
GigaScience
 

Sequana Coverage: Automatic Detection and Characterization of Low and High
Genome Coverage Regions.

--Manuscript Draft--
 

Manuscript Number: GIGA-D-17-00238

Full Title: Sequana Coverage: Automatic Detection and Characterization of Low and High
Genome Coverage Regions.

Article Type: Technical Note

Funding Information: Agence Nationale de la Recherche
(ANR10-INBS-09-08)

Mr Dimitri Desvillechabrol

Abstract: Background: Genome coverage contains valuable biological information like the
presence of repetitive regions or deleted genes. Yet, researchers lack robust tools that
account for these non-constant regions and trends in the data. As a consequence,
these biologically relevant events have no statistics (e.g. z-score) associated with their
detections.
Results: We provide a standalone application -- sequana_coverage -- that reports
genomic regions of interest (ROI) that are significantly over- or under-represented in
NGS sequencing data. Significance is associated with the events as well as
characteristics such as length of the regions. The algorithm first detrends the data
using an efficient running median algorithm. It then estimates the distribution of the
normalized genome coverage with a Gaussian mixture model. Finally, a z-score
statistics is assigned to each base position and used to separate the central
distribution from the ROIs (i.e., under- and over-covered regions). A double thresholds
mechanism is also used to cluster the genomic ROIs. HTML reports provide a
summary with interactive= visual representations of the genomic ROIs and standard
plots and metrics.

Corresponding Author: Thomas Cokelaer, Ph. D.
Institut Pasteur
Paris, FRANCE

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Institut Pasteur

Corresponding Author's Secondary
Institution:

First Author: Dimitri Desvillechabrol

First Author Secondary Information:

Order of Authors: Dimitri Desvillechabrol

Christiane Bouchier, Ph. D.

Sean Kennedy, Ph. D.

Thomas Cokelaer, Ph. D.

Order of Authors Secondary Information:

Opposed Reviewers:

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


GigaScience, 2017, 1–10
doi: xx.xxxx/xxxx
Manuscript in Preparation
Technical Note

TE CHN I C A L NOTE

Sequana Coverage: Automatic Detection and
Characterization of Low and High Genome Coverage
Regions.
Dimitri Desvillechabrol1†, Christiane Bouchier1, Sean Kennedy1 and
Thomas Cokelaer1,2,†,*
1Institut Pasteur – Pole Biomics – Paris, France and 2Institut Pasteur – Bioinformatics and Biostatistics Hub –
C3BI, USR 3756 IP CNRS – Paris, France
†equal contributions
*corresponding author
Emails: ddesvillechabrol@gmail.com, christiane.bouchier@pasteur.fr, sean.kennedy@pasteur.fr, thomas.cokelaer@pasteur.fr

Abstract
Background: Genome coverage contains valuable biological information like the presence of repetitive regions or deleted
genes. Yet, researchers lack robust tools that account for these non-constant regions and trends in the data. As a
consequence, these biologically relevant events have no statistics (e.g. z-score) associated with their detections.
Results: We provide a standalone application – sequana_coverage – that reports genomic regions of interest (ROI) that are
signi�cantly over- or under-represented in NGS sequencing data. Signi�cance is associated with the events as well as
characteristics such as length of the regions. The algorithm �rst detrends the data using an e�cient running median
algorithm. It then estimates the distribution of the normalized genome coverage with a Gaussian mixture model. Finally, a
z-score statistics is assigned to each base position and used to separate the central distribution from the ROIs (i.e., under-
and over-covered regions). A double thresholds mechanism is also used to cluster the genomic ROIs. HTML reports provide
a summary with interactive visual representations of the genomic ROIs and standard plots and metrics.
Key words: genome coverage, sequencing depth, running median, double thresholds clustering, Sequana, NGS, Python

Background

Sequencing technologies allow researchers to investigate a
wide range of genomic questions [1], covering research �elds
such as the expression of genes (transcriptomics) [2], the dis-
covery of somatic mutations, or the sequencing of complete
genomes of cancer samples to name a few examples [3, 4]. The
emergence of the second generation sequencing, which is also
known as Next-Generation Sequencing or NGS hereafter, has
dramatically reduced the sequencing cost. This breakthrough
multiplied the number of genomic analyses undertaken by re-
search laboratories but also yielded vast amount of data. Con-
sequently, NGS analysis pipelines require e�cient algorithms

and scalable visualization tools to process this data and to in-
terpret the results.
Raw data generated by NGS experiments are usually stored

in the form of sequencing reads (hereafter simply called reads).
A read stores the information about a DNA fragment and also an
error probability vector for each base. Read lengths vary from
35-300 bases for current short-read approaches [1] to several
tens of thousands of bases possible with long-read technolo-
gies such as Paci�c Biosciences [5, 6] or Oxford Nanopore [7].
After trimming steps (quality, adapter removal), most NGS

experiments will require mapping the reads onto a genome of
reference [8]. If no reference is available, a de-novo genome
assembly can be performed [9]. In both cases, reads can be
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Key Points

• Genome coverage is used to assess the mapping quality of sequencing reads onto a genome reference.
• Biological e�ects (e.g., origin of replication, repetitive sequence) should be taken into account.
• We propose an algorithm to automatically detect low and highly covered regions of interest (ROI) with a robust statistics
using an e�cient running median and mixture Gaussian model.

• We provide a standalone application called sequana_coverage – available in the Sequana [27] project.
• From a BAM or BED �le, HTML reports are created with the genome coverage, ROIs, standard metrics (e.g., sequencing
depth), coverage versus GC content plot, genbank annotations, etc.

• Javascript visualization ease the introspection of the ROIs and genome coverage.

mapped back on the reference taking into account their qual-
ity. We de�ne the genome coverage as the number of reads
mapped to a speci�c position within the reference genome.
The theoretical distribution of the genome coverage has been
thoroughly studied following the seminal work of Lander-
Waterman model [10, 11]. A common metric used to character-
ize the genome coverage is the sequencing depth: the empirical
average of the genome coverage. It may also be called depth of
coverage (DOC) or fold coverage, or confusingly, depth or cov-
erage. The sequencing depth unit is denoted X. An example of
a genome coverage with a sequencing depth of about 450 X is
shown in Figure 1. Another useful metric is the breadth of cov-
erage (BOC): the proportion of the intended genome reference
covered by at least some sequencing depth.
The required sequencing depth depends on the experimen-

tal application. For instance, to detect human genome mu-
tations, single-nucleotide polymorphisms (SNPs), and rear-
rangements, a 50 X depth is recommended [1] to be able to dis-
tinguish between sequencing errors and true SNPs. In contrast,
the detection of rarely expressed genes in transcriptomics ex-
periments often requires greater sequencing depth. However,
greater sequencing depth is not always desirable. Indeed, in ad-
dition to a higher cost, ultra-deep sequencing (large sequenc-
ing depth in excess of 1000 X) may be an issue for a de-novo
genome assembly [12].
The Lander-Waterman model also provides a good theoret-

ical estimate of the required redundancy to guarantee that for
instance all nucleotides are covered at least N times. This is,
however, a theoretical estimate that does not take into account
technological and biological limitations: some regions are in-
deed di�cult to e�ciently map (e.g., repetitive DNA). Further-
more, the genome coverage may also contain a non-constant
trend or additional sequence not present in the reference. The
genome coverage example in Figure 1 demonstrates these dif-
ferent features.
While the sequencing depth metric provides a quick under-

standing about the quality of the mapping, the genome cover-
age can be further used to identify regions that are signi�cantly
under- or over-covered. Hereafter, these regions of interest
(ROI) are denoted low-ROIs and high-ROIs, respectively.
In order to detect low and high-ROIs, a simple and fast ap-

proach consists in setting two arbitrary thresholds bounding
the sequencing depth. There are two major drawbacks with
this approach. First, as shown in Figure 1A, with a �xed thresh-
old, onemay detect numerous false signals (type I errors) or fail
to detect real events (type II errors). Secondly, the threshold
is �xed manually and lacks a robust statistics. An alternative
is to estimate the genome coverage pro�le histogram [13] from
which a z-score statistics can be used to identify outliers more
precisely. Yet, since the genome coverage may contain low and
high frequency �uctuations, the statistics will also su�er from
Type I and II errors.
In this paper, we describe an approach that �rst estimates

the genome coverage trend using a running median. It can
be employed to normalize the genome coverage vector and cal-
culate a robust statistic (z-score) for each base position. This
allows us to obtain robust low and high thresholds at each base
position.
In the Data Description section, we describe the data sets

used throughout the paper as test-case examples. In the Meth-
ods section, we describe (i) the runningmedian used to detrend
the genome coverage and (ii) the statistical method used to
characterize the central distribution from which outliers can be
identi�ed and (iii) a double threshold method proposed to clus-
ter the ROIs. Finally, in the Applications section, we describe
the standalone application, sequana_coverage, and potential ap-
plications for NGS research projects.

Data Description

Three test-cases of genome coverage are presented here, cov-
ering representative organisms and sequencing depths. The
genome coverage data sets are in BED (Browser Extensible
Data) format, a tabulated �le containing the coverage, refer-
ence (e.g., chromosome number, contig) and position on the
reference. BED �les can be created using bedtools [14], in par-
ticular the genomecov tool.
We �rst considered a bacteria from a study of methicillin

resistant Staphilococcus aureus [15]. One circular chromosome
of 3 Mbp is present. The sequencing depth is 450 X and
the genome coverage exhibits a non-constant trend along the
genome (see Figure 1). This pattern, often observed in rapidly
growing bacteria, is the result of an unsynchronized popula-
tion where genome replication occurs bi-directionally from a
single origin of replication [16, 17]. The proportion of outliers
(see Section Building a statistics for a formal de�nition; see Ta-
ble 1) is about 2.5 % of the total bases. The original data sets (Il-
lumina sequencing reads, paired-end, 100 bp) are available at
the European Nucleotide Archive (ENA) [18] under study acces-
sion number PRJEB2076 (ERR036019). The accession number
of the reference is FN433596.
The second organism is a virus with a sequencing depth

of 1000 X [19]. A circular plasmid, containing the virus chro-
mosome, is 19 795 bp-long. About 13% of the genome cov-
erage contains large or low coverage regions (outliers). It also
contains two large under-covered regions (one partially under-
covered and one region that is not covered at all) as shown in
Figure 2. The accession number of the reference is JB409847.
The third test case is the fungus (Schizosaccharomyces

pombe) [20]. The genome coverage has a sequencing depth
of 105 X. It has three non-circular chromosomes of 5.5 Mbp,
4.5Mbp and 2.5Mbp. The references from ENA are CU329670.1,
CU329671.1 and CU329672.1 (X54421.1). Although we will look
at the �rst chromosome only (1.5% of outliers), the tools pre-
sented hereafter handles circular chromosomes and multiple
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Figure 1. Example of a genome coverage series (in black in both panels). The
genome coverage corresponds to the bacteria test case (see text). It contains a
deleted region (around 2.2 Mbp) and various under- and over-covered regions
(from 100 bp to several Kbp). Although the sequencing depth is about 500 X,
there is non-linear trend from 500 X on both ends to 400 X in the middle of
the genome. The top panel shows the sequencing depth (blue horizontal line)
and two arbitrary �xed thresholds (dashed red lines) at 400 X and 500 X. Due
to the non-linear trend, the �xed thresholds lead to an increase of Type I and
Type II errors. On the contrary, in the bottom �gure, the trend is estimated
using a running median (red line) and adaptive lower and upper thresholds
(dashed red lines) can be derived.

chromosomes.
We provide the 3 genome coverage data �les in BED format

on Synapse [21, 22]. See Section Availability of supporting data
and materials for more details.

Methods

Detrending the genome coverage

The genome coverage function is denoted C(b) where b is the
base (nucleotide) position on the genome of reference. The
genome coverage and reference lengths are denoted N. For
simplicity, we drop the parentheses and refer to the genome
coverage as Cb. The empirical sequencing depth (average ofgenome coverage) is denoted δ = Cb. Ideally, Cb is made of acontinuous homogeneous central region. In practice, however,
this may be interrupted by a succession of under- and over-
covered regions: the genomic ROIs that we want to detect.
A naive classi�er consists in setting two �xed thresholds δ–

and δ+ whereby low and high ROIs are de�ned as C–b = Cb ≤ δ–

and C+b = Cb ≥ δ+, respectively. If C0b denotes the remainingdata such that δ– < C0b < δ+, then the genome coverage can be
written as Cb = {C0b , C+b , C–b }.The advantage of the �xed-thresholds method is that it is
conceptually simple and computationally inexpensive. How-
ever, there are two major drawbacks manifest. First, as shown
in Figure.1-A, false negatives and false positives will increase
as soon as there is a non-constant trend present in the data. It
may be a low frequency trend as shown here but high frequency
trend are also present (see e.g., Fig 2). Also of importance is
that an arbitrary choice of threshold(s) is unsatisfactory from
a statistical point of view since we cannot associate any level
of signi�cance to a genomic region.
In order to account for a possible trend in the genome cov-

erage series (and remove it), a standard method consists in
dividing the series by a representative alternative such as its
moving average or running median.
Themoving average (MA) is computed at each position, b, as

the average of W data points around that position and de�ned
as follows:

MAW(b) = 1
W

V∑
i=–V

C(b + i), (1)

where W is the length of the moving window (odd number)
and V = (W – 1)/2. Note that the �rst and last V values are
unde�ned. However, in the case of circular DNA (e.g., virus
case), then the �rst and last V points are de�ned since Cb isnow a circular series.
Similarly, the running median (RM) is computed at each po-

sition, b, as the median of W data points around that position:
RMW(b) = median({C(b – V), .., C(b + V)}), (2)

where W and V are de�ned as before and the median function
is de�ned as the middle point of the sample set (half of the
data is below the median and half is above). A mathemati-
cal expression of the median and running median are given
in the Appendix section (Eq. 8).
The mean estimator is commonly used to estimate the cen-

tral tendency of a sample, nevertheless it should be avoided in
the presence of extraneous outliers, which are common in NGS
genome coverage series (see e.g., Figure 1). Figure 2 shows the
impact of outliers when using a moving average or a running
mean. We will use the running median only and de�ne the
normalized genome coverage as follows:

C̃b = Cb
RMW (b) . (3)

We will use the tilde symbol for all metrics associated with
the normalized genome coverage, C̃b. For instance, C̃b =
{C̃0b , C̃+b , C̃–b }.The running median is used in various research �elds,
in particular in spectral analysis [23] to estimate the noise
�oor while ignoring biases due to narrow frequency bands
(e.g., [24]). Here, the goal is to avoid narrow peaks but also
to be insensitive to long deleted regions. This can be a ma-
jor issue in NGS as the running median estimator complexity
is a function of the window length. Indeed the running me-
dian algorithm involves the sorting of a sample of length W at
each position of the genome. So, the running median estimator
must be e�cient and scalable. This is not an issue in spectral
analysis and most �elds where running median are used but is
a bottleneck for NGS analysis where W is large. As explained
in the Appendix section, the complexity of the sorting part is
in O(n2) in the worst case but similarly to the moving average,
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Figure 2. Comparison of the running median and moving average estimators
(virus case). The sequencing depth is 930 X and the genome coverage has a
deleted region situated around b = 4 000 as well as an under-covered region
at b = 6 000. The moving average is less robust to outliers or deleted regions.
For instance, the region around b = 5 000 is biased due to the presence of a
deleted region, which increases the rate of false alarms.

Figure 3. Normalized genome coverage C̃b (bacteria test case). The outlierspresent in the original genome coverage Cb (see Figure 1) are still present aswell as the deleted regions. The distribution is now centred around unity (blue
line). Since the distribution is normalized, constant thresholds can be used
(dashed lines). See section for details.

one can take advantage of the rolling window and the fact that
the previous block is already sorted. We opted for the very ef-
�cient Pandas [25] implementation (See Appendix for details).
In our implementation, both the moving average and running
median have the ability to account for circular DNA data, which
is essential to handle circular series.
If we normalize the genome coverage from the bacteria ex-

ample (Figure 1), we obtain the results shown in Figure 3. Fi-
nally, note that the genome coverage being discrete, the run-
ning median is also discrete as well as the normalized genome
coverage. The discreteness will become more pronounced as
sequencing depth decreases.

Building a statistics

Since the reads are randomly generated (uniform distribution
over the genome), when reads are mapped to the genome, the
per-base coverage follows a Poisson distribution. It is dis-
crete and has one parameter that corresponds to the sequenc-
ing depth (mean of the distribution). Yet, the Poisson distri-

bution is often too narrow, as can be observed in the three
test cases considered. This is due to biological over-dispersion.
In order to account for over dispersion, the Poisson parame-
ter can be distributed according to a second distribution. For
instance when the Poisson parameter is distributed according
to a Gamma distribution, we obtain a negative binomial, which
has two shape parameters [13]. For large sequencing depth, we
can approximate the negative binomial or Poisson distributions
with a Gaussian distribution. We will use the mathematical no-
tationN (µ,σ2) hereafter where µ is the average of the genome
coverage (δ in an ideal case) and σ is its standard deviation.
Let us start with an ideal scenario where (i) there is no

outliers, (ii) the running median window W is �xed and (iii)
δ � 1. The latter means that Cb distribution exhibits a Gaus-sian distribution ∼ N (µ,σ2). Can we derive the distribution of
the normalized genome coverage C̃b knowing that it is a ratiodistribution? By de�nition, the numerator follows a N (µ,σ2)
distribution while the denominator’s distribution is the run-
ning median’s distribution. The latter is generally not known,
especially in the case of large W. Even if we knew the run-
ning median distribution, the ratio distribution is only known
for two Gaussian distributions X and Y (Cauchy distribution)
when (i) the two distributions are centred around zero, which
is not the case, and (ii) when they are independent, which is
also not the case. Further, the scenario we considered (no out-
liers, W �xed, δ � 1) is too restrictive since we are interested
in identifying outliers and may encountered cases where δ is
small (for which Cb follows a negative binomial, not a Gaussiandistribution).
Our �rst hypothesis is that C̃b can be decomposed into a cen-

tral distribution, C̃0b , and a set of outliers, C̃1b = {C̃+b , C̃–b } where
the central distribution is predominant:

∣∣∣̃C0b∣∣∣ > ∣∣∣̃C1b∣∣∣, and where
vertical bars indicate the cardinality of the sets.
Our second hypothesis is that the mixture model that rep-

resents C̃b is a Gaussian mixture model of k = 2 models:
C̃0b ∼ N (µ̃0, σ̃20) and C̃1b ∼ N (µ̃1, σ̃21 ). The Gaussianity hypoth-
esis about the central distribution, C̃0b is valid as long as theraw sequencing depth is large (i.e., at least 10X). The Gaus-
sianity of the outliers may be questioned, especially for the
low-sampling case. However, in the context of a null hypoth-
esis where the central distribution represents the background
and the outliers the signal to detect, we can consider that the
outliers population is a mix of samples and that we are in the
limit of the central theorem. Similarly to the method deployed
in [13] to identify a mixture model of negative binomials (on
the raw genome coverage), we will use an Expectation Min-
imization (EM) [26] method to estimate the parameters µ̃0,1and σ̃0,1 (on the normalised genome coverage).
The EM algorithm is an iterative method that alternates be-

tween two steps: (i) an Expectation step that creates a func-
tion for the expectation of the log-likelihood using the current
estimate of the parameters, and (ii) a Minimization step that
computes parameters maximizing the expected log-likelihood
found in the �rst step. The likelihood function and the maxi-
mum likelihood estimate (MLE) can be derived analytically in
the context of Gaussian distributions. Note that in addition
to the means and standard deviations, the mixture parameters
also need to be estimated. These are denoted π̃0 and π̃1. TheEM algorithm is standard and can be found in various scienti�c
libraries. Note, however, that the normalized genome coverage
may contain zeros in the presence of deleted regions and the
estimation of the mixture model should ignore them.
We have applied the EM algorithm on the normalized

genome coverage vector on various real NGS data sets including
the three test cases Figure 4. The EM retrieves the parameters
of the central distribution (in particular µ̃0 = 1) and the outliers.
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Figure 4. Probability density functions (PDFs) of the normalized genome cov-
erage function concerning the three test cases. The distributions were �tted
with a Gaussian mixture models with k = 2 models. The �rst model (black
line) �ts the central distribution’s PDF and the second model (red line close
to y = 0) �ts the outliers’ PDF. The dashed lines (close to the black lines) in-
dicates the mixture distribution. In each panel, we report the parameters of
the two Gaussian distributions, the proportions π0, π1 and the Θ parameter
introduced in the text that gives the centralness of the data for each test cases.

Note that the choice of the running median parameter, W , does
not signi�cantly a�ect the parameter estimation. In each case,
the mean of the central distribution is very close to unity. The
standard deviation varies signi�cantly and is a function of the
sequencing depth only (since the outliers are now incorporated
in C1b). Finally, we can con�rm that the proportion of outliers
is small as compared to the central distributions by inspection
of parameters π0 and π1: π̃0 >> π̃1.
Once we have identi�ed the parameters of the central distri-

bution C̃0, we can assign statistics for C̃b in terms of z-score:

z(b) = C̃(b) – µ̃0
σ̃0

. (4)

Since the z-score corresponds to a normal distribution, we can
now set a threshold in terms of tolerance interval within which
a speci�ed proportion of the genome coverage falls. For in-
stance, with a threshold of 3, we know from the normal dis-
tribution that 99.97% of the sample lies in the range -3 and
+3. The exact mathematical value is given by the complemen-
tary error function, erfc(x), where x = n/√2. Note that for
n = 3, 4 and 5, the tolerance interval is 99.73%, 99.993% and
99.999942%, respectively. Thus, for a genome of 1 Mbp, by
pure chance we should obtain about 2700, 70 and 1 outlier(s),
respectively.
If we now replace C̃b in Eq.4 using its expression from Eq. 3,we can express the original genome coverage as a function of

the runningmedian, the z-score and the parameters of the cen-
tral distribution:

C(b) = (µ̃0 + z(b)σ̃0)RMW (b). (5)
We can now set a �xed threshold z(b) = ±n in the normalized
space. This is much easier to manipulate. Moreover, we can
derive a variable threshold in the original space that is function
of the genome position:

δ̃±(b) = (µ̃0 ± n± × σ̃0
)
RMW (b). (6)

Examples of variable upper and lower threshold functions are
shown in Figure 1 and Figure 2 (red dashed lines). This manip-
ulation results in a robust statistical estimate of the presence
of outliers in the genome coverage. The z-score, computed ear-
lier, provides a precise level of con�dence.
Using the normalization presented above, we can de�ne the

centralness as one minus the proportion of outliers contained
in the genome coverage:

Θn = 1 –
∣∣∣̃C1b∣∣∣∣∣∣̃Cb∣∣∣ = 1 –

∣∣∣̃C1b∣∣∣
G , (7)

where G is the length of the genome, and vertical bars indicate
the cardinality. This necessarily depends on how the threshold
n is set in the normalized space. In the case of an ideal Gaus-
sian distribution and n = 3, the centralness should equal the
tolerance interval of a normal distribution N (0, 1) that is the
error function, erf(n/√2). The centralness equals unity when
there are no outliers i.e., n → ∞. Finally, note that the cen-
tralness is meaningless for values below 0.5 (meaning that the
central distribution is not central!). As shown in Table 1, Θ3equals 0.974, 0.99 and 0.86 in the three cases considered (bac-
teria, fungus, virus). So the proportion of outliers in the virus
case is higher than in the two other test cases, which is not
obvious at �rst glance given the very di�erent lengths of the
genome considered.

Genomic ROIs

Let us now consider the sub-set of outliers C̃+b . From the previ-ous section, it is de�ned by positions that are above the �xed
threshold n+ in the normalized space; it is a list of continuous
or non-continuous positions; the list may be quite extensive for
low threshold (e.g., for n+ = 2.5, the bacteria has 35Kbp such
positions). However, many positions belong the same event
(i.e., same cluster). Considering the short genome region in
Figure 5, which is made of 2000 base positions. It contains 5
di�erent regions that cross the threshold n+. However, only
one is well above. Ideally, the 5 events should be clustered
together. To do so, we proceed with a double-threshold ap-
proach [24] where a second �xed threshold m+ is de�ned as
m+ = α+n+ where α+ ≤ 1 and usually set to 1/2.
In the normalized space, the double threshold method

works as follows; We scan the entire genome coverage vector
starting from the �rst position b = 0. As soon as a per-base
coverage value crosses the threshold m+, a new cluster starts.
We then accumulate following bases until the per-base cover-
age crosses m+ again (going down). If the maximum of the
cluster is above the �rst threshold, n+, then the cluster is clas-
si�ed as a region of interest. The process carries on until the
end of the vector is reached. We repeat this classi�cation for
the lower case (with m– = α–n–). This method dramatically
reduces the number of short ROIs. Finally, we can characterize
each region with various metrics such as the length of the re-
gion, maximum coverage, mean coverage, mean andmaximum
z-scores.

Applications

Although the algorithm described is quite simple per se, each of
the three steps need to be optimised to handle NGS data sets.
We provide an implementation within the Sequana project [27].
Sequana is a Python library that provides NGS pipelines in the
form of snake�les based on the work�ow management sys-
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Figure 5. Example of a genomic region of interest (ROI) clustered using a
double threshold method. The genome coverage (black line) and its running
median (red) on a short genome location of 2kbp. The �rst threshold (top
dashed gray line) alone identi�es many short ROIs (dark blue areas). Using a
second threshold (bottom dashed gray line), the short ROIs are clustered and
identi�ed as a single ROI (coloured areas). Yellow vertical lines indicates the
beginning and end of the cluster.

Metric Bacteria Fungus Virus
Genome length 3 Mbp 5.5Mbp 19795
BOC 0.985 1.0 0.966
mean δ 447.8 105.49 931.3
median δ 453 105 988
σ 84.1 19.9 237.2
CV 0.19 0.19 0.25
W 5001 / (20001) 5001 / (20001) 5001
µ̃0 1.000 / (1.001) 1.002 / (1.002) 1.011
σ̃0 0.073 / (0.073) 0.158 / (0.161) 0.069
Θ3 0.976 / (0.967) 0.986 / (0.986) 0.868

Table 1. Metrics derived from the genome coverage of the three testcases considered (Bacteria, Fungus, Virus). The top part of the tablecontains metrics derived from the genome coverage only, while thebottom part contains metrics derived from the normalized genome
coverage, C̃b. All metrics are de�ned in the text; BOC stands forbreadth of coverage, δ for sequencing depth, CV for coe�cient ofvariation. The standard deviation is denoted σ. In the bacteria andfungus cases, the running window W is set to 5 001 or 20 001 whilefor the virus we used 5 001 only. The parameters of the central dis-tribution, µ̃0 and σ̃0 and the centralness,Θ3 are reported. Proportionof outliers (1-Θ3) are 2.5, 1.5 and 14% for the bacteria, fungus andvirus, respectively.

tem called Snakemake [28] (Make�le-like with a Python syn-
tax). Sequana also provides a Python library with re-usable
blocks. Moreover, we provide independent standalone appli-
cations. One of them is called sequana_coverage; it includes
the di�erent features related to genome coverage exposed in
this paper. The standalone sequana_coverage provides a self-
explanatory help and below we demonstrate how to generate
an HTML report from a BED �le. The BED �le format is a data
structure that stores the genome coverage information [14] (3-
columns tab-delimited �le).
sequana_coverage --input virus.bed -w 4001 -o

Several chromosomes may be present (e.g., fungus case).
By default, the �rst chromosome is used but one can provide
the chromosome number using the -c option. The -o option
indicates that the input is made of a circular DNA. The running
median window can be tuned using -w option. Full details are
available using --help. An HTML report is created by default
in the ./report directory. In the case of regions or genomes

Figure 6. 2-dimensional histogram of the GC content versus coverage available
in the HTML reports. The data used correspond to the bacteria test case. We
can quickly see that (i) the mean coverage is around 450, (ii) the mean GC is
around 30 % (iii) there are part of the genome coverage with zero coverage
(left hand side blue line), (iv) there are low and high ROI with coverage up
to 1500X that would possibly require more investigations. Be aware of the
logarithmic scale: most of the data is indeed centered in the blue area and the
brown outliers represent less than a few percents of the data.

larger than 0.5 Mbp, independent JavaScript pages are cre-
ated for each 0.5 Mbp-long region. This was done to optimize
browsing and analysis of larger data sets. A list of genomic
regions are available as HTML tables but also as downloadable
CSV �les. An additional feature is the ability to download a
reference genome (given its ENA [18] accession number). This
is achieved internally using BioServices [29] that can switch
between the ENA or NCBI web services to download the data
automatically. This is particularly useful to further compare
the genome coverage with other characteristics (e.g., the GC
content of the reference). Finally, the standalone application
is designed to be scalable: the virus case takes a few seconds
while the 5 Mbp bacteria case takes about one minute on a stan-
dard computer including analysis and HTML reports (Python
implementation).
Here is a non exhaustive list of applications followed by a

few illustrative examples.
• Quickly check the quality of the mapping. This can be per-
formed visually in the HTML reports. However, one can
also use the statistics provided such as the centralnessmet-
ric. For instance, the reported value of 0.873 (below unity)
clearly indicates an issue in the Virus test-case example
where 13% of the genome being is under-covered. This
metric can also be used to directly compare the quality of
di�erent mappings.

• Associate a statistic (z-score) on each value of the genome
coverage. Again, because of the statistics used, one can com-
pare di�erent mapping strategies more precisely.

• Automatic and robust detection of all under or over covered
ROIs. The CSV �les providedmay be used for further classi�-
cation using machine learning tools. For instance the width
of the ROIs and/or the maximum amplitude may be used as
features to characterise the anomalies in the genome cover-
age.

• E�ect of the GC content on the coverage. Regions of lower
genome coverage are sometimes related to repeated content
or unusual GC content [30]. We provide a GC content versus
coverage plot in the report as shown in Figure 6, which can
be used to detect this e�ect.

• Annotation of the ROIs, if an annotated data �le is provided
(genbank). Again, this can be downloaded via the stan-
dalone application. The interest of the annotations is the
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Figure 7. Focus on the bacteria test-case genome coverage. We show the
genome coverage in the range 50000-85000 base position. This range contains
a few instances of anomalies: short drop of coverage at position 54431, 59852,
61955, 66278, 74731, long deleted area (68809-68809+4789) and short excess
of coverage at position 53787 and 58552. If those anomalies can be explained
will have more con�dence in the mapping that looks suspicious at �rst glance.
It appears that the long deleted region is a repeated one (IS431), amongst the 5
short drops the last four are known CDS regions. As or the excess, the second
one is a CDS as well.

Figure 8. Identi�cation of repeated regions (from highly covered regions). We
can concatenate a �ltered genome coverage in the BED �le (as the fourth col-
umn) and compare the un�ltered and �ltered genome coverage. Here, a over-
represented ROI is detected above the threshold. Using the �ltered genome
coverage (green line), it appears that the mapping is of poor quality indicating
a possibly of repeated regions.

ability to associate an ROI with a known annotation as il-
lustrated in Figure 7. This allows researchers to be more
con�dent in interpreting NGS data. For instance, a deleted
or poorly covered regions may be a within an annotated re-
peated region.

• Identi�cation of repeated regions. In addition to the gen-
bank annotations that may be useful to understand anoma-
lies in the coverage, one can also take advantage of the map-
ping quality information. Indeed, the BED �le may contain
two coverage vectors. The �rst one contains the standard,
un�ltered, mapping data that we have address thus far. The
second one is the �ltered coverage where reads with poor
quality (as given by tools such as BWA [8]) have been re-
moved. With this technique, one might associate anoma-
lous over-represented ROIs with poor quality mapping (See
Figure 8) or associate regions that looks normal with anno-
tations or repeated regions (See Figure 9).

Figure 9. Same as Figure 8. Here, the un�ltered coverage (black line) appears
normal. However, using the �ltered coverage (orange), a large regions with
poor mapping is revealed. It appears that this 4 000 bp regions (blue) corre-
sponds to a retro-transposable element �anked by two repeated regions (light
green), which is con�rmed by the Genbank annotations.

Conclusion

The genome coverage along a reference contains valuable in-
formation and deserves to be part of an NGS toolkit (e.g., qual-
ity control of an alignment before a variant detection pipeline).
Yet, it is too often summarised by its sequencing depth even
though the raw data usually contains a wide spectrum of
features such as deleted regions, low frequency trends, non-
homogeneous central distribution, repeated regions, . . .
The method presented in this paper provides a robust sta-

tistical framework to detect under and over-covered genomic
regions that can be further characterized with basic statistics
(length, mean coverage, maximum z-score, . . . ). Although ro-
bust, the method remains simple and can be summarized in
three main steps: (1) detrending of genome coverage series us-
ing a running median (ii) parameter estimation of the central
distribution of the normalized genome coverage series using
an EM approach (for a Gaussian mixture model), (iii) cluster-
ing and characterization of the outliers as genomic regions of
interest (ROI).
We underlined the value of the running median algorithm

as compared to a moving average while emphasizing the prac-
tical impact of the running median algorithm complexity. In-
deed, an e�cient implementation is of paramount importance
in the context of NGS analysis. In addition, circular series and
multi-chromosome organisms should be handled. Wewrap the
algorithm within the standalone application sequana_coverage,
which also provides HTML reports with a summary of the ge-
nomic regions of interest. The HTML reports provide visual in-
trospection of the genome coverage, list of genomic ROIs and
statistics such as the centralness, a metric that encompasses
the preponderance of the central distribution with respect to
the outliers.
Although we presented test cases with relatively large se-

quencing depth (100X to a thousand), it is based on a robust
statistics and practical cases down to 30X were studied with
success. We believe that the algorithm can be used to sequenc-
ing depth as low as 10X. Below 10X, a Gaussian distribution
hypothesises is not valid anymore and the z-score values are
less precise. A natural extension to this work is to consider low
sequencing depths below 10X.
With additional features such as the ability to annotate

the ROIs with genbank �les and the identi�cation of re-
peated regions, we believe that the standalone application
sequana_coveragewill help researchers in deciphering the infor-
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mation contained in the genome coverage. Finally, notebooks,
examples and code available in Sequana [27] should be helpful
for integration in other libraries.

Availability of source code

• Project name: Sequana (sequana_coverage standalone)
• Project home page: http://sequana.readthedocs.org
• Operating system(s): Platform independent
• Programming language: Python 3
• Containers: Sequana is available on Bioconda channel [35,
36] and we also provide a Singularity container [37]. See
http://sequana.readthedocs.org for details.

• License: BSD 3-clause Revised License

Availability of supporting data and materials

The data sets supporting the results as well as addi-
tional �les used to created them are available within a
Synapse project [22]. More speci�cally, the BED �les
mentioned in Section Data Description corresponding
to the virus, bacteria and fungus are available un-
der: doi:10.7303/syn10638370.1 (JB409847.�ltered.bed),
doi:10.7303/syn10638494.1 (JB409847.�ltered.bed) and
doi:10.7303/syn10638487.1 (S_pombe.�ltered.bed), respec-
tively. In addition, we provide the genome reference used in
Figure 6 (doi:10.7303/syn10638477.1) and the genbank used in
Figure 9 (doi:10.7303/syn10638480.1). The data sets are also
available on a Github repository [38] together with a notebook
that reproduces the �gures. Finally, note that the BED �les
can be recreated using the original FastQ �les available on
doi:10.7303/syn10638358. We also provide recipes to create
the BED �les from the FastQ �les as notebooks in [38].

Declaration

List of abbreviations

• BAM: Binary Alignment Map, the binary version of the Se-
quence Alignment Map (SAM) format.

• BED: Browser Extensible Data
• BOC: Breadth of Coverage
• DOC: Depth of Coverage
• CV: Coe�cient of Variation
• EM: Expectation Minimization
• MA: Moving Average
• MLE: Maximum Likelihood Estimate
• RM: Running Median
• ROI: Regions of Interest, samples within a data set identi-
�ed for a particular purpose.

• SNP: Single Nucleotide Polymorphisms
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Appendix

Running median implementation

The mean is a measure of the central tendency of a population.
It is not a robust estimator in the presence of large extraneous
outliers in the population. In such a situation, it is preferable to
consider a truncated mean or a median estimator. The median
is the middle point of a sample set in which half the numbers
are above the median and half are below. More formally, let us
consider a sample s[i], i = 1, ..,n and S[i] the sequence obtained
by sorting s[i] in ascending order (ordering of equal elements
is not important here). Then, the median is de�ned as

ν = median({s[1], s[2], .., s[n]}) = { S
[ n+12 ] n odd,

S[n/2]+S[n/2+1]2 n even.
(8)

Let us now consider a series X(k) where k = 1, ..,N. Then,
the running median of X(k) is de�ned as the sequence ν(k) =
median({X(k), X(k + 1), .., X(k +W)}), k = W/2, ..,N–W/2 where
W is a window size de�ned by the user and the application. The
�rst W/2 and last W/2 values are unde�ned so we should have
W � N.

Since we perform a sorting of an array of W elements at N
positions, the complexity of the running median is N times the
complexity of the sorting algorithm. If W and N are small (e.g.,
removal of narrow lines in power spectral density in addition
to the overall smoothing of time or frequency series [24]), a
naive quick-sort algorithm (O(W2) in the worst case scenario)
may be used. However, better algorithms do exist and can be
decreased to O(√W) in the worst case as implemented in [31].
Yet, in NGS applications, N could easily reach several millions
and W may need to be set to large values up to 50,000 (e.g., to
identify long deleted regions).

Instead of computing the median at each position, k, a more
e�cient solution consists in re-using the sorted block at k – 1,
and tomaintain the block sorted as new elements are added. In-
deed, one only needs to insert the next sample into the sorted
block and delete the earliest sample from the sorted block. A
standard Python module named bisect provides an e�cient in-
sertion in sorted data (keeping the data sorted). The complex-
ity of this sorting algorithm is O(logW).
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Figure 10. Computational cost of running median algorithms as a function
of the window size parameter W (for N = 1e6). Four variants are considered:
SciPy [32] implementation (function med�lt v0.17), Pandas [25] and 2 Python
variants available in Sequana based on a list or blist data containers (see text
for details). The SciPy variant has a O(W) complexity irrespective of the W
value. For low W values (W < 20 000), the two Python variants haveO(log(W))
complexity. For largerW values, the blist keeps itsO(log(W)) complexity while
the list container follows a O(W) complexity. Pandas complexity is less clear
with a O(W) for W < 20 000 and O(log(W)) otherwise. The fastest implemen-
tation is clearly the Pandas one even for large W values.

So far, we have neglected the cost of the insertion and dele-
tion steps, which is not negligible. For instance, in Python
language, one of the most common data structure is the list.
It is a dynamically-sized array (i.e., insertion and deletion of
an item from the beginning or middle of the list requires to
move most of the list in memory) and the look-up, insertion
and deletion have a O(n) complexity. So the running median
is actually dominated by the slow O(n) insertion and deletion
steps. A better data structure is available thanks to the blist
package; it is based on a so-called B-tree, which is a self-
balancing tree data structure that keeps data sorted. The blist
allows searches, sequential access, insertions, and deletions in
O(logn) (see https://pypi.python.org/pypi/blist/ for details).
Based on materials from

http://code.activestate.com/recipes/576930/, we have im-
plemented these two variants of running median functions in
Python available in Sequana [27] library. We also considered
established numerical analysis tools from the SciPy [32] and
Pandas [25] libraries. We �nally compare the four implemen-
tations in terms of computation time and complexity as shown
in Figure 10. It appears that the Pandas implementation is the
fastest. For W > 20, 000 up to 200,000, our implementation is
2-3 order of magnitude faster than the SciPy version but 4-5
times slower than Pandas. We should emphasize the fact that
the SciPy function has additional features since it is available
for N-dimensional data sets whereas we restrict ourselves to
1-D data sets. In Sequana, the two variants only di�er in the
data structure being used to hold the data (list versus blist).
The Figure 10 shows the di�erence between the list and blist
data structures that is marginal for low W values while for
large values asymptotic behaviours are reached showing the
interest of the blist over the list choice. We also see that our
implementation with blist has a lower complexity than the
Pandas implementation. However, for the range considered
Pandas is always the fastest choice.
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