is not very performant. If it refers to the quality of the assembly, no
other options are discussed in this paper, are there any other RNA-Seq assemblers?

Our original goal for good performance was referring to high scores in metrics such as
mapped-back reads,fewer chimeras, or good recovery of transcripts, where Trinity
performs well. The review makes a good point that performance may be related to
computational efficiency rather than or in addition to biological accuracy, “good
performance” is changed to “good quality”. (Line 112). Also, a pair of extra assemblers
are added to the analysis as requested by another reviewer, please see below.

>Line 112. FM-Index is not defined. Hash tables are considered fast in computer
science. You can argue that it depends on details of the implementations and how the
different software compensate for the drawbacks (like doing a "proper " alignment once
the region where the read maps is identified).

The description has been added, and also the sentence was modified to indicate array
and algorithm on the comparison. (Line 135-138)

>Line 136: Is Vaccinium corymbosum derived from a duplication of V. arboreum? if so,
it may be worth to mention. It would also be nice to have a comparison of how distant
they are.

V. corymbosum is considered autotetraploid, derived from a duplication of a diploid V.
corymbosum (not a hybridization). A diploid V. corymbosum individual was used for
genome sequencing; this is now indicated right after the informtion that VC is
autotetraploid. (Line 158-162) V. arboreum is a different species in a different section
of Vaccinium, now specified in the text. (Line 164-165). While some limited
phylogenetics analysis of Vaccinium spp. has been completed, none include both the
species we used for this study.

>Table S1. Add more detailed columns, so besides the column with the name, you
have a description. So,  VC_trimm_Uc can have a three extra columns explaining VC,
trim and Uc. May seem redundant, but it will allow to interpret the table on its own.

As suggested, the extra columns are added.

>Line 157. How do you decide if it is significant?
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A statistician was consulted during the interpretation of results, but because the
statistical report did not contain all possible options, we decided not to include it.
Significant is changed to low. (Line 182)

>Figure S1. You can coordinate the colours of the samples with the legend on Figure
1, to make everything consistent.

Colors have been made more consistent between the figures and to the rest of the
figures in the paper.

>Line 196/Table 1. I would suggest to move this table to supplementals and show a
boxplot with the size of the assemblies for each donation.

This table has been moved to the supplemental materials.

>Line 240. Detonate has not been described in the introduction, where other tools had
been mentioned and how they work.

The tools mentioned in the introduction are all used in head-to-head comparisons.
Tools used only to calculate metrics were not mentioned. However, it is a good idea to
explain more about Detonate in the results. A sentence about it and the reference are
now added to the Analysis section. (Line 217-222)

>Lile 272: Be consistent with the nomenclature. In the figure it is marked as "VC_4"
and on text as "VC 4". You can rename the columns on your tables before plotting with
something like: gsub("_"," ", table$Assmbly_type) if you are using R.

The underscores on assembly type in figures are removed.

>Figure 3. The "transloc" and mult "bands" are hard to read, probably have this a
supplemental table. I would also normalize the plot in percentages and have an extra
panel with the number of transcripts that are used.

Mapping results are now provided as a table. Leaving total number of transcripts in the
figure instead of using percents is intentional to visualize the global variations, and
also, its not clear if it would be more informative to look at percents of total reads
mapped or of total reads sequenced. However, to provide readers with either option,
we have added the percentages in the supplemental file. This figure is now updated to
improve compactness and visualization.

>Paragraph starting on Line 337: So from this paragraph, we may conclude that it is
more important the number and volume of reads than the data processing? Maybe it
would be worth to consider if the cost of sequencing more is cheaper than having more
steps in the analysis? Or full transcript sequencing?

From these results, the suggestion is that if you have sequenced multiple samples,
combining them may perform better than using them separately. Also, soft trimming
has a positive effect. We find it to be impossible to estimate if the cost of analysis,
which largely depends on the type of bioinformatics support available for each
research group. Full transcript sequencing (IsoSeq) may help assembly, although this
type of sequencing has higher error and requires error correction. Without testing we
prefer not to make further suggestions about this method. Instead, we mention IsoSeq
as an alternative method in the introduction (line 85-89).

>Paragraph starting on line 486: Did you evaluate how homoeologue genes affect the
mapping? I'm wondering if during the clustering step you could be collapsing
homoeologues in a single representation.

Current genomic resources in blueberry, like in most polyploids, do not include precise
information on homoeolog sequences. As such, transcripts produced from
homoeologues with less than 5% sequence variation, would be collapsed by CD-HIT,
which affected 22% of sequences with very little effect on quality metrics. Considering
the soft clustering method applied and high similarity of putative collapsed
homoeologues, the global effect on read mapping is expected to be low. A sentence
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mentioning this is added at the beginning of the section (Lines 548-550). Specific to
assembly clustering, possible collapse of homoeologs by clustering is mentioned as
well (Line 517-520).

>Methods.

>Are the scripts/exact commands used for the analysis deposited somewhere? You
could have a GitHub repository with your scripts or add them as supplemental (or
both!)

Most of the work consisted of running external software on the command line. Basic
instructions on how to run these are included in the manuscript. For some specific
functions written by the authors, including the calculations of Jaccard scores and
coverage, a package of scripts was submitted to Gigascience and will be available as
part of the publication through an ftp link. This should also be provided to the
reviewers.

>List of abbreviations: Include all the abbreviations used, like "cor", "trim", etc.

Following the suggestion, the list has been updated.

>Reviewer #2: Major Concern:
>The authors benchmarked Control Reads against Treatment Reads, Single Sample
against Multiple Samples as input, CD-HIT against RapClust for clustering, and five
mappers including bowtie2, gsnap, stampy, star and hisat2 for mapping reads. But for
assembly, the authors benchmarked only one transcriptome assembler, Trinity.

We now included three assemblers, see below.

>The authors claimed, "Trinity is commonly selected and has good performance" in
line 94 and cited two papers. One paper titled "Optimizing de novo transcriptome
assembly …" was published 2011, which is a bit outdated and doesn't include the
benchmark of latest short-read transcriptome assemblers. The other paper
"Comprehensive evaluation of de novo …" is new (2017) but doesn't support the
authors claim and concluded in its abstract, quote: "SOAPdenovo-Trans performed
best in base coverage, while Trans-ABySS performed best in gene coverage and
number of recovered full-length transcripts. In terms of chimeric sequences, BinPacker
and Oases-Velvet were the worst, while IDBA-tran, SOAPdenovo-Trans, Trans-ABySS
and Trinity produced fewer chimeras across all single k-mer assemblies."

The claim of “good performance” is modified to “usually good quality”, which is not
contradicted with the references considering that in both of them, Trinity was best or
second best at some quality metrics.

 >As we know, transcriptome assemblers perform differently on genomes of different
characteristics - Trinity usually performs better on mammals and vertebrates,
SOAPdenovo-Trans on plants and Trans-ABySS on metagenomics. As the authors are
targeting a "Comprehensive evaluation of RNA-Seq analysis pipelines", it is necessary
to include another one or two leading transcriptome assemblers.

A comparison including assemblies from SOAPdenovo-Trans (due to the indicated
usual better performance on plants, which we were not aware of), Trans-AbySS (which
had also good performance in the references), and Trinity has been added.

>Minor Concerns:
>Cite Detonate score paper in line 240.

Citation was added.

Additional Information:

Question Response
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Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum

Yes
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Abstract 25 

Background: The usual analysis of RNA-Seq reads is based on an existing reference 26 

genome and annotated gene models. However, when a reference for the sequenced 27 

species is not available, alternatives include using a reference genome from a related 28 

species or reconstructing transcript sequences with de novo assembly. In addition, 29 

researchers are faced with many options for RNA-Seq data processing and limited 30 

information on how their decisions will impact the final outcome. Using both a diploid 31 

and polyploid species with a distant reference genome, we have tested the influence of 32 

different tools at various steps of a typical RNA-Seq analysis workflow on the recovery 33 

of useful processed data available for downstream analysis.  34 

 35 

Findings: At the preprocessing step, we found error correction has a strong influence on 36 

de novo assembly but not on mapping results. After trimming, a greater percentage of 37 

reads were able to be used in downstream analysis by selecting gentle quality trimming 38 

performed with Skewer instead of strict quality trimming with Trimmomatic. This 39 

availability of reads correlated with size, quality and completeness of de novo 40 

assemblies, and number of mapped reads. When selecting a reference genome from a 41 

related species to map reads, outcome was significantly improved when using mapping 42 

software tolerant of greater sequence divergence, such as Stampy or GSNAP.  43 

 44 

Conclusions: The selection of bioinformatic software tools for RNA-Seq data analysis 45 

can maximize quality parameters on de novo assemblies and availability of reads in 46 

downstream analysis.  47 

 48 

Keywords: RNA-Seq, pipeline, polyploid, correction, trimming, assembly, clustering, 49 

reference genome, mapping 50 
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Background 52 

Bioinformatics is a field under constant expansion with regular advances in the 53 

development of software and algorithms. This requires researchers to continuously 54 

evaluate available software tools and approaches to maximize accuracy of experimental 55 

outcomes [1]. However, the majority of the relevant studies comparing bioinformatic 56 

tools for RNA-Seq data focus on straightforward scenarios with diploid eukaryotes with 57 

an available reference genome [2-5]. The implications of data analysis decisions are less 58 

clearly understood in situations where, for example, the species of interest is a polyploid 59 

or the species of interest does not have a reference genome but a reference genome is 60 

available from a sister clade. This study aims to explore RNA-Seq data analysis from 61 

this scenario, where the main steps are read trimming, either mapping to a related 62 

species reference genome (from here on referred to as a “distant reference”) or to a de 63 

novo transcriptome assembly, and read quantification by gene or transcript (Figure 1). 64 

Moreover, this study compares decisions along the RNA-Seq analysis steps of a 65 

workflow, examining all permutations of those decisions from the beginning to the end 66 

of the pipeline.  67 

 68 

Figure 1. Schematic view of the RNA-Seq pipeline followed on this work.  69 

(A) Samples were obtained from roots of the diploid Vaccinium arboreum (VA) and 70 

tetraploid V. corymbosum (VC) grown at either pH 4.5 or 6.5, and sequenced. (B) 71 

Paired-end (PE) Illumina reads were either error corrected (cor; black lines) or not (Uc), 72 

and trimmed for removal of adapters and either low-quality bases (trimm; red crosses) 73 

or not (skewer). (C) Each set of reads was subjected to two de novo transcriptome 74 

assembly methods (2 individual samples and merge results, or 4 combined samples) 75 

with three assemblers, followed by redundancy reduction by CD-HIT and RapClust 76 

clustering methods. Metrics were conducted on all steps. Trinity transcriptomes were 77 

further annotated, and their CD-HIT clusters used for mapping (underlined). (D) 78 

Transcripts were mapped to a diploid VC genome with gmap for mapping metrics, 79 

while short reads were mapped to either the genome or a transcriptome using multiple 80 

read aligners to obtain read counts. 81 

 82 
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From the many next generation sequencing platforms that generate RNA-Seq data, 83 

Illumina has had the greatest success, yielding high quality reads at a reasonable price 84 

and read length increasing with new generations of instruments [6]. An alternative to 85 

RNA-Seq for the study of transcriptomes is Iso-Seq, a method developed by PacBio to 86 

analyze molecules 1-6 Kb long. This method has the advantage of capturing full 87 

transcripts but is significantly more expensive per base and thus currently less 88 

commonly used than RNA-Seq [7]. From raw RNA-Seq reads, numerous informatic 89 

analysis decisions must be made to derive meaningful biological data, starting with any 90 

preprocessing of the reads. Despite the usually high accuracy of Illumina reads (0.1% 91 

error rate), error correction is a method with potential to improve the quality of read 92 

alignment and de novo assembly [8]. Before sequencing, adapters are incorporated to 93 

both ends of each sequence. Trimming of bases originating from these adapters is 94 

required, but the merit of aggressive versus gentle trimming of lower quality bases, 95 

which modifies the final amount of data, is still being explored [9].  96 

 97 

After preprocessing, if a reference genome is available, RNA-Seq reads may be used to 98 

call variants or determine differentially expressed genes; on the contrary, de novo 99 

assembly may be used to reconstruct transcripts to do such analyses [10]. De novo 100 

transcriptome assembly in plants is complex due to the sequence similarity of transcripts 101 

that are isoforms, paralogs, orthologs and, in the case of polyploids, homoeologs. 102 

Moreover, in transcriptomes of plants under environmental stress, alternative splicing is 103 

even more prevalent [11]. During de novo assembly, this complexity is reflected in the 104 

form of bubbles or extra branches in de Bruijn graphs that may lead to imperfect 105 

assemblies, with a portion of assembled transcripts affected by artifacts such as hybrid 106 

assembly of gene families, transcript fusion (chimerism), insertions in contigs, and 107 

structural abnormalities such as incompleteness, fragmentation, and local misassembly 108 

of contigs [12, 13].  109 

 110 

From the many assemblers developed to use with short reads, Trinity [14] is often 111 

selected and usually produces good quality assemblies at single k-mer [4, 15]. Trans-112 

ABySS [16], which has good recovery of full transcripts, and SOAPdenovo-Trans [17], 113 

designed to handle difficulties of plant genes assembly, are also prevalent. A next step 114 

to refine de novo assemblies is often to further reduce transcript redundancy. One 115 
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popular tool is CD-HIT [18], which removes shorter redundant sequences based on 116 

sequence similarity. A more recently released clustering tool, RapClust [19], generates 117 

clusters based on the relationships exposed by multi-mapping sequencing fragments and 118 

is considerably faster than previous approaches. Several methods are available to assess 119 

the overall quality, accuracy, contiguity and completeness of a de novo assembled 120 

transcriptome, including basic metrics for assemblies, contig-level metrics, reference-121 

free evaluation methods that include read support, and comparison to protein datasets 122 

from related species [10, 12, 20-22].  123 

 124 

Read mapping is a crucial step to estimate gene expression for further analysis, but is 125 

made difficult by sequencing errors and is dependent on characteristics of the reference 126 

(quality of gene annotation, relatedness to sequenced individuals, size, repetitive 127 

regions, ploidy, etc.) [23]. Mapping transcript reads to a reference genome has the 128 

additional challenge of crossing splice junctions, some of which may not be accurately 129 

annotated [3]. Multiple metrics can be used to determine performance of read aligners. 130 

Precision and recall are the usual metrics with simulated data, while evaluations without 131 

a priori known outcomes utilize mapping rate, base mismatch rate, detected transcripts 132 

or correlation of gene expression estimates to quantify performance [2, 24]. These 133 

outcomes are dependent on the individual implementations of each alignment software 134 

package. Many short read aligners are based on hash tables, with quick seeding of 135 

alignment candidates and alignment extension with precise algorithms. These are more 136 

sensitive but usually slower than those based on the ultrafast FM-index (Full-text index 137 

in Minute space) and extension by dynamic programming, which are fast though less 138 

flexible with handling errors [2, 10]. When using a distant genome, sequence 139 

divergence between reads and the reference genome may compromise results; 140 

nucleotide mismatches are more likely to decrease the number of mapped reads, while 141 

indels are usually better tolerated with gapped alignments [2]. One benefit from the 142 

utilization of a distant genome is a direct comparison of gene expression results from 143 

multiple related species [25]. On the other hand, utilization of de novo assemblies 144 

avoids the mapping issues to a distant genome and also captures divergent and novel 145 

genes useful for species-specific discovery of new functions. Selecting between a de 146 

novo transcriptome or a reference genome has been shown to produce comparable gene 147 
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expression profiles at over 87% correlation in other systems but has not been examined 148 

in plants [5, 24]. 149 

 150 

Most prior papers examining the choice of informatics software for RNA-Seq data 151 

analysis worked with straightforward data sets, either performing a single type of 152 

analysis on the data or working with data from diploid organisms with well-developed 153 

reference genomes. However, much less research has been done into genomics of 154 

complex species and, especially in the case of plants, polyploids. Many polyploid crops 155 

now have available reference genomes, like strawberry [26], cotton [27], wheat [28], or 156 

sweet potato [29], while others continue to rely on genomic resources from diploid 157 

relatives, such as potato [30], kiwifruit [31], peanut [32], or blueberry [33]. Here, we 158 

have selected blueberry datasets as an example. A number of different species of 159 

blueberries are used in agricultural production and breeding, with autotetraploid 160 

Vaccinium corymbosum (highbush blueberry) as the most economically important [34]. 161 

A diploid accession of V. corymbosum was used for genome sequencing and 162 

construction of a blueberry reference genome [33, 35]. In this study we use RNA-Seq 163 

data from an autotetraploid V. corymbosum (section Cyanococcus) and a  164 

diploid species, V. arboreum (section Batodendron).  165 

Data description 166 

The sequencing data used in this work is 270 million Illumina paired-end reads (2*101 167 

bp long) for diploid V. arboreum (VA) and 582 million reads for tetraploid V. 168 

corymbosum (VC), originating from 8 plants each [25] and sequenced on duplicate 169 

lanes. Libraries were prepared from RNA collected from roots of plants of similar age 170 

after eight weeks of growth in hydroponic systems under either stressful (pH 6.5) or 171 

control (pH 4.5) conditions. All sequence data is publicly available at NCBI (see details 172 

below). At the first step of data curation, our tested methods are error correction of 173 

RNA-Seq data with Rcorrector and trimming of low quality bases by one of two 174 

methods, Trimmomatic [36] or Skewer [37] (Table S1). Error correction of raw reads 175 

modified an average of 0.7% bases per library, a proportion larger than the expected 176 

0.1% sequencing error rate in Illumina reads and suggests a possible masking of 177 

variability in the data. Next, both original and corrected reads were trimmed using either 178 
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Skewer or Trimmomatic at default settings. Gentle quality trimming with Skewer 179 

retained on average 99.6% reads at mean length 99.8 bp (Table S2). In contrast, quality 180 

trimming with Trimmomatic, which has significantly more aggressive default trimming 181 

parameters, retained 77.2% of reads at mean length 93.8 bp. Error correction had a low 182 

effect on trimming results. From the combination of corrected/uncorrected reads and 183 

trimming software used, four read sets (reads processed by Rcorrector and 184 

Trimmomatic, Rcorrector and Skewer, Trimmomatic only, and Skewer only) for each 185 

species were used in downstream analyses. 186 

Analysis 187 

Generation of de novo transcriptome assemblies 188 

A series of de novo assemblies were carried out with Trinity, SOAPdenovo-Trans and 189 

Trans-ABySS software packages (Table S1). For each species, assemblies of a single 190 

control library, a single treatment library or a combination of both libraries were 191 

performed, using each of the four preprocessing techniques as input (Skewer corrected, 192 

Skewer uncorrected, Trimmomatic corrected, Trimmomatic uncorrected), to yield a 193 

total of 24 initial runs from each assembler (Figures 1 and S1). For the assembly of two 194 

individual libraries, the results were combined post-assembly (Figures 1 and S1). The 195 

possible benefit of this approach is the reconstruction of specific transcripts from 196 

control and treated samples without mixture of alternative splice variants, at the expense 197 

of including a smaller data input size that may induce fragmentation of assemblies as 198 

well as a requirement to merge the separate assemblies afterward. This approach is 199 

contrasted to the second method, which combines multiple samples in a single assembly 200 

run; this approach aims at reconstructing longer and more complete transcripts despite 201 

mixing fragments from splice variants.  202 

 203 

Trinity, SOAPdenovo-Trans and Trans-ABySS responded differently to number of 204 

input reads and how they are pre-processing (Figure 2). Trinity and Trans-ABySS 205 

produced transcriptomes with similar number of transcripts, generally increasing with 206 

the number of input reads, and with similar N50 scores. By contrast, SOAPdenovo-207 

Trans produced transcriptomes with 27-52% fewer transcripts (80000-290000 208 

sequences). SOAPdenovo-Trans also demonstrated more sensitive to the trimming and 209 
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correcting methods, with the use of Trimmomatic yielding a larger number of 210 

transcripts and increased N50 statistic. For both species, the highest observed N50 was 211 

achieved by uncorrected, Trimmomatic-trimmed reads and 4 input samples assembled 212 

with SOAPdenovo-Trans. On the contrary, Skewer-trimmed reads had reduced 213 

transcript numbers and N50. The N50 from Trinity and Trans-ABySS assemblies 214 

followed a more constant pattern, with Trinity reaching a higher N50 (440-580 bp) 215 

compared to 390-465 bp from Trans-ABySS. Trinity also yielded a higher N50 in VA 216 

than VC and a slight improvement when using 4 samples. Detonate [22], a reference-217 

free evaluation tool, was used to compare each set of transcriptomes formed from the 218 

same set of reads, where scores closer to zero indicate better assemblies. Transcriptome 219 

quality as assessed by Detonate was highest in Trinity, closely followed by Trans-220 

ABySS; error correction and use of Trimmomatic had a positive impact on these 221 

metrics. 222 

 223 

Figure 2. Basic statistics of de novo transcriptome assemblies and CD-HIT or 224 

RapClust reduced transcriptomes.  225 

Individual assemblies are plotted with the number of input fragments along the x axis. 226 

Lines are drawn to visually associate assemblies from the same species, assembler 227 

(SOAPdenovo-Trans, Trans-ABySS or Trinity) and error correction strategy (with or 228 

without Rcorrector). Total number of transcripts, N50 value, percent of GC content and 229 

Detonate scores (rows) are shown for initial assemblies, assemblies clustered with CD-230 

HIT and assemblies clustered with RapClust (columns). Point colors indicate species 231 

and number of samples used on assembly. Point shapes indicate use of error correction 232 

(cor) or not (Uc) and trimming software (Skewer or Trimmomatic). 233 

 234 

GC content of final transcriptome assemblies also varied by assembly strategy. Our 235 

results (Figure 2) contained assemblies of 42.3-43.9% GC for VA and 42.1-43.3% GC 236 

for VC, with the highest variability across samples found with SOAPdenovo-Trans. GC 237 

content was generally higher and more variable when reads were preprocessed by 238 

Skewer, possibly indicating the role of residual primer sequences or low quality bases in 239 

lowering final GC content. When input reads were trimmed with Trimmomatic, 240 

assemblies generally had very similar GC content across assemblers. The assemblies for 241 

VC 4s with Trimmomatic had GC content between 42.1-42.2%, matching the 42.2% of 242 
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predicted VC gene models from the reference genome [33]; VA transcriptomes had 243 

42.3-42.4% GC under the same conditions.  244 

 245 

Quality assessment can also be measured as the proportion of RNA-Seq reads used to 246 

generate each assembly that map back to the transcriptome (Figure 3). Read support 247 

(percent reads mapped, top row) was best for Trinity, ranging from 66% to 74%, 248 

followed by Trans-ABySS with 60-70%, and was very variable in SOAPdenovo-Trans, 249 

9-56%. Strict trimming with Trimmomatic and error correction had an overall positive 250 

impact on read support. All assemblers showed reduced read mapping with uncorrected 251 

reads and Skewer trimming; the trend was most pronounced for SOAPdenovo-Trans, 252 

with over 30% average reduction in mapping rate when using Skewer uncorrected than 253 

Trimmomatic corrected reads.  254 

 255 

Figure 3. Read and annotation support of de novo transcriptome assemblies and 256 

CD-HIT or RapClust reduced transcriptomes.  257 

Quality metrics for assemblies, including percent of input reads that map back to 258 

assemblies, the proportion of transcripts with a putative open reading frame (ORF), and 259 

completeness as determined by the presence of BUSCO orthologs (rows). These metrics 260 

are represented for initial assemblies, assemblies clustered with CD-HIT and assemblies 261 

clustered with RapClust (columns). Lines are drawn to visually associate assemblies 262 

from the same species, assembler (SOAPdenovo-Trans, Trans-ABySS or Trinity) and 263 

error correction strategy (with or without Rcorrector). Point colors indicate species and 264 

number of samples used for assembly; point shapes indicate use (cor) or not (Uc) of 265 

error correction and trimming software (Skewer or Trimmomatic). 266 

 267 

In addition to assembly metrics, functional annotation of transcripts was done to assess 268 

putative biological information contained in the transcriptomes. An initial observation 269 

of putative coding regions consisted of finding complete open reading frames (ORFs) 270 

with at least 50 amino acids from start to stop codon. SOAPdenovo-Trans showed 271 

strong variations by trimming software, with Skewer transcriptomes having 7-12% of 272 

transcripts with predicted ORF versus 25-31% with Trimmomatic (Figure 3). Trinity, 273 

between 12-17%, had 2-5% higher content on ORFs than Trans-ABySS, which ranged 274 

8-15%. Finally, assemblers were compared as function of completeness of their 275 
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assemblies, indicated by the total number of conserved orthologs (BUSCOs) present in 276 

the transcriptomes, from a total of 1440 plant BUSCOs. Trans-ABySS yielded the 277 

assemblies with highest completeness, with 792-1217 identified BUSCOs, closely 278 

followed by Trinity with an average of 40 fewer BUSCOs per transcriptome. 279 

SOAPdenovo-Trans again showed strong variation with trimming type, yielding 280 

between 237-566 BUSCOs with Skewer and 645-951 with Trimmomatic.  281 

 282 

Overall, these results show the impacts error correction, trimming, and assembly 283 

software can have on transcriptome assembly results. Error correction contributed to 284 

transcriptomes with more transcripts, with higher completeness, and with decreased GC 285 

content; for Trinity and Trans-ABySS, error correction promoted higher N50 and ORF 286 

content while decreasing percent of reads mapping back to transcriptomes. These results 287 

are in agreement with previous reports showing improvement of assembly quality after 288 

using an error correction tool [8, 38]. Use of strict trimming, such as with Trimmomatic, 289 

generally improved transcriptome metrics and all Detonate scores, with a smaller 290 

number of total transcripts, improved N50, more consistent GC content, better rate of 291 

mapping of reads, and higher proportion of coding regions, with very little loss of 292 

completeness when using 4 samples. Use of Skewer-trimmed reads had a particularly 293 

negative effect on SOAPdenovo-Trans, including reduced number of transcripts, 294 

reduced N50, reduced Detonate score, lower percent of reads mapping, much lower 295 

number of identified ORF, and lower completeness. VA transcriptomes differed from 296 

those of VC with a generally lower number of transcripts and higher Detonate scores. 297 

Using on the Trans-Abyss and Trinity assemblies, more differences in VA versus VC 298 

can be observed, including slightly higher N50 and identified ORFs in VA assemblies, 299 

but more completeness in VC assemblies. Using 2 samples yielded fewer transcripts and 300 

a lower percent of reads mapped and lower completeness than those from 4 samples, 301 

despite their higher Detonate scores.  302 

 303 

Clustering of de novo assemblies 304 

Assemblies may contain sequences from highly similar gene isoforms, transcript 305 

isoforms of a same gene and, in the case of polyploids, homoeologous genes, that may 306 

be considered redundant and lead to reads mapping to multiple locations. In addition, 307 
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considering that plants contain 37000 proteins on average [39], the number of 308 

transcripts from all of the Vaccinium assemblies (Figure 2) largely surpasses this 309 

quantity. Tools aimed at the reduction of such redundancy are widely used to select 310 

non-redundant representative sequences [15, 40, 41]. We have compared the clustering 311 

capabilities from two tools with very different approaches (Table S1). CD-HIT was 312 

used to select long representative transcripts and remove smaller redundant sequences at 313 

95% similarity cutoff. RapClust groups transcripts based on the information of multi-314 

mapped reads, and removes transcripts with low read support. CD-HIT returns a 315 

classification of transcripts into clusters and a set of representative transcripts with 316 

reduced redundancy, while RapClust returns clustering information suited to be used for 317 

downstream differential expression analysis but does not report a reduced transcript set. 318 

For the sake of comparing results, the longest transcript from each cluster generated by 319 

RapClust was selected to form corresponding reduced assemblies. Prior to clustering, 320 

single-sample assemblies were combined into a merged assembly, with expected 321 

introduction of high redundancy. Then, transcripts from the 16 assemblies (8 per 322 

species) and three assemblers (Figures 1 and S1) were subjected to classification into 323 

clusters with either of these tools. 324 

 325 

Clustering had a noticeable impact on assemblies (Figure 2), with RapClust producing 326 

fewer clusters in comparison to CD-HIT’s reduced transcript set in all cases. Noticeably 327 

after application of RapClust, Trinity and Trans-ABySS assemblies had a very similar 328 

number of transcripts, N50, and Detonate scores. On average, the number of clusters 329 

after CD-HIT and RapClust were 22% and 51% smaller than the initial number of 330 

transcripts, respectively, for both Trinity and Trans-ABySS, and 5% and 26% after 331 

SOAPdenovo-Trans. To a lesser extent, the degree of clustering varied by type of 332 

assembly and species. Despite the 4s assemblies having larger initial numbers of 333 

transcripts, the percent of removed or clustered transcripts was greater in 2s than 4s 334 

assemblies. Thus, after clustering a larger proportion of representative sequences was 335 

retained on 4s assemblies compared to 2s assemblies by 12%, 13% and 8.7% by CD-336 

HIT, or 2.5%, 3.3% and 15% by RapClust, on Trinity, Trans-ABySS and SOAPdenovo-337 

Trans, respectively. Clustering only showed small difference by species with Trinity 338 

assemblies, with 3.2% more sequences retained as clusters in VA than VC. These trends 339 

are likely due to the putative higher redundancy in 2s assemblies and the presence of 340 
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homoeolog genes due to polyploidy in VC. Clustering has a variety of impacts on N50. 341 

The N50 of Trinity assemblies was not much changed while the N50 for Trans-ABySS 342 

assemblies was increased. For SOAPdenovo-Trans, the N50 was reduced after 343 

clustering, particularly with Trimmomatic trimming, from the highest N50 of 1260 to 344 

1180 and 1030 after CD-HIT and RapClust, respectively. Detonate scores were used to 345 

evaluate the original assembled transcripts with the three assemblers as well as the 346 

cluster representative sequences yielded by CD-HIT and the longest transcript from 347 

each RapClust cluster. Clustering with CD-HIT did not substantially modify Detonate 348 

scores, while for RapClust, Trinity scores were slightly lowered. 349 

GC content of clustered assemblies (Figure 2) was reduced by an average 0.2% from the 350 

original assemblies in those from 2 samples and generated with Trinity or Trans-351 

ABySS. The same reduction was observed in 2s assemblies when using RapClust on 352 

SOAPdenovo-Trans assemblies. In all cases, values were reduced closer to the putative 353 

GC percent found in the diploid VC reference genes. All changes were minor, with most 354 

assemblies from 4 samples and Trimmomatic-trimmed reads staying close to their 355 

original values after clustering. Clustering yielded a less than 5% decrease in support 356 

from RNA-Seq reads of the transcriptomes generated with Trans-ABySS and 357 

SOAPdenovo-Trans (Figure 3) or clustered with CD-HIT. Trinity assemblies had an 358 

average of 7% loss of read support under clustering with RapClust, close to Trans-359 

ABySS values but still having the highest support. Differences in ORF content between 360 

Trinity and Trans-ABySS decreased with clustering as Trans-ABySS modified ORF 361 

content from 8-15% to 8-12% after CD-HIT and 12-15% after RapClust, while Trinity 362 

changed from 12-17% to 11-15% and 13-15% after CD-HIT and RapClust, 363 

respectively. Lower values of SOAPdenovo-Trans remained at 7% after clustering, but 364 

the highest ORF content, originally at 31%, changed to 32% and 27% after CD-HIT and 365 

RapClust, respectively. The variation of the proportion of transcripts containing a 366 

coding sequence was not mirrored by the degree of completeness. Clustering with CD-367 

HIT did not modify the overall completeness of assemblies, while RapClust slightly 368 

decreased them by 14, 43 and 24 in Trans-ABySS, Trinity and SOAPdenovo-Trans, 369 

respectively. 370 

 371 

Clustering with CD-HIT was effective to reduce the redundancy of transcriptome 372 

assemblies in Trinity and Trans-ABySS, without substantial modification of quality 373 
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metrics. This reduction affected especially 2s assemblies compared to 4s, concomitant 374 

with the expected higher artificial redundancy induced in 2s assemblies after the 375 

merging of single assemblies. SOAPdenovo-Trans assemblies displayed little 376 

modification from CD-HIT clustering, suggesting a lower number of isoforms or less 377 

fragmentation in the output transcriptomes. By contrast, RapClust reduced the number 378 

of transcripts from all three assemblers, with different effects. SOAPdenovo-Trans 379 

assemblies had a lower N50 and ORF content, but similar read support, Detonate scores 380 

and completeness after RapClust clustering and selection of the longest transcript as a 381 

representative. For Trans-ABySS assemblies, there was similar read support, Detonate 382 

scores and completeness after RapClust, but higher N50 and ORF content suggests a 383 

reduction of smaller and non-coding transcripts. For Trinity assemblies, the similar N50 384 

and ORF content, but lower read support, Detonate scores and completeness suggests a 385 

reduction of transcripts of all sizes by RapClust.  386 

 387 

Biological consistency of clustering methods 388 

The general evaluation of de novo transcriptome assemblers revealed that Trinity 389 

assemblies have balanced metrics across options, with high support of RNA-Seq reads, 390 

medium N50 and proportion of coding transcripts, and high completeness. Trans-391 

ABySS was competitive on completeness and balanced on GC content, but had lower 392 

read support, N50 and ORFs. SOAPdenovo-Trans was very sensitive to the input read 393 

trimming, showing good metrics with Trimmomatic, but had an overall low read 394 

support and completeness compared with the other methods. Thus, from here on, Trinity 395 

assemblies are selected to explore in more detail assembly metrics and mapping of 396 

RNA-Seq reads. 397 

 398 

To further explore the effect of clustering, we utilized the published reference genome 399 

from the diploid Vaccinium corymbosum [33]. We presented two scenarios, one with a 400 

distant diploid species and other with the same species but different ploidy level. To 401 

explore the portion of transcripts with sequence homology that each species shares with 402 

the reference genome, we mapped the clustered transcriptomes to it. Transcripts were 403 

classified as uniquely mapping, mapping to multiple loci, translocated (parts of the 404 

transcripts were mapped to different locations on the genome) or not mapping. These 405 
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results were combined with coding sequence (cds) predictions from Transdecoder and 406 

blast homology results. Overall, transcripts generated for the diploid VA mapped to the 407 

reference genome at a larger proportion than the tetraploid VC, and the 2-sample 408 

merged assemblies (2s) mapped at a higher rate than the 4-sample ones (4s) (Figure 4). 409 

Specifically, average mapping rate of transcripts was 66% and 57% in VA 2s and 4s, 410 

and 57 and 43% in VC 2s and 4s. Thus, the use of multiple samples leads to a higher 411 

proportion of transcripts not resembling the genome, representing species-specific 412 

transcripts and possibly artifacts. While VA has higher mapping rates than VC, 413 

discrimination between a true higher similarity or an effect due to the read input cannot 414 

be made. The proportion of multiple mapping and translocated transcripts had little 415 

variation across transcriptomes in both species, being 5-7% and 4% respectively. Multi-416 

mapping rate reflects highly similar regions of the genome, and translocations could 417 

indicate either true genome rearrangements or assembly artifacts such as transcript 418 

fusions (chimeras). Clustering with CD-HIT or RapClust (using a single representative 419 

sequence for each cluster), despite affecting the total number of transcripts, maintained 420 

similar proportion of transcripts in each mapping category; on average, RapClust 421 

increased 2.2% unique and decreased by 0.5% multiple and translocated mapping 422 

transcripts compared to CD-HIT. Trimming also influenced mapping; assemblies from 423 

reads trimmed with Trimmomatic showed an average 2% higher unique mapping rate 424 

than their counterparts with Skewer, suggesting better accuracy with stricter trimming. 425 

No effect was observed from error correction. 426 

 427 

Figure 4. Mapping of de novo assembly transcriptomes to Vaccinium corymbosum 428 

reference genome and annotation of transcripts. Transcripts mapped either uniquely 429 

to the genome (uniq), to multiple locations (mult), with translocations (transloc) or did 430 

not map (out). Annotation from prediction of coding sequences (cds) using homology 431 

results from blast is divided as “No Functional Annotation” (map), “CDS Only” (cds) 432 

and “CDS with Blast Hit” (blast). Transcriptomes for V. arboreum (VA) or V. 433 

corymbosum (VC) produced from two (2s) or four (4s) samples were clustered with 434 

either CD-HIT (C) or RapClust (R). The last two letters indicate trimming with 435 

Trimmomatic (T) or Skewer (S), and use (C) or not (U) of error correction of RNA-Seq 436 

reads. 437 

 438 
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Prediction of a coding sequence and the extent to which they may be coding for proteins 439 

was used as an indicator of biological information contained in transcripts. 440 

Transdecoder finds all ORFs and selects the most likely putative cds using homology 441 

search results from blast. 51-59% of transcripts contained a predicted cds for all 442 

assemblies (Table S3). Compared to the length of original transcripts, the average length 443 

of cds decreased by 13% and 20% on 2s and 4s assemblies, respectively. Transcripts 444 

within each category (unique, multiple, translocated and not mapping) had different 445 

likelihoods of having a predicted coding sequence and additionally of cds showing 446 

homology to known proteins. On average, 49.2%, 51.8%, 54.8% and 64.5% of the 447 

transcripts in the categories unique, multiple, translocated and not mapping, contained a 448 

predicted coding sequence (Figure 4, Table S3). In addition, 54.0%, 42.4%, 55.2% and 449 

20.1% of the cds on those categories, respectively, had a blast hit. Thus, a relatively 450 

large proportion of cds do not map to the genome, particularly in VC with 4 samples 451 

(72%). These transcripts also show low similarity to known proteins, leaving unclear 452 

whether they belong to true novel transcripts or they are assembly artifacts. For 453 

transcripts that mapped to the genome, VA exhibited greater proportion of annotation 454 

than VC. Nonetheless, comparing absolute number of transcripts, VC has a larger set of 455 

mapping transcripts with cds but also an even larger number of transcripts not matching 456 

the reference than VA. Influence from the other analysis options on annotation 457 

distribution were less drastic. Clustering with RapClust had a positive effect on the 458 

proportion of cds and blast results of unique and translocated transcripts, especially in 459 

2s assemblies, in the range of 0.5-5.5%. Changes due to read trimming or correction 460 

were lower than 2%.  461 

 462 

Specific variations on Trinity transcriptome completeness throughout the sequential 463 

stages of processing (i.e. assembly, clustering and cds prediction), used the BUSCO tool 464 

to report, for each of the 1440 near-universal conserved orthologs searched, whether it 465 

is present in the assembly as complete and single-copy, complete and duplicated, 466 

fragmented, or missing. Examining the impact on BUSCO results by read processing, 467 

assemblies from soft trimmed reads with Skewer presented higher completeness (Figure 468 

5A). Interestingly, error correction improved the formation of complete BUSCOs on 2s 469 

assemblies, while it did not have a significant effect on 4s assemblies. However, the 470 

major options influencing completeness were blueberry species and number of samples 471 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 

 

 

used. Thus, assembly of complete genes was improved in VC compared to VA, and in 472 

assemblies of four rather than two samples (Figure 5A). Overall, completeness of CD-473 

HIT clusters was very similar to those of de novo assemblies, while RapClust clusters 474 

contained fewer total BUSCOs. Selection of cds further decreased completeness, either 475 

decreasing complete genes or also increasing fragmented genes, mostly in 4s 476 

assemblies. In addition, the distribution of complete vs fragmented BUSCOs shows a 477 

trend where a reduction in total BUSCOs is followed by an increase in fragmented 478 

BUSCOs (Figure 5A). Following this trend, the rate of fragmented BUSCOs was not 479 

significantly modified by read processing nor by clustering with CD-HIT, while 480 

RapClust increased it except in VA 2s, where fragmented BUSCOs were reduced.  481 

 482 

Figure 5. Evaluation of assembly and clustering methods for Trinity 483 

transcriptomes. (A, B) Completeness assessment with BUSCO tool subdivided into 484 

complete versus fragmented BUSCOs (A) or single-copy versus duplicated complete 485 

BUSCOs (B). Dotted lines represent isolines of BUSCO numbers from a total search 486 

space of 1440 orthologs. Dot colors indicate assembly stage and areas assembly type. 487 

Stages of the assembly are divided into initial de novo assembly (asmb), clustered with 488 

either CD-HIT or RapClust, or predicted coding regions (cds). Assembly type indicates 489 

the combination of blueberry species (V. arboreum, VA; V. corymbosum, VC) and the 490 

use of two independent assemblies merged (2s) or assembly of four samples (4s). 491 

Shapes represent read pre-processing options, with (cor) or without (Uc) error 492 

correction, and the use of Skewer or Trimmomatic (trimm) trimming tools. (C) 493 

Distribution of mean Jaccard scores on CD-HIT and RapClust clusters of transcriptome 494 

assemblies. Scores range between ~0 (low clustering of co-annotated transcripts) and 1 495 

(perfect clustering of co-annotated transcripts). (D) Distribution of genome versus 496 

assembly base coverage on multiple de novo assemblies mapped to Vaccinium 497 

corymbosum reference genome after redundancy reduction with either CD-HIT (larger 498 

points) or RapClust (smaller points). Shapes indicate read processing, with (cor) or 499 

without (Uc) error correction, and trimmed with either Trimmomatic (trimm) or 500 

Skewer.  501 

 502 

While some gene families may have undergone expansion or contraction since the 503 

Vaccinium common ancestor, we expect the majority of transcripts to provide one-to-504 
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one orthologs for the VA gene set and two-to-one orthologs for the tetraploid VC gene 505 

set. Coincident with their ploidy, duplicated vs single-copy ratio in unclustered VA de 506 

novo assemblies was half that of VC (0.50 in 2s and 0.58 in 4s). Also, the duplication 507 

ratio in 2s vs 4s unclustered assemblies was 1.25 in VA and 1.45 in VC, supporting 508 

higher redundancy in 2s assemblies. These ratios are independent from the size of 509 

transcriptomes. Clustering was efficient to remove redundant genes, as shown by the 510 

reduction of duplicates. RapClust drastically removed most duplicated BUSCOs, 511 

leaving 20-30 duplicated BUSCOs for all assemblies, while CD-HIT performed a 512 

reduction proportional to the assembly length of 62% on 2s and 44% on 4s assemblies. 513 

While the clustering did remove many duplicated BUSCOs, most became single copy 514 

BUSCOs and were not lost from the assembly altogether. Only in the 4s assemblies, 515 

comparing the original assembly to RapClust cluster transcripts, there was a significant 516 

decrease in the number of complete BUSCOs (Figure 5B). Ideally, clustering would 517 

reduce splice isoforms and partially assembled transcripts, however the reduction in 518 

completeness suggests possible removal of gene isoforms in both species, and collapse 519 

of homoeologs in the tetraploid VC, especially by RapClust. 520 

 521 

BUSCO results were not only used to assess completeness, but also to measure the 522 

success of the clustering methods using an adaptation of the Jaccard similarity method. 523 

Taking advantage of BUSCO consensus sequences, transcript co-annotation was 524 

calculated as the number of transcripts with the same BUSCO annotation within a 525 

cluster (set intersection) divided by the total number of transcripts with that BUSCO 526 

annotation or in the cluster (set union). The result is a value in the range 0 to 1, from 527 

low to perfect shared annotation of transcripts within a cluster. This method not only 528 

indicates the degree of co-annotation depicted by each clustering algorithm but also 529 

compares the putative biological relevance of clusters. On this respect, RapClust 530 

consistently outperforms CD-HIT on clustering of co-annotated BUSCO genes (Figure 531 

5C). Clusters from the diploid VA were markedly better co-annotated from those of VC. 532 

Generally, RapClust performance was enhanced on larger transcriptomes, while CD-533 

HIT performed better on smaller ones. In relation to read processing, Trimmomatic and 534 

uncorrected reads generally achieved higher scores. 535 

 536 
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To explore the percent of the blueberry genome captured by the de novo assemblies, 537 

base coverage was calculated for transcripts that mapped uniquely to the diploid 538 

reference genome (Figures 4 and 5D). Assembly base coverage is the proportion of 539 

bases of each transcript assembly that were mapped to the reference genome, and 540 

genome base coverage is the proportion of the reference genome covered by the 541 

transcripts. In general, both metrics showed inverse correlation. Thus, genome coverage 542 

was enhanced with the use of Skewer, four samples and CD-HIT, while decreasing 543 

assembly coverage. Thus, genome coverage is concordantly improved by those options 544 

that also increase transcriptome size, where a larger number of transcripts is able to 545 

better represent genomic sequences. This is true for both blueberry species, with the 546 

distinction that VC exhibits both better genome and assembly coverage than VA, 547 

consistent with phylogenetic proximity to the reference genome species. On the other 548 

hand, trimming with Trimmomatic, two-sample assemblies and clustering with 549 

RapClust had better assembly coverage, but lower genome coverage. This suggests that 550 

transcripts generated from more restrictive options are more likely to be real genes that 551 

can be found in the genome, but the more restrictive options do exclude some genes. 552 

Error correction did not follow this trend, and generally decreased assembly coverage 553 

while not affecting genome coverage.  554 

Read mapping to reference genome 555 

As an alternative to de novo assembly, RNA-Seq analysis for these two species could 556 

utilize a mapping approach with the publicly available genome of diploid VC. With this 557 

approach, an entirely different set of software options become available. In this case, 558 

mapping to a genomic reference that is evolutionarily diverged from the sequenced 559 

species may make accurate read mapping more difficult. For the diploid VA, mapping 560 

to homolog genes is expected, while for the tetraploid VC, reference genes may be 561 

mapped by reads originating from both homolog and homoeolog sequences. To account 562 

for sequence divergence, we compared results from five representative mapping 563 

software programs, run with either default settings or increasing mismatch tolerance 564 

(Figure 6A, Table S1). Overall, aligners behave similarly on both blueberry species. The 565 

programs that yield the most mapped reads are Stampy and GSNAP, both of which 566 

were designed to tolerate more sequence divergence during mapping, although only 567 

Stampy surpassed 5% mismatch rate (Figure 6B). Bowtie2 and HISAT2 yielded the 568 
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lowest mapping rates. The addition of relaxed conditions, despite modifying the percent 569 

of mismatches tolerated on alignments, did not have a significant effect on mapping 570 

results of GSNAP, Stampy and STAR; it lowered the mapping rate for Bowtie2 and 571 

increased for HISAT2, especially in VA. The effect of trimming was correlated with the 572 

number of available reads to be mapped; thus, Skewer improved mapping rates by 5-573 

11% compared to Trimmomatic (Table S4). Finally, corrected reads, though not 574 

significant, promoted an increase in mapping rate for all options, with 0.7 and 0.5% 575 

average increase in VA and VC, and up to 2.5% in HISAT2 in VA.  576 

 577 

It is desirable to utilize the maximum number of reads as possible in differential gene 578 

expression analysis, as increased depth of read counts leads to more sensitivity in 579 

statistical analysis. For example, more depth would increasingly allow detection of 580 

differences in lowly expressed genes or genes with small log fold changes in expression 581 

between treatments. To use this as a quality metric, we examined the successful 582 

conversion of raw reads to countable reads for each gene model using the software 583 

HTSeq. Starting from all mapping results, a read may not be converted to a countable 584 

read due to low quality mapping, multiple alignments or mapping to a genomic region 585 

without an annotation. The influence of each factor varies by mapping tool (Figure S2). 586 

The main cause of failed read conversion into counts was low quality of read alignment, 587 

found in Bowtie2, HISAT2, Stampy and GSNAP, by decreasing magnitude. The second 588 

major factor that prevented counting was mapping within an intergenic region, which 589 

accounted for 5-13% of mapped reads (Figures S2 and S3). Mapping to exonic features 590 

showed even larger variability, ranging from 57% displayed by Stampy, to 80% by 591 

HISAT2, varying by mapping tool (Figure S3). In relation with mapping rate, these 592 

values indicate that both programs have similar mapping rates to exons but Stampy is 593 

mapping more reads to non-exonic regions that may present higher sequence 594 

divergence. After collecting useful read counts, count rates to gene models were smaller 595 

than mapping rates by 14.2%, 10.9%, 7.5%, 15.7% and 3.3% for Bowtie2, GSNAP, 596 

HISAT2, Stampy and STAR, representing a loss up to 45% of mapped reads for 597 

Bowtie2 and below 15% for STAR (Figure 6A, right panels). Globally, modification of 598 

mismatch tolerance increased this loss in Bowtie2 and Stampy, and reduced it in 599 

HISAT2. Read loss using Skewer compared to Trimmomatic was larger on GSNAP and 600 

Stampy, and smaller on HISAT2 and Bowtie2. Interestingly, the rate of mapped reads 601 
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not turned into counts in STAR was constant under the pre-processing and software 602 

options tested. After counting, count rates (Figure 6A, lower values) displayed similar 603 

response to read processing as mapping rates discussed above, with GSNAP and 604 

Stampy showing equally high count rates.  605 

 606 

Figure 6. Read mapping to V. corymbosum reference genome. (A, left panels) 607 

Proportion of total reads mapping to reference (grey boxes or higher values), converted 608 

to counts (white boxes or lower values) and (A, right panels) percentage of the 609 

difference, and (B) mismatch rate depicted by each software option. Five mapping 610 

software programs were compared at default and modified settings to increase mismatch 611 

tolerance. Reads used (cor) or not (Uc) error correction, and Trimmomatic (trimm) or 612 

Skewer trimming software. Results are distribution of 8 samples. 613 

 614 

An important issue in science is reproducibility of results, that in the case of mapping 615 

results can be reflected as similarity of gene count profiles, which ultimately determine 616 

genes that are differentially expressed. Correlation of counts was calculated across all 617 

blueberry samples comparing the 20 combinations of read processing and mapping 618 

software with default options (Figure 7). Concomitant with their similarity on mapping 619 

results to the reference genome, VA and VC shared major correlation patterns between 620 

software programs, where two major groups are formed. This grouping is consistent 621 

with the alogrithmic similarities of the software, i.e. one group is composed by Bowtie2 622 

and HISAT2, which utilize a FM-index, and the second group includes GSNAP, 623 

Stampy and STAR, which use a combination of suffix array / hash table. Correlation 624 

was usually influenced by the trimming option, so that Skewer significantly improved 625 

correlation on GSNAP and STAR, Trimmomatic on Bowtie2 and Stampy, and HISAT2 626 

was ligthly affected by trimming. Interestingly, only Bowtie2 and HISAT2 responded to 627 

read correction, suggesting higher sensitivity to errors by the FM-index.  628 

 629 

Figure 7. Correlation of gene count profiles after mapping to Vaccinium 630 

corymbosum genome. Values are mean of 8 samples in either V. arboreum (VA, upper 631 

triangle) or V. corymbousm (VC, lower triangle). Each row/column corresponds to a 632 

unique combination of mapping software, trimming software and error correction. 633 

 634 
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Read mapping to de novo assemblies 635 

The previous section focused on the effects of read correction, trimming and alignment 636 

software on read mapping to a reference genome. Here, a similar analysis is performed 637 

though using de novo assemblies from Trinity clustered with CD-HIT. To simplify the 638 

analysis, reads that underwent certain correction and trimming processing (e.g. samples 639 

with corrected reads trimmed with Skewer), were only mapped to the assemblies 640 

produced by reads with the same pre-processing. This method of de novo assembly then 641 

alignment is common for RNA-Seq analysis when no reference genome is available, 642 

and has advantages, including that mapping to transcript assemblies is usually 643 

contiguous, instead of spliced, and that assemblies are species specific, unlike a distant 644 

reference genome. All the aligners previously used for the genome alignment may also 645 

be used with transcriptomes. In addition, we incorporated the Salmon tool for transcript 646 

quantification, which is built solely for alignment of reads to a transcriptome. 647 

 648 

Using de novo assemblies as the reference, mapping performance of the five aligners 649 

showed lower variability by condition (trimming and type of assembly) compared to 650 

mapping to the genome, with Stampy and GSNAP again as best performers (Figure 8). 651 

The mapping profile was similar for both species, with higher mapping rates for VC 652 

than VA by 1.4% using Skewer and 2.5% using Trimmomatic, except for Salmon. Also, 653 

4s assemblies had consistently better mapping rates than 2s, with improvements for 654 

Skewer/Trimmomatic of 3.7/3.0% in VA and 3.8/3.4% in VC. Examining only the 655 

effect of trimming, yield is likewise correlated with the number of reads available for 656 

mapping, so that Skewer had on average 12.5% more reads mapped than Trimmomatic. 657 

Finally, error correction of reads did not have a significant effect on read mapping. 658 

Examining conversion of raw reads to countable reads, 30-45% and 22-30% of mapped 659 

reads in 2s and 4s assemblies were not able to be turned into counts, with higher values 660 

on 2s assemblies than 4s ones (Figure 8, right panels). For Bowtie2 and Stampy, the 661 

major cause of read loss was low quality alignments, while for GSNAP, HISAT2 and 662 

STAR most of the dropped reads were multi-mapped (Figure S4). Read counts further 663 

reduced variability across programs, and intensified the difference between mapping to 664 

4s compared to 2s assemblies, increasing by 9.1/6.1% in VA and 9.8/7.9% in VC for 665 

Skewer/Trimmomatic, respectively. The difference between using Skewer or 666 
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Trimmomatic was reduced to an average of 9%. The different results yielded by Salmon 667 

reflects its different algorithm, which performs pseudo-mapping to estimate abundance, 668 

but does not report mapping results in a format suitable to do quality assessment of 669 

alignments. The consequence is that Salmon has an artificially higher estimated count 670 

rate than reads mapped, and since no reads are filtered out for quality score, Salmon has 671 

higher count rates than other approaches.  672 

 673 

Figure 8. Read mapping to CD-HIT clustered de novo assemblies. Proportion of 674 

total mapped reads (left panels, grey boxes), converted to counts (left panels, white 675 

boxes) and percentage of the difference (right panels). Six mapping software programs 676 

were compared at default settings on assemblies made from four samples, produced 677 

either by two sets of 2 samples independently assembled (2s) and later merged or from 678 

the four samples assembled together (4s). Reads used (cor) or not (Uc) error correction, 679 

and Trimmomatic (trimm) or Skewer trimming software. 680 

 681 

In the case of mapping to a de novo assembly, to calculate a correlation of mapping 682 

results is not directly due to each assembly having their own set of transcripts. Hence, 683 

rather than program-to-program correlation, which is showed on the previous section, 684 

reference-to-assembly count profiles were compared (Figure 9). To do so, the reference 685 

gene model gene space was used for such comparison. New count profiles for assembly 686 

mapping results were obtained from adding counts of all transcripts mapped to each 687 

single reference gene model. Then, they were compared to results with the reference 688 

genome by same read pre-processing and mapping software. Utilization of the reference 689 

genome from diploid VC, though useful for a shared gene set to compare, has the 690 

inconvenience of not representing species-specific transcripts (blue bars in Figure 4). 691 

VA is a sister species but is also a diploid, so one-to-one homology may be expected. 692 

However, tetraploid VC assemblies not only contain a larger proportion of transcripts 693 

that do not match the genome, but also splice isoforms and lowly-diverged homoeolog 694 

sequences are expected to map to same gene models. Likewise, balancing this effect, 695 

reads originated from transcripts sharing sequence similarity are expected to map to the 696 

same gene model on the reference genome.  697 

 698 
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The highest assembly-to-genome correlation values are obtained on the diploid VA, 699 

which reach 75% on all programs (Figure 9). However, the best performing program 700 

differs by species: GSNAP and Stampy for VA, and Bowtie2 and HISAT2 for VC. For 701 

both species, results with the larger 4s assemblies are better correlated to the genome 702 

than the 2s assemblies. Overall, the preference for trimming software, if any, is opposite 703 

by species; Skewer and Trimmomatic improves 2s and 4s assemblies on VA, 704 

respectively, and Skewer improves 4s assemblies in VC. These differences caused by 705 

read processing are more prominent on 4s assemblies, while on 2s assemblies they 706 

induce significant changes on VA with Bowtie2, HISAT2 and STAR. This suggests that 707 

stricter trimming in the distant VA may help mapping accuracy on the diploid VC 708 

genome, especially with Bowtie2 and HISAT2 4s, while gentle trimming in the 709 

tetraploid VC may help by either better assembly of transcripts or read mapping. 710 

Salmon results correlate well with the different aligners in VA, especially GSNAP and 711 

Stampy (Figure 9, bar colors), while the tetraploid VC has overall poorly-comparable 712 

results. This suggests that Salmon transcript quantification may be better suited for less 713 

complex genomes. 714 

 715 

 716 

 Figure 9. Correlation of gene count profiles obtained with de novo assemblies and 717 

the reference genome. Counts of transcripts aligned to a same reference gene model 718 

were added and re-annotated as that gene model. Correlation was calculated on the 719 

common set of gene models with non-zero counts on both reference and assemblies, by 720 

mapping software and read pre-processing (error correction and trimming). Uc stands 721 

for uncorrected, cor for corrected, trimm for Trimmomatic. Color indicates mean 722 

correlation of reference counts with Salmon, a transcript-specific quantification tool. 723 

Values are mean ± sd of 8 samples.  724 

 725 

Discussion 726 

RNA-Seq is an affordable and versatile tool to analyze transcriptomes of any species. 727 

Depending on the available resources, it can be guided by a reference genome or by 728 

building custom assemblies that will reflect the transcripts present in the samples. 729 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 

 

 

However, many confounders make the analysis less straight-forward than simply 730 

trimming adapters, assembling reads as needed and mapping to a reference. Some of 731 

these confounders are common for any RNA-Seq data analysis, such as sequencing 732 

errors, repetitive sequences, natural heterozygosity and variants, while the analysis of a 733 

species other than the reference has additional sequence variation and, in the case of a 734 

polyploid, gene redundancy. Thus, we explored the repercussions of various informatic 735 

choices on the final gene expression profiles. 736 

 737 

Illumina short read sequencing, though very accurate, is not exempt of sequencing 738 

errors. One strategy to deal with low quality nucleotides aims to correct reads, usually 739 

by replacing poorly represented k-mers with similar ones of higher frequency patterns 740 

[38]. Effectivity of error correction on RNA-Seq data is lower than on genomic data due 741 

to differences in expression level and splicing and is less dependent on the organism of 742 

study [8]. Despite sequencing errors of Illumina technology occurring at a reported 743 

average rate of only 0.1% bases [6], Rcorrector modified 0.7% bases in both species. 744 

While error correction tools can reduce sequencing errors, they can also introduce new 745 

errors at a variable rate, especially for complex datasets [38]. For a complex gene family 746 

or when examining a polyploid, this could be a significant problem with some reads 747 

converted to the sequence of a close homolog, leading to incorrect mapping and/or 748 

misassembly. However, in this study read correction did not reflect significant variation 749 

in overall mapping success. It induced a small amount of variation only on those 750 

aligners that use an FM-index, Bowtie2 and HISAT2, and thus require perfect matching 751 

for seeding an alignment. Read correction was more important for assemblies, which 752 

exhibited larger changes depending on correction state, such as larger number of 753 

transcripts, higher Detonate scores or higher completeness when using corrected reads 754 

in most cases, especially with SOAPdenovo-Trans. Previous research also demonstrated 755 

that error correction impacts genome assembly [38]. 756 

 757 

Trimming is required to, at the least, remove sequencing adapters, and often also 758 

addresses short reads and low quality bases. The broadly-used tool Trimmomatic 759 

implements strict trimming based on sequencing base quality, where trimming removes 760 

low quality bases that could lead to complex or incorrect de Bruijn graphs, but also 761 

reduces read length, which may have a negative impact on coverage bias [38]. Skewer 762 
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takes a much less stringent trimming approach. The extent to which trimming of low 763 

quality bases is beneficial for downstream analyses was explored for DNA-Seq [42], 764 

suggesting a positive effect on genome assembly despite increased fragmentation, and a 765 

tradeoff between accuracy and recall of assemblies. In our experiments, similar effects 766 

derived from trimming were shown on both the diploid or tetraploid species, especially 767 

with Trans-ABySS or Trinity. We found that Skewer (soft trimming) usually led to 768 

more complete assemblies at the expense of a larger amount of non-coding transcripts, 769 

while Trimmomatic (i.e. strict quality trimming) improved support from input reads and 770 

consistency of GC content across assemblers; in Trinity clusters, Trimmomatic also 771 

reduced fragmentation of assemblies and enhanced biological consistency of clustering. 772 

In mapping experiments, higher quality reads are mapped at a larger relative proportion, 773 

however, this is at the expense of losing many reads at the trimming stage, many of 774 

which may have been successfully mapped downstream. Nonetheless, both options can 775 

lead to comparable expression profiles, mostly if mapping tools can deal with bases of 776 

lower quality [42].  777 

 778 

There are cases where transcriptome assemblies are required, such as absence of a 779 

suitable reference genome, or discovery of novel isoforms. For transcriptome assembly 780 

with samples derived from various conditions, two approaches are common; one in 781 

which the samples are pooled into a single run [40, 41] and one in which samples are 782 

assembled independently [43-45]. The major interest is to obtain transcripts that are 783 

specific to each sample, and combination of reads is a potential source for mis-assembly 784 

or formation of chimeras. In this respect, we found that transcripts from separate 785 

samples had significantly higher assembly base coverage (transcript bases mapped to 786 

the reference genome), although the combined samples had better genome base 787 

coverage (reference genome bases covered by transcripts). However, merging 788 

individual assemblies generates high redundancy. This effect was studied in wheat, 789 

reporting that redundant merged assemblies showed improved read mappability with 790 

Trinity but lower with Trans-ABySS, but also had less continuity than assemblies from 791 

pooled samples, and their quality decreased after clustering [43]. We found improved 792 

read support on merged assemblies for the three assemblers, but lower mean transcript 793 

size and completeness. A strong reverse correlation between fragmentation of genes and 794 

assembled reads was also found, supporting that sequencing depth is beneficial to the 795 
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recovery of full-length transcripts [13, 15, 20]. General conclusions apply to both the 796 

diploid and the tetraploid species, although the polyploid had proportional increased 797 

duplication rate and exhibited a larger species-specific proportion of transcripts. On the 798 

other hand, proper clustering in polyploids is difficult, not unexpectedly, as it must 799 

handle isoforms of genes as well as homoeologs. This is reflected by the outcomes of 800 

the clustering methods utilized, where aggressive reduction of redundancy also leads to 801 

loss of completeness, though to a lesser extent than sequencing depth.  802 

 803 

Scientists examining organisms without a specific reference face the decision of 804 

whether to use the reference genome of a close organism or to build a custom de novo 805 

assembly. Mapping to a distant reference has disadvantages, including sequence 806 

divergence at the nucleotide level, and also larger structural divergence, where genes 807 

may be missing or duplicated between the species. From our species studied, it would 808 

be expected for the distant diploid VA to have undergone greater sequence divergence 809 

than the tetraploid relative of the reference diploid VC, in which divergence would be 810 

driven by diversifying subgenomes. Mapping results to the reference genome reflect this 811 

issue, where mapping tools that have greater sensitivity to align divergent sequences, 812 

such as Stampy, GSNAP and STAR, improve mapping results of VA compared to VC, 813 

while HISAT2 and Bowtie2, which require an exact match to seed, perform better in 814 

VC than VA. Regardless of the species, we found GSNAP and Stampy to yield the 815 

highest performances on the reference genome, probably due to their ability to align 816 

divergent sequences even at default settings. On the second mapping strategy, utilizing 817 

specific assemblies allowed much higher mapping rates compared to the reference, 818 

concordant with the high proportion of transcripts not represented on the genome that 819 

are now available to be mapped. Both species displayed comparable results when 820 

mapping to an assembly, slightly better on the tetraploid VC than on the diploid VA 821 

except with Salmon, probably due to the better completeness of the VC transcriptomes. 822 

In addition of higher mapping rates, specific biological information may be present on 823 

transcripts not represented in the genome, from which 64.5% had a predicted cds, 824 

gaining insight in the processes under study. Nonetheless, besides the divergence with 825 

the reference genome, using assemblies can give similar results at 75% correlation; 826 

awareness of mismatches also played here a role, improving correlations of VA with 827 

GSNAP and Stampy, and of VC with HISAT2.  828 
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 829 

In conclusion, using a reference genome with either a distant diploid species or a 830 

polyploid relative can give reliable results, simplifying the RNA-Seq analysis by 831 

skipping de novo assembly and associated steps. In the present work, we expanded 832 

many possibilities from read processing to gene counting, providing a complete 833 

overview on how each of the tested options impacts gene expression profiles. On both 834 

species studied, the pipeline that yielded high outcome with comparable results using 835 

either a reference genome or a transcriptome assembly used trimming with Skewer, a 836 

combination of multiple samples for improved assembly quality, and Stampy or 837 

GSNAP for short-read mapping. This pipeline was oriented to maximize the recovery of 838 

information from RNA-Seq reads, working with the specific case where samples and 839 

reference genome are not from the same organism. While we suggest that this strategy 840 

can be extrapolated to other systems, our study also highlights the many downstream 841 

impacts software analysis decisions can have on results. For scientists faced with 842 

complex RNA-Seq analysis projects, testing of different software packages to examine 843 

and optimize results can be beneficial. 844 

Methods 845 

The following methods include a brief summary of the tools that were used in this work. 846 

For detailed descriptions of the algorithms, original publications or websites are 847 

referred. 848 

Sequencing of RNA-Seq reads of blueberry roots 849 

Preparation of RNA-Seq libraries from root tissue of diploid Vaccinium arboreum 850 

cultivar FL148 and tetraploid V. corymbosum ‘Emerald’ blueberry species are 851 

previously described [25] and available in NCBI as bioproject PRJNA353989. Briefly, 852 

eight plants per species were acclimated to growth in hydroponic systems at either pH 853 

4.5 or pH 6.5 for 8 weeks, after which roots were collected and flash frozen. RNA was 854 

extracted and prepared for sequencing of 100 base-pair (bp) paired-end reads on a 855 

HiSeq 2000 system (Illumina, CA, USA).  856 
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Error correction and trimming of RNA-Seq reads 857 

Rcorrector (RNA-Seq error CORRECTOR) [8] is a kmer-based error correction method 858 

that uses a De Bruijn graph to represent trusted k-mers, a method similar to that used on 859 

de novo assembly. Rcorrector v1.0.2 was applied to raw reads with default parameters. 860 

Then, sets of corrected and uncorrected reads were trimmed for removal of Illumina 861 

adapter sequences using either Trimmomatic v0.35 [36], specifying parameters 862 

‘SLIDINGWINDOW:4:15’ and minimum read length of 30 bp, or Skewer v0.2.2 [37], 863 

with same minimum length cutoff. Trimmomatic searches adapters by finding an 864 

approximate match and aligning using a seed and extend approach [46], both for regular 865 

and ‘adapter read-through’ scenarios. Illumina quality scores of bases are used to 866 

determine cut points, discarding the 3’ end of the read. Skewer uses a novel bit-masked 867 

k-difference matching dynamic programming algorithm, which uses a variation of the 868 

Smith-Waterman [47] algorithm to search substrings and solve the k-difference problem 869 

and an extended bit-vector algorithm [48] to handle base-call quality values. Skewer 870 

can remove low quality bases on both 5’ and 3’ read ends, and is considerably faster 871 

than Trimmomatic. FastQC v0.11.4 [49] was used for quality assessment of reads. From 872 

each original read file (VA control, VA treatment, VC control, VC treatment), the 873 

combination of error correction and trimming generated four new sets of trimmed reads 874 

to be utilized in downstream processes: reads processed by Rcorrector and 875 

Trimmomatic, reads processed by Rcorrector and Skewer, reads processed by 876 

Trimmomatic only and reads processed by Skewer only. 877 

de novo transcriptome assembly and redundancy reduction 878 

Each of the four processed read sets was used for transcriptome de novo assembly, 879 

independently for each blueberry species, using Trinity 2.2.0 [14], Trans-ABySS v1.5.5 880 

[16] and SOAPdenovo-Trans v1.03 [17], with k-mer = 25 and filtering for a minimum 881 

contig length of 200 bp. Environmental stress is expected to alter the transcripts present 882 

in the cells as well as transcript splicing patterns. To include this source of variability, 883 

two commonly used approaches were considered: (i) assemble control and treated 884 

samples independently and concatenate results after assembly, and (ii) combine two 885 

control and two treated samples in the same assembly run. Altogether, 12 Trinity 886 

assemblies for each species were generated (Figure S1). The next step consisted of 887 
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removing redundant transcripts from assemblies using either CD-HIT v4.6.6 [18] at 888 

95% identity or RapClust [50]. CD-HIT sorts all transcripts by length and attempts to 889 

consecutively cluster smaller sequences to longer representative ones, getting classified 890 

as redundant or representative based on sequence similarity; the result included a 891 

reduced transcript set consisted of one sequence per cluster. On the other hand, 892 

RapClust was developed to group assemblies using information from multi-mapper 893 

paired-ended reads, thus requiring input from Salmon [51] aligner. From the clustering 894 

information after RapClust, reduced transcriptomes were obtained after selection of the 895 

longest transcript per cluster. This step generated 16 clustered assemblies for each 896 

species (Figure S1). 897 

Quality assessment and functional annotation of assemblies 898 

Transcriptome de novo and clustered assemblies were assessed for quality with 899 

DETONATE 1.11 [22] to calculate a score weighed with the reads used to generate 900 

each assembly, Transrate 1.0.3 [12] to get basic metrics, and BUSCO v2.0 [21] for 901 

completeness assessment. To compare the Trinity de novo assemblies to the genome, 902 

reduced assemblies were mapped to the diploid blueberry reference genome [35] with 903 

gmap version 2017-05-08 [52]. Base coverage was calculated on uniquely mapping 904 

transcripts using coverageBed from the BEDTools suite version 2.26 [53]. 905 

 906 

Biological consistency of clustering results was evaluated with a custom Jaccard 907 

similarity score based on the method described in [54] using the BUSCO annotation 908 

results on Trinity assemblies. Each cluster received an individual score calculated as the 909 

number of transcripts with the same BUSCO annotation within the cluster divided by 910 

the total number of transcripts with that BUSCO annotation plus the number of 911 

transcripts in the cluster that did not share that annotation. The statistic is based on 912 

amount of the intersection divided by amount of union where the two sets are (i) all the 913 

transcripts sharing a BUSCO annotation and (ii) all the transcripts in a cluster. If 914 

multiple annotations were present in a cluster, the maximum score was selected for that 915 

cluster. The result is a value between 0, indicating low co-annotation of transcripts, and 916 

1, indicating perfect clustering of co-annotated transcripts. Clusters with a single 917 

transcript were omitted.  918 
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Putative open reading frames (ORFs) were predicted for each Trinity clustered 920 

assembly with TransDecoder v3.0.0 [55], software that incorporates results from blast 921 

[56] and Pfam [57] homology searches to select best ORF candidates. First, candidate 922 

cds encoding at least 50 amino-acid-long peptides were extracted from transcripts. 923 

Then, these were searched with blast against the plant TrEMBL protein database 924 

(evalue < 10e-5) and with HMMER 3.1b2 [58] against Pfam. Finally, a single putative 925 

ORF was selected for each transcript when possible.  926 

Read mapping 927 

The four sets of processed RNA-Seq reads from VA and VC were mapped to either the 928 

draft reference genome for diploid VC or Trinity de novo assemblies clustered with CD-929 

HIT, using STAR 2.5.0, Stampy v1.0.28, GSNAP 2016-11-07, Bowtie2 2.2.8 and 930 

HISAT2 2.0.4. Software options were modified or not when mapping to the reference 931 

genome to increase mismatch tolerance. Salmon v0.7.2 [51], that uses quasi-mapping 932 

with a two-phase inference procedure, was specifically used on transcriptomes. 933 

Mapping metrics were collected using picard tools v2.1.0 [59] and RNA-SeQC v1.1.8 934 

[60]. Finally, counts were obtained using HTSeq-count Version 0.6.1p1 [61]. 935 

 936 

Short read aligners can be classified by algorithmic approach as not splice-aware 937 

(Bowtie2, Stampy) or splice-aware (HISAT2, STAR, GSNAP), or by their use of an 938 

uncompressed index, such as hash table, or compressed indexes, like suffix arrays, 939 

Burrows-Wheeler transform (BWT) methods and Full-text index in Minute space (FM-940 

index). Bowtie2 [62] uses an algorithm based on the BWT and the FM-index, which 941 

extracts seed substrings from reads, finds exact alignments with the FM index and 942 

extends with gapped dynamic algorithms like Needleman-Wunsch (global alignment) or 943 

Smith-Waterman (local alignment). Stampy [63] uses a hash table with locations of 15-944 

mers in the genome used to search every overlapping 15-mer in the reads. Those that 945 

pass neighborhood similarity filtering are extended with Needleman-Wunsch. GSNAP 946 

(Genomic Short-read Nucleotide Alignment Program) [52] combines a set of algorithms 947 

to improve accuracy of alignment, using either hash tables or enhanced suffix arrays 948 

(ESA). Sequentially after failure of previous methods, GSNAP searches for a single 949 

continuous match, applies segment combination procedures, or employs its complete set 950 

analysis to allow for larger mismatch proportion. STAR (Spliced Transcripts Alignment 951 
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to a Reference) software [64] is based on an algorithm that uses “sequential maximum 952 

mappable seed search in uncompressed suffix arrays followed by seed clustering and 953 

stitching procedure”. After stitching of seeds, the unmapped portions of the reads can be 954 

extended with Needleman-Wunsch algorithm. HISAT2 (Hierarchical Indexing for 955 

Spliced Alignment of Transcripts) [65] is based on the BWT and the FM-index, with 956 

operation methods adapted from Bowtie2. In addition to the global FM index, the 957 

genome is divided into a large set of small FM indexes. Read strings are first mapped to 958 

the global FM index to find candidate locations and the remaining bases are aligned 959 

with a local index, combining extension by direct comparison of sequences and further 960 

local index search of unaligned fragments. 961 

Availability of supporting data 962 

The RNA-Seq data was deposited in the SRA database from the publicly available 963 

repository NCBI, https://www.ncbi.nlm.nih.gov/sra/?term=SRA496374. Further 964 

supporting data are available in the GigaScience repository, GigaDB [66]. 965 
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BUSCO benchmarking universal single-copy orthologs 968 

cds coding DNA sequence  969 

cor Use of error corrected reads by Rcorrector 970 

FM-index Full-text index in Minute space 971 

ORF Open Reading Frame 972 

skwr Skewer-trimmed reads 973 

trimm Trimmomatic-trimmed reads 974 

Uc Use of not corrected (or uncorrected) reads 975 

VA Vaccinium arboreum 976 

VC Vaccinium corymbosum 977 
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 1206 

Supplementary data 1207 

Figure S1 1208 

.jpg 1209 

Diagram representing the de novo assembly strategies, run independently for each 1210 

Vaccinium species. The set of control and treatment reads produced by different 1211 

correction and trimming strategies were used as input. The control read files were 1212 

assembled (A) independently as were the treatment read files (B). From here, each set of 1213 

control sample transcripts was combined with the treatment sample transcripts (i.e. the 1214 

Skewer corrected control transcripts were merged with the Skewer corrected treatment 1215 

transcripts, the Trimmomatic uncorrected control transcripts were merged with the 1216 

Trimmomatic uncorrected treatment transcripts, etc.) (C). These merged transcript sets 1217 

were then clustered with either CD-HIT (D) or RapClust (E). This results in eight 1218 

clustered assemblies. A second assembly strategy merged the control and treatment 1219 

reads prior to assembly (F). These sets of transcripts were also clustered with either CD-1220 

HIT (G) or RapClust (H), also resulting in another set of eight clustered assemblies. 1221 

 1222 

Figure S2 1223 

.tiff 1224 

Subdivision in categories of reads mapped to the reference genome performed by 1225 

HTSeq. Except in the case of STAR, which does not report not mapped reads, height of 1226 

bars up to red resembles the number of trimmed reads. Options are ordered by 1227 

correction state, mismatch tolerance options and trimming software. 1228 

 1229 

Figure S3 1230 

.tiff 1231 

Mapping results to the reference genome categorized by overlapping gene feature. 1232 
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 1233 

Figure S4 1234 

.pdf 1235 

Subdivision in categories of reads mapped to de novo assemblies performed by 1236 

HTSeq. In specific cases with HISAT2 and STAR, multiple aligned reads are counted 1237 

multiple times, overestimating the total number of reads. Options are ordered by 1238 

correction state, trimming software and type of assembly. 1239 

 1240 

Table S1 1241 

.xlsx 1242 

Description of main algorithms used on this work.  1243 

Brief algorithmic explanations, software claims and major findings are included for 1244 

programs tested at (A) pre-processing of RNA-Seq reads, (B) de novo assembly of 1245 

transcriptomes and redundancy reduction by clustering, and (C) mapping of short reads 1246 

to both blueberry reference genome and Trinity assemblies clustered with CD-HIT. 1247 

BWT, Burrows-Wheeler Transform; FM-index, Full-text index in Minute space. 1248 

 1249 

Table S2 1250 

.xlsx 1251 

Variation in number and length of reads after pre-processing.  1252 

Number of reads before and after trimming with either Skewer or Trimmomatic and 1253 

using (cor) or not (Uc) error correction. Last column indicate average length of reads 1254 

after trimming the 101-bp raw reads. Values are mean ± sd of 8 samples. 1255 

 1256 

Table S3 1257 

.txt 1258 

Mapping and annotation metrics of Trinity clustered assemblies to V. corymbosum 1259 

reference genome. 1260 
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Transcripts mapped either uniquely to the genome (uniq), to multiple locations (mult), 1261 

with translocations (transloc) or did not map (out). Subdivision based on annotation 1262 

includes “All mapping transcripts” (map), “Mapping transcripts with CDS” (cds) and 1263 

“CDS with blast hit” (blast).  1264 

 1265 

Table S4 1266 

.xslx 1267 

Read mapping rates.  1268 

Proportion of reads mapped from each combination of error correction, trimming 1269 

software, mismatch tolerance or assembly samples, when appropriate, to either the 1270 

reference genome or de novo assemblies after clustering with CD-HIT. 1271 
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