
GigaScience

Sequana Coverage: Detection and Characterization of Genomic Variations using
Running Median and Mixture Models

--Manuscript Draft--

Manuscript Number: GIGA-D-17-00238R3

Full Title: Sequana Coverage: Detection and Characterization of Genomic Variations using
Running Median and Mixture Models

Article Type: Technical Note

Funding Information: Agence Nationale de la Recherche
(ANR10-INBS-09-08)

Mr Dimitri Desvillechabrol

Abstract: Background: In addition to mapping quality information, Genome coverage contains
valuable biological information like the presence of repetitive regions, deleted genes or
copy number variations. It is essential to take into consideration atypical regions,
trends (e.g., origin of replication) or known and unknown biases that influence
coverage. It is also important that reported events have robust statistics (e.g. z-score)
associated with their detections as well as precise location

Results: We provide a standalone application -- sequana_coverage -- that reports
genomic regions of interest (ROIs) which are significantly over- or under-represented in
HTS sequencing data. Significance is associated with the events as well as
characteristics such as length of the regions. The algorithm first detrends the data
using an efficient running median algorithm. It then estimates the distribution of the
normalized genome coverage with a Gaussian mixture model. Finally, a z-score
statistic is assigned to each base position and used to separate the central distribution
from the ROIs (i.e., under- and over-covered regions). A double thresholds mechanism
is used to cluster the genomic ROIs. HTML reports provide a summary with interactive
visual representations of the genomic ROIs with standard plots and metrics. Genomic
variations such as single nucleotide variants (SNVs) or copy number variations (CNVs)
can be effectively identified at the same time.

Corresponding Author: Thomas Cokelaer, Ph. D.
Institut Pasteur
Paris, FRANCE

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Institut Pasteur

Corresponding Author's Secondary
Institution:

First Author: Dimitri Desvillechabrol

First Author Secondary Information:

Order of Authors: Dimitri Desvillechabrol

Christiane Bouchier, Ph. D.

Sean Kennedy, Ph. D.

Thomas Cokelaer, Ph. D.

Order of Authors Secondary Information:

Response to Reviewers: I have added the sentence and added the reference in the bibliography as requested.
Regards
Thomas Cokelaer on behalf of the authors

Additional Information:

Question Response

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

GigaScience, 2017, 1–12

doi: xx.xxxx/xxxx

Manuscript in Preparation

Technical Note

TECHN I CA L NOTE

Sequana Coverage: Detection and Characterization of Genomic
Variations using Running Median and Mixture Models.

Dimitri Desvillechabrol1†, Christiane Bouchier1, Sean Kennedy1 and Thomas Cokelaer1,2,†,∗

1Institut Pasteur – Pole Biomics – Paris, France and 2Institut Pasteur – Bioinformatics and Biostatistics Hub – C3BI,
USR 3756 IP CNRS – Paris, France
†equal contributions
∗corresponding author

Emails: ddesvillechabrol@gmail.com, christiane.bouchier@pasteur.fr, sean.kennedy@pasteur.fr, thomas.cokelaer@pasteur.fr

Abstract
Background: In addition to mapping quality information, the Genome coverage contains valuable biological information like the
presence of repetitive regions, deleted genes or copy number variations. It is essential to take into consideration atypical regions,
trends (e.g., origin of replication) or known and unknown biases that influence coverage. It is also important that reported events
have robust statistics (e.g. z-score) associated with their detections as well as precise location.
Results: We provide a standalone application – sequana_coverage – that reports genomic regions of interest (ROIs) which are
significantly over- or under-represented in HTS sequencing data. Significance is associated with the events as well as characteristics
such as length of the regions. The algorithm first detrends the data using an efficient running median algorithm. It then estimates
the distribution of the normalized genome coverage with a Gaussian mixture model. Finally, a z-score statistic is assigned to each
base position and used to separate the central distribution from the ROIs (i.e., under- and over-covered regions). A double thresholds
mechanism is used to cluster the genomic ROIs. HTML reports provide a summary with interactive visual representations of the
genomic ROIs with standard plots and metrics. Genomic variations such as single nucleotide variants (SNVs) or copy number
variations (CNVs) can be effectively identified at the same time.

Key words: genome coverage, sequencing depth, running median, Sequana, NGS, Python, Snakemake, CNV

Background

Sequencing technologies allow researchers to investigate a wide range
of genomic questions [1], covering research fields such as the expres-
sion of genes (transcriptomics) [2], the discovery of somatic muta-
tions, or the sequencing of complete genomes of cancer samples to
name a few examples [3, 4]. The emergence of the second generation
sequencing, which is also known as Next-Generation Sequencing or
NGS hereafter, has dramatically reduced the sequencing cost. This
breakthrough multiplied the number of genomic analyses undertaken
by research laboratories but also yielded vast amount of data. Con-
sequently, NGS analysis pipelines require efficient algorithms and
scalable visualization tools to process this data and to interpret the
results.

Raw data generated by NGS experiments are usually stored in
the form of sequencing reads (hereafter simply called reads). A
read stores the information about a DNA fragment and also an er-
ror probability vector for each base. Read lengths vary from 35-300
bases for current short-read approaches [1] to several tens of thou-
sands of bases possible with long-read technologies such as Pacific

Biosciences [5, 6] or Oxford Nanopore [7].

After trimming steps (quality, adapter removal), most high-
throughput sequencing (HTS) experiments will require mapping the
reads onto a genome of reference [8]. If no reference is available, a
de-novo genome assembly can be performed [9]. In both cases, reads
can be mapped back on the reference taking into account their qual-
ity. We define the genome coverage as the number of reads mapped
to a specific position within the reference genome. The theoretical
distribution of the genome coverage has been thoroughly studied
following the seminal work of Lander-Waterman model [10, 11]. A
common metric used to characterize the genome coverage is the se-
quencing depth: the empirical average of the genome coverage. It
may also be called depth of coverage (DOC), fold coverage, read
depth, or confusingly, depth or coverage. The sequencing depth unit
is denoted X. An example of a genome coverage with a sequencing
depth of about 450 X is shown in Figure 1. Another useful metric
is the breadth of coverage (BOC): the proportion of the intended
genome reference covered by at least one read.

The required sequencing depth depends on the experimental ap-

1

Manuscript Click here to access/download;Manuscript;main.pdf

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/giga/download.aspx?id=48088&guid=ce36ca5b-3f52-4378-8cf7-ee7b2d8f4fbf&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=48088&guid=ce36ca5b-3f52-4378-8cf7-ee7b2d8f4fbf&scheme=1
http://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=724&rev=3&fileID=48088&msid=6da594a8-e274-400c-86a6-01b2fe0a1606

2 | GigaScience, 2017, Vol. 00, No. 0

Key Points

• We propose a novel algorithm to automatically detect genomic regions of interest (e.g., CNV) that depart from the overall genome
coverage.

• Normalization is performed with an efficient running median. Using a mixture Gaussian model, we assign to each per-base coverage
a z-score. A double threshold clustering is used to report the final list of genomic ROIs.

• We provide a standalone application called sequana_coverage – available in the Sequana [32] project.
• Starting from a BAM or BED file, HTML reports provide the coverage metrics, genomic ROIs, coverage versus GC content plot,

genbank annotations, and Javascript visualisation (for viral and bacterial genomes).
• The tool handles multi-chromosomes genomes and provide multiqc [35] reports in such cases.
• Both short (SNVs) and long events (CNVs) are detected by the algorithm with accurate breakpoints reported.
• Sequana_coverage was designed for viral and bacterial genomes but can also handle eukaryotes genomes.

plication. For instance, to detect human genome mutations, single-
nucleotide polymorphisms (SNPs), and rearrangements, a 30 to
50 X depth is recommended [1, 12] in order to distinguish between
sequencing errors and true SNPs. In contrast, the detection of
rarely expressed genes in transcriptomics experiments often requires
greater sequencing depth. However, greater sequencing depth is not
always desirable. Indeed, in addition to a higher cost, ultra-deep
sequencing (large sequencing depth in excess of 1000 X) may be an
issue for a de-novo genome assembly [13].

The Lander-Waterman model provides a good theoretical esti-
mate of the required sequencing depth to guarantee that all nu-
cleotides are covered at least N times. This is, however, a theo-
retical estimate that does not take into account technical and bi-
ological limitations; some regions being difficult to efficiently map
(e.g., repetitive DNA) or containing compositional biases (e.g., GC
bias [14]). Furthermore, the genome coverage itself may contain a
non-constant trend along the genome due to the impact of the origin
of replication. Finally, some regions may be deleted or duplicated.
The genome coverage example shown in Figure 1 shows these differ-
ent features.

While the sequencing depth and other metrics (e.g. BOC) pro-
vide a quick understanding about the quality of sequencing and map-
ping, the genome coverage can also be analysed to identify genomic
variations such as single nucleotide variations (SNVs) or copy num-
ber variations (CNVs) [15, 16, 17].

In order to detect genomic regions of interests (ROIs) based on
genome coverage, a simple and fast approach might be to set two
arbitrary thresholds bounding the sequencing depth. However, there
are two major drawbacks with this approach. First, as shown in
Figure 1 (top panel) and Notebook 4 in [45], with a fixed threshold,
one may detect numerous false signals (type I errors) or fail to detect
real events (type II errors). An adaptive thresholds that follows the
trend of the genome coverage is thus required. Furthermore, a fixed
threshold is arbitrary and so the detected events lack a robust means
of assigning significance. A more robust alternative is to estimate
the genome coverage profile histogram [18] from which a z-score
statistics can be used to identify outliers more precisely. Due to a
number of known and unknown biases, one should still normalize the
data [15]. There are a number of different methods for detecting
the ROIs. For example, for CNV detection, numerous techniques
are used [17] such as the mean-shift technique [16] or bias correction
followed by application of a complex statistical model [15].

In this paper we describe a novel approach that can efficiently de-
tect various types of genomic ROIs. The algorithm does not target
any specific type of genomic variations but instead systematically re-
ports all positions (with a z-score) that have depth departing from
the overall distribution. The algorithm normalizes the genome cov-

erage using a running median and then calculate a robust statistic
(z-score) for each base position based on the parameter estimation
of the underlying distribution. This allows us to obtain robust and
non-constant thresholds at each genome position. Various types of
clustering or filtering can then be implemented to focus on specific
categories of variations.

In the Data Description section, we describe the data sets used
throughout the paper as test-case examples. In the Methods sec-
tion, we describe (i) the running median used to detrend the genome
coverage, (ii) the statistical methods used to characterize the cen-
tral distribution from which outliers can be identified and (iii) a
double thresholds method proposed to cluster the ROIs. Finally,
in the Applications section, we describe the standalone application,
sequana_coverage, and potential applications for HTS-dependant
research projects including CNVs detection.

Data Description

Three test-cases of genome coverage are presented here, covering
representative organisms and sequencing depths. The genome cov-
erage data sets are in BED (Browser Extensible Data) format, a
tabulated file containing the coverage, reference (e.g., chromosome
number, contig) and position on the reference. BED files can be
created from BAM files (mapped reads) using bedtools [19], in par-
ticular the genomecov tool.

We first considered a bacteria from a study of methicillin resis-
tant Staphylococcus aureus [20]. One circular chromosome of 3 Mbp
is present. The sequencing depth is 450 X and the genome coverage
exhibits a non-constant trend along the genome (see Figure 1). This
pattern, often observed in rapidly growing bacteria, is the result of
an unsynchronized population where genome replication occurs bi-
directionally from a single origin of replication [21, 22]. The propor-
tion of outliers (see Table 1) is about 2.5 % of the total bases. The
original data sets (Illumina sequencing reads, paired-end, 100 bp)
are available at the European Nucleotide Archive (ENA) [23] under
study accession number PRJEB2076 (ERR036019). The accession
number of the reference is FN433596.

The second organism is a virus with a sequencing depth of
1000 X [24]. A circular plasmid, containing the virus chromosome,
is 19 795 bp-long. About 13% of the genome coverage contains large
or low coverage regions (outliers). It also contains two large under-
covered regions (one partially under-covered and one region that is
not covered at all) as shown in the Notebook 1 of [45]). The acces-
sion number of the reference is JB409847.

The third test case is a fungus (Schizosaccharomyces pombe) [25].
The genome coverage has a sequencing depth of 105 X. It has three
non-circular chromosomes of 5.5 Mbp, 4.5 Mbp and 2.5 Mbp. The

Compiled on: August 21, 2018.

Draft manuscript prepared by the author.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Desvillechabrol D., Bouchier C., Kennedy S., Cokelaer T. | 3

Figure 1. Example of a genome coverage series (in black in both panels).
The genome coverage corresponds to the bacteria test case (see text). It
contains a deleted region (around 2.2 Mbp) and various under- and over-
covered regions (from 100 bp to several Kbp). Although the sequencing
depth is about 500 X, there is non-linear trend from 500 X on both ends to
400 X in the middle of the genome. The top panel shows the sequencing
depth (blue horizontal line) and two arbitrary fixed thresholds (dashed
red lines) at 400 X and 500 X. Due to the non-linear trend, the fixed
thresholds lead to an increase of Type I and Type II errors. On the
contrary, in the bottom figure, the trend is estimated using a running
median (red line) and adaptive lower and upper thresholds (dashed red
lines) can be derived.

references from ENA are CU329670.1, CU329671.1 and CU329672.1.
Although we will look at the first chromosome only (1.5% of out-
liers), the tools presented hereafter handles circular chromosomes
and multiple chromosomes. See examples in Notebook 3 of [45].

We provide the 3 genome coverage data files in BED format on
Synapse [26, 27]. See Section Availability of supporting data and
materials for more details.

In addition to these three cases, we also use a population com-
posed of 6 Staphylococcus aureus isolates from [15] (supplementary
data), which is used to measure the efficiency of our algorithm
against two dedicated CNVs detection tools: CNOGpro [15] and
CNVnator [16].

Methods

Detrending the genome coverage

The genome coverage function is denoted C(b) where b is the base
(nucleotide) position on the genome of reference. The genome cover-
age and reference lengths are denoted N. For simplicity, we drop the

parentheses and refer to the genome coverage as Cb. The empirical
sequencing depth (average of genome coverage) is denoted δ = Cb.
Ideally, Cb is made of a continuous homogeneous central region. In
practice, however, this may be interrupted by a succession of under-
and over-covered regions: the genomic ROIs that we want to detect.

A naive classifier consists in setting two fixed thresholds δ– and
δ+ whereby low and high ROIs are defined as C–

b = Cb ≤ δ– and
C+
b = Cb ≥ δ+, respectively. If C0

b denotes the remaining data
such that δ– < C0

b < δ+, then the genome coverage can be written
as Cb = {C0

b, C
+
b , C–

b}.

The advantage of the fixed-thresholds method is that it is con-
ceptually simple and computationally inexpensive. However, there
are two major drawbacks manifest. First, as shown in Figure 1-A,
false negatives and false positives will increase as soon as there is a
non-constant trend present in the data. It may be a low frequency
trend as shown here but high frequency trend are also present (see
e.g., Figure 2). Also of importance is that an arbitrary choice of
threshold(s) is unsatisfactory from a statistical point of view since
we cannot associate any level of significance to a genomic region.

In order to account for a possible trend in the genome coverage
series (and remove it), a standard method consists in dividing the
series by a representative alternative such as its moving average or
running median.

The moving average (MA) is computed at each position, b, as
the average of W data points around that position and defined as
follows:

MAW(b) =
1
W

V∑
i=–V

C(b + i), (1)

where W is the length of the moving window (odd number) and
V = (W – 1)/2. Note that the first and last V values are unde-
fined. However, in the case of circular DNA (e.g., viral or bacterial
genomes), then the first and last V points are defined since Cb is
now a circular series.

Similarly, the running median (RM) is computed at each position,
b, as the median of W data points around that position:

RMW(b) = median({C(b – V), .., C(b + V)}), (2)

where W and V are defined as before and the median function is
defined as the middle point of the sample set (half of the data is
below the median and half is above). A mathematical expression of
the median and running median are given in the Appendix section
(Eq. 8).

The mean estimator is commonly used to estimate the central
tendency of a sample, nevertheless it should be avoided in the pres-
ence of extraneous outliers, which are common in NGS genome cover-
age series (see e.g., Figure 1). Figure 2 shows the impact of outliers
when using a moving average or a running mean. We will use the
running median only and define the normalized genome coverage as
follows:

C̃b =
Cb

RMW(b)
. (3)

We will use the tilde symbol for all metrics associated with the nor-
malized genome coverage, C̃b. For instance, C̃b = {C̃0

b, C̃
+
b , C̃–

b}.

The running median is used in various research fields, in particu-
lar in spectral analysis [28] to estimate the noise floor while ignoring
biases due to narrow frequency bands (e.g., [29]). Here, the goal is to
avoid narrow peaks but also to be insensitive to long deleted regions.
This can be a major issue in NGS as the running median estimator
complexity is a function of the window length. Indeed the running
median algorithm involves the sorting of a sample of length W at
each position of the genome. So, the running median estimator must
be efficient and scalable. This is not an issue in spectral analysis
and most fields where running median are used but is a bottleneck

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 | GigaScience, 2017, Vol. 00, No. 0

Figure 2. Moving average (top panel) and running median (bottom panel)
behaviours in presence of outliers (here, a deleted region in the center
followed by a depleted region). In both cases, the window parameter is
set to 40,000 bases. The presence of the deleted and depleted regions
shows how the moving average (blue line, top panel) can be shifted as
compared to the running median (blue line, bottom panel). In the top
panel, the thresholds (red lines) are also shifted and consequently the
depleted region (position 1,620,000) is not detected. Besides, the rate of
false detection increases (red dots). On the contrary, the running median
has a better behaviour with less false detections and the ability to detect
the depleted region.

for NGS analysis where W is large. As explained in the Appendix
section, the complexity of the sorting part is in O(n2) in the worst
case but similarly to the moving average, one can take advantage of
the rolling window and the fact that the previous block is already
sorted. We opted for the very efficient Pandas [30] implementation
(See Appendix for details). In our implementation, both the moving
average and running median have the ability to account for circular
DNA data, which is essential to handle circular series.

If we normalize the genome coverage from the bacteria example
(Figure 1), we obtain the results shown in Figure 3. Finally, note
that the genome coverage being discrete, the running median is also
discrete as well as the normalized genome coverage. The discreteness
will become more pronounced as sequencing depth decreases.

Hereafter, we will discuss the impact of the W parameter on the
detection of genomic ROIs and how to set its value.

Parameter estimation of the central distribution and adaptive
thresholds in the original space

In the ideal case of randomly distributed reads across the genome,
the number of reads covering each base follows a Poisson distribu-
tion [10]. This distribution is discrete and has one parameter that
corresponds to the sequencing depth (mean of the distribution). Yet,
the Poisson distribution is often too narrow [18], as can be observed
in the three test cases considered. This is generally due to biological

Figure 3. Normalized genome coverage C̃b (bacteria test case). The out-
liers present in the original genome coverage Cb (see Figure 1) are still
present as well as the deleted regions. The distribution is now centred
around unity (blue line). Since the distribution is normalized, constant
thresholds can be used (dashed lines).

over-dispersion. In order to account for over dispersion, the Poisson
parameter can be distributed according to a second distribution. For
instance when the Poisson parameter is distributed according to a
Gamma distribution, we obtain a negative binomial, which has two
shape parameters [18].

A Poisson distribution with a large mean parameter approxi-
mates a normal distribution, even though, technically speaking, it
is not (discrete versus continuous and one parameter versus two).
Yet, for δ � 1, we can assume that the Cb distribution exhibits
a Gaussian distribution denoted N (µ,σ2) hereafter where µ is the
average of the genome coverage (δ in an ideal case) and σ is its stan-
dard deviation. What about the normalized genome coverage C̃b?
It is a ratio distribution where the numerator follows N (µ,σ2) dis-
tribution while the denominator’s distribution is that of the running
median. We can see empirically that for large δ and small W pa-
rameter, the distribution of the running median follows a Gaussian
distribution while for large W or small δ the running median tends
to be discrete and the distribution may depart from a Gaussian dis-
tribution (See Notebook 7 of [45]). Even if we knew the running
median distribution, the ratio distribution is only known for two
Gaussian distributions X and Y (Cauchy distribution) and when (i)
the two distributions are centred around zero, which is not the case,
and (ii) when they are independent, which is also not the case. Fur-
thermore, the scenario we considered (ideal distribution, δ � 1) is
too restrictive since we are interested in identifying outliers in real
data and may encounter cases where δ is small (for which Cb follows
a negative binomial, not a Gaussian distribution). So, we envisage
a solution based on a mixture model as described hereafter.

Genome coverage is a mix of distributions. Consider for instance
the presence of many CNVs, each with a different copy number (ei-
ther depletion or duplication). The overall distribution here would
be very difficult to model analytically. Therefore, the assumption
and our goal is to fit a known distribution on the central distribution
so as to establish z-scores on the remaining data.

Our first hypothesis is that C̃b can be decomposed into a central
distribution, C̃0

b, and a set of outliers, C̃1
b = {C̃+

b , C̃–
b} where the

central distribution is predominant:
∣∣C̃0

b

∣∣ >
∣∣C̃1

b

∣∣ (vertical bars
indicate the cardinality of the sets).

Our second hypothesis is that the mixture model that repre-
sents C̃b is a Gaussian mixture model of k = 2 models only:
C̃0
b ∼ N (µ̃0, σ̃

2
0) and C̃1

b ∼ N (µ̃1, σ̃
2
1). The central distribution

C̃0
b exhibits a clear Gaussian distribution both on simulated data

(see Notebook 7 in [45]) and on real data (see the three examples
in Figure4). The second model is used to identify outliers (below

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Desvillechabrol D., Bouchier C., Kennedy S., Cokelaer T. | 5

or above the central distribution). The parameters of the second
model are not used in defining the central distribution so have little
impact on detection.

Similarly to the method deployed in [18] to identify a mixture
model of negative binomials (on raw genome coverage), we will use
an Expectation Maximization (EM) [31] method to estimate the
parameters µ̃0,1 and σ̃0,1 (on the normalised genome coverage).

The EM algorithm is an iterative method that alternates be-
tween two steps: (i) an Expectation step that creates a function for
the expectation of the log-likelihood using the current estimate of
the parameters, and (ii) a Minimization step that computes param-
eters maximizing the expected log-likelihood found in the first step.
The likelihood function and the maximum likelihood estimate (MLE)
can be derived analytically in the context of Gaussian distributions.
Note that in addition to the means and standard deviations, the
mixture parameters also need to be estimated. These are denoted
π̃0 and π̃1. The EM algorithm is standard and can be found in var-
ious scientific libraries. Note, however, that the normalized genome
coverage may contain zeros in the presence of deleted regions and
the estimation of the mixture model should ignore them.

We have applied the EM algorithm on the normalized genome
coverage vector on various real NGS data sets including the three
test cases in Figure 4. The EM retrieves the parameters of the cen-
tral distribution (in particular µ̃0 = 1) and the outliers. Note that
the choice of the running median parameter, W, does not signifi-
cantly affect the parameter estimation. In each case, the mean of
the central distribution is very close to unity. The standard devi-
ation varies significantly and is a function of the sequencing depth
only (since the outliers are now incorporated in C1

b). Finally, we
can confirm that the proportion of outliers is small as compared
to the central distributions by inspection of parameters π0 and π1:
π̃0 >> π̃1.

Once we have identified the parameters of the central distribu-
tion C̃0, we can assign statistics for C̃b in terms of z-score:

z(b) =
C̃(b) – µ̃0

σ̃0
. (4)

Since the z-score corresponds to a normal distribution, we can now
set a threshold in terms of tolerance interval within which a speci-
fied proportion of the genome coverage falls. For instance, with a
threshold of 3, we know from the normal distribution that 99.97%
of the sample lies in the range -3 and +3. The exact mathematical
value is given by the complementary error function, erfc(x), where
x = n/

√
2. Note that for n = 3, 4 and 5, the tolerance interval is

99.73%, 99.993% and 99.999942%, respectively. Thus, for a genome
of 1 Mbp, by pure chance we should obtain about 2700, 70 and 1
outlier(s), respectively.

If we now replace C̃b in Eq.4 using its expression from Eq. 3, we
can express the original genome coverage as a function of the running
median, the z-score and the parameters of the central distribution:

C(b) =
(
µ̃0 + z(b)σ̃0

)
RMW(b). (5)

We can now set a fixed threshold z(b) = ±n in the normalized
space. This is much easier to manipulate. Moreover, we can derive
a variable threshold in the original space that is function of the
genome position:

δ̃±(b) =
(
µ̃0 ± n± × σ̃0

)
RMW(b). (6)

Examples of variable upper and lower threshold functions are shown
in Figure 1 and Figure 2 (red dashed lines). This manipulation
results in a robust statistical estimate of the presence of outliers
in the genome coverage. The z-score, computed earlier, provides a
precise level of confidence.

Using the normalization presented above, we can define the cen-
tralness as one minus the proportion of outliers contained in the

Figure 4. Probability density functions (PDFs) of the normalized genome
coverage function concerning the three test cases. The distributions were
fitted with a Gaussian mixture models with k = 2 models. The first model
(black line) fits the central distribution’s PDF and the second model (red
line close to y = 0) fits the outliers’ PDF. The dashed lines (close to the
black lines) indicates the mixture distribution. In each panel, we report
the parameters of the two Gaussian distributions, the proportions π0, π1
and the Θ parameter introduced in the text that gives the centralness of
the data for each test cases.

genome coverage:

Θn = 1 –

∣∣C̃1
b

∣∣∣∣C̃b

∣∣ = 1 –

∣∣C̃1
b

∣∣
G

, (7)

where G is the length of the genome, and vertical bars indicate the
cardinality. This necessarily depends on how the threshold n is set in
the normalized space. In the case of an ideal Gaussian distribution
and n = 3, the centralness should equal the tolerance interval of
a normal distribution N (0, 1) that is the error function, erf(n/

√
2).

The centralness equals unity when there are no outliers i.e., n → ∞.
Finally, note that the centralness is meaningless for values below 0.5
(meaning that the central distribution is not central!). As shown in
Table 1, Θ3 equals 0.974, 0.99 and 0.86 in the three cases considered
(bacteria, fungus, virus). So the proportion of outliers in the virus
case is higher than in the two other test cases, which is not obvious at
first glance given the very different lengths of the genome considered.

Finally, it is important to note that the z-scores assigned to each
position on the genome coverage are stable with respect to the W
parameter. Indeed, as shown in the Notebook 7 of [45], the mean
and standard deviation of the distribution of the normalised genome
coverage C̃ are not affected by the parameter W.

Genomic ROIs

Starting from the normalized genome coverage, C̃, we estimate the
parameters of the central distribution. This allows us to set a z-
score on each genome position. All values above the threshold n+

are stored into a subset of events denoted C̃+
b and all values below

the threshold n– are stored into C̃–
b. The selected data can be made

of continuous or non-continuous regions. The number of events can
be quite large for low thresholds (e.g., for n+ = 2.5, the bacteria has
35Kbp such events). However, many positions belong to the same
event (i.e., same cluster). Considering the short genomic region
in Figure 5, which is made of 2000 base positions. It contains 5
different regions that cross the threshold n+. Ideally, the 5 events

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 | GigaScience, 2017, Vol. 00, No. 0

Figure 5. Example of a genomic region of interest (ROI) clustered using
a double threshold method. The genome coverage (black line) and its
running median (red) on a short genome location of 2 kbp. The first
threshold (top dashed gray line) alone identifies many short ROIs (dark
blue areas). Using a second threshold (bottom dashed gray line), the short
ROIs are clustered and identified as a single ROI (coloured areas). Yellow
vertical lines indicates the beginning and end of the cluster.

should be clustered together. To do so, we proceed with a double-
threshold approach [29] where a second fixed threshold m+ is defined
as m+ = α+n+ where α+ ≤ 1 and usually set to 1/2.

In the normalized space, the double threshold method works as
follows. We scan the entire genome coverage vector starting from
the first position b = 0. As soon as a per-base coverage value crosses
the threshold m+, a new cluster starts. We then accumulate follow-
ing bases until the per-base coverage crosses m+ again (going down).
If the maximum of the cluster is above the first threshold, n+, then
the cluster is classified as a region of interest. The process carries on
until the end of the vector is reached. We repeat this classification
for the lower case (with m– = α–n–). This method dramatically
reduces the number of short ROIs. Finally, we can characterize
each region with various metrics such as the length of the region,
maximum coverage, mean coverage. If consecutive data points were
independent, we could also report a z-score for large events (prob-
ability that an event of length N crosses a pre-defined threshold).
Instead, for simplicity, we report the mean and max z-score of the
event only.

Impact of the running median window parameter

In order to estimate correctly the general trend of the genome cov-
erage, the running median should cancel out the impact of long
deleted, duplicated or depleted regions. Because the median takes
the middle point of a segment as its estimate, the parameter W
should be set to 2N where N is the longest atypical genomic region
present in the data. For instance, an expected CNV region with
a length of 50,000 would imply setting W = 100, 000 so that the
genome coverage trend remains appropriate (see Notebook 6 in [45]
for a counter example). Since such regions are not known in ad-
vance, W should be as large as possible so as to avoid the presence
of any long regions that depart from the central distribution. Yet,
over-increasing W may have undesired effects. For instance, in the
extreme case where W is set to the full genome length, one would
obtain the same value all along the genome (the sequencing depth
itself). This could lead to an increase of false detections or missed
detections. By default, we recommend to set W to 20,000. Indeed,
below this value, it seems that there is a slight increase of marginal
false detections while for values in the range W = 20, 000 to 500,000,
the list of ROIs is similar (see Notebook 6 in [45]). As mentioned
above, the impact of the W parameter on the z-scores is marginal so
one can safely change it from 20,000 to 100,000. A strategy could be

Figure 6. 2-dimensional histogram of the GC content versus coverage
available in the HTML reports. The data used correspond to the bacteria
test case. We can quickly see that (i) the mean coverage is around 450, (ii)
the mean GC is around 30 % (iii) there are part of the genome coverage
with zero coverage (left hand side blue line), (iv) there are low and high
ROI with coverage up to 1500X that would possibly require more inves-
tigations. Be aware of the logarithmic scale: most of the data is indeed
centered in the blue area and the brown outliers represent less than a few
percentage of the data.

to run two analysis: one with W = 20, 000 to list the short events,
and one with very large W for longer events.

Metric Bacteria Fungus Virus

Genome length 3 Mbp 5.5Mbp 19795
BOC 0.985 1.0 0.966
mean δ 447.8 105.49 931.3
median δ 453 105 988
σ 84.1 19.9 237.2
CV 0.19 0.19 0.25
W 5001 / (20001) 5001 / (20001) 5001
µ̃0 1.000 / (1.001) 1.002 / (1.002) 1.011
σ̃0 0.073 / (0.073) 0.162 / (0.158) 0.069
Θ4 0.957 / (0.960) 0.986 / (0.985) 0.868

Table 1. Metrics derived from the genome coverage of the three
test cases considered (Bacteria, Fungus, Virus). The top part of
the table contains metrics derived from the genome coverage only,
while the bottom part contains metrics derived from the normalized
genome coverage, C̃b. All metrics are defined in the text; BOC
stands for breadth of coverage, δ for sequencing depth, CV for co-
efficient of variation. The standard deviation is denoted σ. In the
bacteria and fungus cases, the running window W is set to 5 001
or 20 001 while for the virus we used 5 001 only. The parameters
of the central distribution, µ̃0 and σ̃0 and the centralness, Θ3 are
reported. Proportion of outliers (1-Θ3) are about 4.5, 1.5 and 13%
for the bacteria, fungus and virus, respectively.

Applications

Standalone and computational time

Although the algorithm described here above is quite simple per
se, each of the three steps required optimization in order to handle
HTS data sets. We provide an implementation within the Sequana
project [32], which is a Python library that also provides HTS
pipelines based on the workflow management system called Snake-
make [33] (Makefile-like with a Python syntax). Standalone applica-
tions are provided including sequana_coverage. In addition to the
algorithm described above, the standalone application has several

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Desvillechabrol D., Bouchier C., Kennedy S., Cokelaer T. | 7

additional features as explained hereafter. The input file can be ei-
ther a BAM or a BED file [19] encoded as a 3-column tab delimited
file (chromosome, position, coverage). Consider this command:

sequana_coverage --input virus.bed -w 4001 -o

The -o option indicates that the input is a circular DNA molecule.
The running median window can be tuned using the -w option. Sev-
eral chromosomes may be present (e.g., fungus case). By default, all
chromosomes are analysed but users can select a specific one using
the -c option. Other useful options are the ability to change the
thresholds on the z-score, ability to cluster close ROIs or to analyse
the data by chunks (useful for large eukaryotes genomes). An addi-
tional feature is the ability to download a reference genome (given
its ENA [23] accession number). This is achieved internally using
BioServices [34] that can switch between the ENA or NCBI web ser-
vices to download the data automatically. Regions of lower genome
coverage are sometimes related to repeated content or unusual GC
content [36]. Using the reference, we provide a GC content versus
coverage plot in the report as shown in Figure 6. Genbank annota-
tions can also be downloaded to annotate ROIs.

The output is a directory that contains (for each contig/chro-
mosome): (i) an HTML report, (ii) a summary file (JSON format)
and (iii) a CSV file with detected ROIs. In addition, we provide
a multiQC report [35] via a plugin available in the Sequana library.
The mutliQC report contains a summary of the mapping metrics
including the DOC and BOC metrics, the number of ROIs and the
centralness (defined in this manuscript). The CSV file is structured
with one ROI per row, including information such as the location,
length, mean z-score, max z-score, mean coverage . . . In the individ-
ual HTML reports, JavaScript plots are provided together with the
ROIs for a quick inspection (not available for large genome >5 Mbp).

Finally, the standalone application is designed to be scalable: the
virus genome is analysed in a few seconds while the 5 Mbp bacte-
ria genome is analysed in about one minute on a standard computer
including analysis and HTML reports (Python implementation). Al-
though the standalone was initially designed for bacterial genomes
(genome could fit in memory), we extended the functionality so that
larger genomes could also be analysed. In particular, we looked at
human genome used in [16]. Although the algorithm is not designed
for this lower DOC (around 5X), as the central distribution does
not follow a Gaussian distribution, the genome coverage can still be
analysed. Thresholds were increased (from 4 to 6) to avoid an abun-
dance of false detections. The 3.5Gb genome could be analysed in a
couple of hours (see later for details) on a single core. This required
adding an option called binning that merges data before analysis.
Similarly to the CNVnator implementation, this reduces the break-
point accuracy and prevents the tool from identifying short events.

Example: viral genome characterisation

In this section we illustrate the usage of sequana_coverage on the
viral test case (described in Section Data Description). This 18 kb
long genome contains (i) 3 SNVs (coverage of zero) of length 3, 1,
and 1 base with two of them separated by only 2 bases (ii) two
deleted events (700 and 800 bases long) and (iii) 3 short depleted
regions with a low signal-to-noise ratio (see Figure 7 for a visual rep-
resentation). When running sequana_coverage, the default window
parameter is set to 20,000 bases for genome longer than 100,000
bases. Otherwise, the default value of W is set to a fifth of the
genome length. Here, it means W ∼ 4, 000. Taking into account the
circularity of the genome, we obtain the results shown in Figure 7
and Table 2, where 9 ROIs are found distributed into 8 depleted re-
gions and one enriched region. We emphasize the z-score using the
following code color: red, orange and yellow for large, intermediate
and small values, respectively. The Table 2 reports the lengths of the
ROIs as well as their starting positions. The second ROI (enriched

region) can be considered as a false positive but the 8 depleted re-
gions can be considered as true positives. The false positive is due
to the presence of two depleted regions that bias the running median
estimation and can be avoided by increasing the W parameter. For
instance, with W = 5, 000 the enriched regions is not detected while
keeping the 8 depleted regions.

For comparison, we used CNVnator and CNOGpro tools. Al-
though they are dedicated to the search of CNVs, we were expecting
to detect at least the long deleted events (ROIs 1 and 3). As sum-
marised in the Table 2, with a bin parameter of 10 or 20, CNVnator
detects the two CNV-like events with lengths similar to what is re-
ported by sequana_coverage. No other events were detected (none
of the short ones). We got similar results with a bin set to 5 (opti-
mal, as explained hereafter) but there are also 2 short false positives.
CNOGpro tool detects the ROI 1 but the ROI 3 is either missed or
only partially detected (see Notebook 10 for details). So, despite
a marginal false positive, sequana_coverage is able to detect the 8
depleted ROIs with sensible length estimation. The results are also
robust with respect to the window parameter W.

Detected ROIs
Sequana CNVnator CNOgpro

2kb 4kb 5kb 10 20 10 100
1:s=3553, L=699 Y Y Y Y Y Y Y
2:s=4756, L=295 Y Y N N N N N
3:s=5399, L=813 Y Y Y Y Y Y N
4:s=9344, L=217 Y Y Y N N N N
5:s=17045, L=3 Y Y Y N N N N
6:s=17052, L=1 Y Y Y N N N N
7:s=17186, L=339 Y Y Y N N N N
8:s=19257, L=1 Y Y Y N N N N
9:s=19554, L=168 Y Y Y Y N N N

Table 2. List of ROIs detected by sequana_coverage, CNVnator and
CNOGpro tools. The sequana columns includes 3 analysis with a
window parameter W set to 2, 4 and 5kb. The 4kb column corre-
sponds to the results shown in Figure 7. The CNVnator columns
includes 2 analysis with a bin parameter set to 10 and 20. The
CNOGpro columns includes 2 analysis with a bin parameter set to
10 and 100. The color code is the same as in Figure 7: red, orange,
yellow for significant, intermediate and small z-scores. Note that
CNVnator and CNOGpro tools have no false positive results (ROI
2 is not detected). However, none of the ROIs 4 to 9 (short ones)
are detected. For each event we also indicate the starting position
(s) and length (L) of the events reported by sequana_coverage.

CNV detection

In extending the functionality of sequana_coverage to include larger
genomes, we also explored its ability in detecting copy number vari-
ations (CNVs).

CNV detection methods can be categorized into five different
strategies depending on the input data: paired-end mapping, split-
read, read depth (i.e., genome coverage), de novo assembly and com-
binations of the above approaches. Amongst the numerous tools
based on the genome coverage reported in [17], we choose CNVna-
tor [16], which is able to detect CNVs in various sizes ranging from a
few hundred bases to mega-bases. CNVnator can also handle whole
genome data sets and exhibits a good precision at detecting break-
points. We also considered a more recent tool called CNOGpro [15],
which is dedicated to prokaryotic whole genome sequencing data. As
stated in [17], none of the various tools have been able to detect the
full spectrum of all types of CNVs with high sensitivity and speci-
ficity. To increase the performance in detecting CNVs and reduce
false positives, a combinatorial approach could take advantage of
the different methods.

We first examined the false positive rate of sequana_coverage
on simulated data. Technical details can be found in the Notebook

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 | GigaScience, 2017, Vol. 00, No. 0

Figure 7. ROIs detected with sequana_coverage. The W window param-
eter was set to 4,000 bases and circularity was taken into account. We
identify 9 events: 8 depleted regions and 1 enriched region. The enriched
region could be considered as a false positive that appears like a detection
due to the presence of two flanking deleted regions. The color code is as
follows: red for max z-score above 12, orange for max z-score between 8
and 12, yellow for max z-score between 4 and 8; grey is for the false posi-
tive event. Using a larger window (e.g., 5000), the running median would
be smoother between the two long deleted events (on the right hand side),
therefore the false positive would not be detected anymore while keeping
the 8 depleted regions in the list of ROIs.

Figure 8. Distribution of ROIs found by analysing 100 simulated genome
coverage data from Staphylococcus aureus at a depth of 100X. No features
such as CNVs were injected. We plot the mean z-score of each ROIs versus
its length (in bases). No events have z-score above 5 or below -5. All
ROIs’s lengths are below 100 bases. For each simulation, an average of 17
ROIs are found.

5 [45]. Simulated paired-end data were used to create 100 genome
coverage data for Staphylococcus aureus, each one having a depth of
100X. The number of ROIs detected with sequana_coverage is 17.5
on average (standard deviation of 6). The 1750 ROIs are plotted in
Figure 8, showing their mean z-scores versus lengths. We observed
that no z-score are above 5 (in absolute value). However, the size of
the ROIs vary widely, up to 80 bases. Such events are not caused
by genuine features in the genome (e.g., high GC, repeats). Indeed,
across the 100 independent lists of ROIs, the longest events do not
appear at the same location on the reference. They are therefore
real false positives. Consequently, in the context of CNVs detection,
one should ignore events with mean z-score below 5 and length below
100 bases.

We then studied the sensitivity of sequana_coverage by injecting
3 types of CNVs to the simulated data. First, we deleted 30 non-
overlapping regions (length between 1,000 and 8,000). We achieved
a 100% sensitivity. Indeed all deleted regions were reported with

Figure 9. Detection of a depleted region (copy number 0.5). CNVnator
(thick yellow segments) and sequana_coverage (thin green segments and
dots) identifies the 6,300 long event with the correct location and similar
copy number (based on the mean of the data). sequana_coverage identi-
fies the other depleted region of about 500 bases at position 392,000. CN-
Vnator ability to detect that event depends on the bin parameter: missed
for a value of 1 or 100, found with a value of 6. All short events (few bases
long) are missed by CNVnator. Conversely, CNVnator is able to identify
very long CNV regions up to mega-bases.

starting and ending position accuracies below 5 bases. Second, we
duplicated 80 non-overlapping regions (same length as above), with
a copy number CN=2. Again, we have a 100% sensitivity with
accuracies below 5 bases. sequana_coverage stores a value called
log2_ratio for each ROI. This value corresponds to the ratio of the
mean coverage and mean running median for that ROI, and is equiv-
alent to the copy number. The average copy number reported for
the 80 injected CNVs is CN = 1.96 ± 0.04. Third, we injected a
mix of 80 depleted and duplicated events (same length as above)
at a coverage of 150X (CN=1.5) or 50X (CN=0.5). The 80 events
are found with a slightly-reduced accuracy (still below 20 bases).
The CN reported for duplicated and deleted events is 1.49 ± 0.023
and 0.5 ± 0.026, respectively. The simulated data indicates that
the algorithm can detect short CNVs (from 1000 to 8000) with high
sensitivity and accurate estimate of copy number and location. If
we set the threshold to a mean z-score of 5 and discard events with
length below 100 bases, there are no false positive detections.

For a comparison against published tools using real data, we
examined the Staphylococcus aureus case used in [16]. We ran
sequana_coverage and CNVnator on the 3Mbp genome. CNVna-
tor has a parameter called bin, which is essentially used to define
the breakpoint resolution accuracy. We used a bin parameter of
1, 6 and 100 (default) where 6 was chosen as the optimal bin size
for the sequencing depth considered (500X). Here, we refered to
the instructions found in [16] that led to an empirical equation
bin = 2500/DOC (see also Notebook 8 [45]). All results can be
found in the Notebook 9 in [45]. The number of events reported by
CNVnator are 207, 72 and 13, for bin = 1, 6 and 100 respectively.
With sequana_coverage, W was set to 40,000 bases. The number of
reported events is about 600 events (quite stable with respect to W
parameter). Only 211 events have a size larger than 10 bases and a
mean z-score above 5 (47 events have a size larger than 100 bases and
a mean z-score above 5). All events reported by CNVnator with a
bin = 6 or 100 are also detected by sequana_coverage with the same
breakpoint resolution. The additional CNVnator events, obtained
with bin = 1, are mostly false positives (see Notebook 9 for exam-
ples). Visual inspection of events reported by sequana_coverage –
but not found by CNVnator – show that they are close to the thresh-
old and appear to be real events (see example in Figure 9). In terms
of computational time, sequana_coverage takes one minute to pro-
cess this 3Mbp genome, irrespective of W, while CNVnator takes
about 25 minutes, 5 minutes and 40 seconds for the bin = 1, 6 and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Desvillechabrol D., Bouchier C., Kennedy S., Cokelaer T. | 9

100, respectively.

Then, we looked at a population of six isolates of Staphylococcus
aureus used in [15] . The six data sets have a wide range of sequenc-
ing depth: 165, 61, 36, 94, 1100, 34, for the isolate ERR043367,
ERR043371, ERR073375, ERR043379, ERR14216 and ERR316404,
respectively. We compared the results provided in the supplemen-
tary data of [15] with those obtained by running sequana_coverage
and CNVnator. In CNOGpro’s supplementary, the authors report 43
CNVs with various copy numbers. After visual inspection, we believe
that 7 are false positives while the remaining are confirmed by se-
quana_coverage. It is important to note that, unlike CNVnator and
sequana_coverage, which rely on the data to find the breakpoint of
the ROIs, CNOGpro breakpoints are based on annotation and indi-
vidual gene (or intergenic segment) assuming that duplications and
deletions work at the gene level. In Figure 10, we show an example
of a 2kb-long event present in the 6 isolates. CNOGpro found this
event (same gene position) in the 6 isolates, similarly to CNVnator
and sequana_coverage. However, the location of the event reported
by CNOGpro is not as precise as the two other tools because it is
influenced by the a priori knowledge of the gene starting and end-
ing positions. For the same reason, several narrow events found in
the same intergenic segment will be averaged together whereas se-
quana_coverage reports the events individually as demonstrated in
Figure 11.

We also ran CNVnator, with its bin parameter set to the op-
timal value (see above). The detected events found by CNVnator
and sequana_coverage (W=40,000) are generally consistent in lo-
cation and copy number. Both tools have a very good breakpoint
accuracy as shown in Figure 10 with the main difference being that
sequana_coverage splits events with a gap in between. Again, CN-
Vnator is optimised to detect long CNV events and may miss nar-
rower events, even if those events have large variations, as shown in
Figure 11.

Conclusion

The method presented in this paper provides a robust statistical
framework to detect under and over-covered genomic regions that
are then further annotated (length, mean coverage, maximum z-
score, . . .). Although robust, the method is straighforward and can
be summarized in three main steps: (1) detrending of genome cover-
age series using a running median (ii) parameter estimation of the
central distribution of the normalized genome coverage series using
an EM approach (for a Gaussian mixture model), (iii) clustering and
characterization of the outliers as genomic regions of interest (ROI)
using a double threshold clustering method.

We underlined the value of the running median algorithm as com-
pared to a moving average while emphasizing the practical impact of
the running median algorithm complexity. We used an efficient run-
ning median algorithm (see supplementary), which is of paramount
importance in the context of HTS analysis. In our implementation,
we can take into account the circularity of the molecules as well as
multi-chromosome organisms.

We implemented the method described in this paper within
the standalone application sequana_coverage, which also provides
HTML reports with a summary of the genomic ROIs detected. The
HTML reports provide easy visual inspection of genome coverage,
list of genomic ROIs and statistics such as the centralness, a metric
that encompasses the preponderance of the central distribution with
respect to the outliers.

We presented test cases with relatively large sequencing depth
(30X to 1000X), although we believe that the algorithm can be used
for sequencing depths as low as 10X. A natural extension to this
work is to consider sequencing depths below 10X by using a mixture
model of binomial models instead of gaussian models.

One obvious application of the algorithm presented is the system-
atic identification of SNVs or CNVs in a single sample or population

Figure 10. Detection and segmentation of complex events in a popula-
tion sample. We focus on the region between positions 86,500 and 90,000.
We analyse the data (black lines) with sequana_coverage (horizontal red
lines) and CNVnator (green areas). We also report the results of CNOG-
pro (red areas in the top panel only). CNOGpro detects the complex event
as a single event with poor breakpoint resolution (end location is offset
by 300 bases); see text for an explanation. CNVnator detects 1 event
in 3 isolates, 2 events in 2 isolates) and 4 events in 1 isolate (fifth row);
the gap in the middle of the genomic region considered is missed in 50%
of the cases; breakpoint resolution is high. sequana_coverage reports 4
to 6 events; the breakpoint resolution is high; the event in the middle is
systematically ignored, as it should, given its length is about 100 bases.

Figure 11. Narrow event made of a strong central peak (copy number
CN=10) and two secondary weak peaks (CN=2.5). The 3 peaks can be
identified visually in the 6 isolates. In this plot, we only show the iso-
late ERR316404. The algorithm designed in sequana_coverage detects
the main peak (with CN=5) and the secondary peaks with CN=2.5 (red
segments). Note that in the 6 isolates the main peak is always detected
while the secondary peaks are detected in 66% of the cases (8 peaks out of
12). CNVnator does not detect those events in none of the 6 isolates, most
probably because the length of those events (irrespective of their strength)
are too short. CNOGpro detect 1 event, shown here as the green area with
a CN=2 for the overall event.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 | GigaScience, 2017, Vol. 00, No. 0

of samples. We have shown that sequana_coverage is competitive
with dedicated tools such as CNOGpro and CNVnator. We believe
that sequana_coverage could be used in a combinatorial approach
with existing tools to complement and complete the toolkit of CNV
detection.

Sequana_coverage is also relatively fast. Viral and bacterial
genomes can be analysed in less than a minute. For larger Eukary-
otic genomes (human), once the individual BED files are created for
each chromosome, the analysis of the 24 human chromosome files
should take less than 2 hours (1.5 hours on an HPC cluster using
only one core and 1 hour on a DELL Latitude with a SSD hard disk
using only one core). The longest chromosome (chr1), with 250Mb,
is analysed in about 5-6 minutes. A Snakemake [33] pipeline was
also recently implemented within Sequana [32] (named Coverage),
allowing each chromosome to be analysed independently. Using 24
cores, we could analyse the 24 chromosomes in about 7-8 minutes,
which is basically the time taken to analyse the longest chromosome.
A graphical interface using Sequanix [40] (a Snakemake GUI) is also
available, making the configuration of the parameters and execution
of the analysis on a cluster accessible.

With additional features such as the ability to annotate the ROIs
with genbank files and the identification of repeated regions, we
believe that the standalone application sequana_coverage will help
researchers in deciphering the information contained in the genome
coverage.

Availability of source code

• Project name: Sequana (sequana_coverage standalone), version
0.7.0

• Project home page: http://sequana.readthedocs.org
• Operating system(s): Platform independent
• Programming language: Python 3
• Containers: Sequana is available on Bioconda channel [42, 43]

and we also provide a Singularity container [44] (version 0.7.0).
See http://sequana.readthedocs.org for details.

• License: BSD 3-clause Revised License

Availability of supporting data and materials

The data sets supporting the results as well as additional files used
to created them are available within a Synapse project [27]. More
specifically, the BED files mentioned in Section Data Description
corresponding to the virus, bacteria and fungus are available
under: doi:10.7303/syn10638370.1 (JB409847.filtered.bed),
doi:10.7303/syn10638494.1 (JB409847.filtered.bed) and
doi:10.7303/syn10638487.1 (S_pombe.filtered.bed), respec-
tively. In addition, we provide the genome reference used in Figure
6 (doi:10.7303/syn10638477.1). The data sets are also available on
a Github repository [45] together with a notebook that reproduces
the figures. Finally, note that the BED files can be recreated using
the original FastQ files available on doi:10.7303/syn10638358. We
also provide recipes to create the BED files from the FastQ files as
notebooks in [45]. All notebooks mentioned are available in [45].
Snapshots of the code are also available in the GigaScience GigaDB
database [46].

Declaration

List of abbreviations

• BAM: Binary Alignment Map, the binary version of the Sequence
Alignment Map (SAM) format.

• BED: Browser Extensible Data
• BOC: Breadth of Coverage
• CNV: Copy Number Variation

• DOC: Depth of Coverage
• CV: Coefficient of Variation
• EM: Expectation Maximization
• HTS: High Throughput Sequencing
• MA: Moving Average
• MLE: Maximum Likelihood Estimate
• RM: Running Median
• ROI: Regions of Interest, samples within a data set identified for

a particular purpose.
• SNP: Single Nucleotide Polymorphisms

Competing Interests

All authors have no conflicts of interest to this manuscript.

Funding

This work has been supported by France Génomique consortium
ANR10-INBS-09-08.

Author’s Contributions

D.D. and T.C. conceived the study. D.D and T.C. implemented the
software. C.B. provided the data. T.C. did the CNV studies. D.D.
and T.C. contributed to the initial writing. D.D., T.C., C.B and
S.K contributed to the final manuscript. All authors contributed to
writing and revision and approved the submission.

Acknowledgements

We are grateful to Nicolas Escriou (Institut Pasteur) for providing
the FastQ and reference of the Virus test case. We are also grateful
to Benoit Arcangioli (Institut Pasteur) and Serge Gangloff (Institut
Pasteur) for providing the FastQ files and reference of the S. Pombe
test case. We thank Juliana Pipoli da Fonseca for her various com-
ments on the manuscript. We are also grateful to the reviewers who
suggested the CNV studies.

References

1. Goodwin, S., et al. (2016) Coming of age: ten years of next-
generation sequencing technologies. Nature Reviews Genetics,
17(6), 333-351.

2. Wang, Z. et al. (2009) RNA-Seq: a revolutionary tool for tran-
scriptomics. Nature reviews genetics, 10 (1), 57-63.

3. Meyerson, M. et al. (2010) Advances in understanding can-
cer genomes through second-generation sequencing. Nature Re-
views Genetics, 11(10), 685-696.

4. Iorio, F. et al. (2016) A Landscape of Pharmacogenomic Inter-
actions in Cancer. Cell, 166(3), 740-754.

5. Eid, J. et al. (2009) Real-time DNA sequencing from single
polymerase molecules. Science 323, (5910) 133-138.

6. Lee, H. et al. (2004) Error correction and assembly complexity
of single molecule sequencing reads. BioRxiv, 006395.

7. Eisenstein, M. (2012) Oxford Nanopore announcement sets se-
quencing sector abuzz Nat. Biotechnology 30(4), 295-296

8. Li, H. (2013) Aligning sequence reads, clone sequences
and assembly contigs with BWA-MEM. arXiv preprint
arXiv:1303.3997.

9. Bankevich, A. et al. (2012) SPAdes: a New genome assem-
bly algorithm and its applications to single-cell sequencing. J.
Comput. Biol. 19(5): 455-477.

10. Lander, E.S. and Waterman, M.S. (1988) Genomic mapping
by fingerprinting random clones: a mathematical analysis. Ge-
nomics, 2(3), 231-239.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://sequana.readthedocs.org
http://sequana.readthedocs.org

Desvillechabrol D., Bouchier C., Kennedy S., Cokelaer T. | 11

11. Wendl, M.C. and Barbazuk, W.B. (2005) Extension of Lander-
Waterman theory for sequencing filtered DNA libraries. BMC
Bioinformatics, 6(1):245.

12. Ajay S.S., Parker S.C., Abaan H.O., Fajardo K.V., Margulies
E.H. (2011) Accurate and comprehensive sequencing of per-
sonal genomes. Genome Res. 21(9):1498-505.

13. Mirebrahim, H. et al. (2015) De novo meta-assembly of ultra-
deep sequencing data. Bioinformatics, 31(12), i9-i16.

14. Yoon S., Xuan Z., Makarov V., Ye K., Sebat J. (2009) Sensi-
tive and accurate detection of copy number variants using read
depth of coverage. Genome Research 19:1586-1592.

15. Brynildsrud, O., Snipen L.G, Bohlin J. (2015) CNOGpro:
detection and quantification of CNVs in prokaryotic whole-
genome sequencing data. Bioinformatics, 31(11), 2015, 1708-
1715.

16. Abyzov A., Urban A.E., Snyder M., Gerstein M. (2011) CN-
Vnator: An approach to discover, genotype, and charaterize
typical and atypical CNVs from family and population genome
sequencing. Genome Research 21:974-984.

17. Zhao M, Wang Q., Wang, Q, Jia P., Zhao Z. (2013) Com-
putational tools for copy number variation (CNV) detection
using next-generation sequencing data: features and perspec-
tives. BMC Bioinformatics 2013, 14 (Suppl 11):S1.

18. Lindner, M.S. et al. (2013) Analyzing genome coverage profiles
with applications to quality control in metagenomics. Bioinfor-
matics, 29(10) 1260-1267.

19. Quinlan, A.R. and Hall, I.M., (2010). BEDTools: a flexible
suite of utilities for comparing genomic features. Bioinformat-
ics. 26, 6, pp. 841-842. http://bedtools.readthedocs.io

20. Tong, S.Y. et al. (2015) Genome sequencing defines phylogeny
and spread of methicillin-resistant Staphylococcus aureus in a
high transmission setting. Genome Res., 25(1), 111-118.

21. Bremer, H. Churchward, G (1977) An examination of the
Cooper-Helmstetter theory of DNA replication in bacteria and
its underlying assumptions. Journal of Theoretical Biology,
69(4): 645-654.

22. Prescott, D.M. and Kuempel, P.L., (1972) Bidirectional repli-
cation of the chromosome in Escherichia coli. Proceedings of
the National Academy of Sciences, 69(10): 2842-2845.

23. European Nucleotide Archive (ENA).
http://www.ebi.ac.uk/ENA. Accessed 8 Sept 2017.

24. Combredet, C. et al. (2003), A molecularly cloned Schwarz
strain of measles virus vaccine induces strong immune re-
sponses in macaques and transgenic mice. J. Virol., 77(21):
11546-11554

25. Wood, V. et al., (2002) The genome sequence of Schizosaccha-
romyces pombe. Nature 415(6874), 871-880.

26. Sages’s Synapse platform https://www.synapse.org. Accessed
8 Sept 2017.

27. Supporting materials on Synapse project page
(BEDs, FastQs, Genome references and genbanks).
http://dx.doi.org/doi:10.7303/syn10638358. Accessed 8
Sept 2017.

28. Percival, D.B. and Walden, A.T. (1993) Spectral analysis for
physical applications. Cambridge University Press.

29. Balasubramanian, R. et al. (2005) GEO 600 online detector
characterization system. Classical Quant. Grav., 22(23), 4973-
4986.

30. McKinney, W. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference,
51-56 (2010).

31. Dempster, A.P. and Laird,N.M., and Rubin,D.B. (1977). Max-
imum likelihood from incomplete data via the EM algorithm.
Journal of the royal statistical society. Series B (methodologi-
cal) 39(1) 1-38.

32. Cokelaer, T. and Desvillechabrol, D. and Legendre, R. and
Cardon, M. (2017) Sequana: a Set of Snakemake NGS
pipelines. The Journal of Open Source Software, 2, 16

https://doi.org/10.21105/joss.00352. Accessed 8 Sept 2017.
33. Köster, J., and Rahmann, S. (2012). Snakemake - a scalable

bioinformatics workflow engine. Bioinformatics, 28(19), 2520-
2522.

34. Cokelaer, T. et al.(2013). BioServices: a common Python pack-
age to access biological Web Services programmatically. Bioin-
formatics, 29(24), 3241-3242.

35. Ewels P., Magnusson M., Lundin S., Käller M (2016) MultiQC:
Summarize analysis results for multiple tools and samples in a
single report Bioinformatics 32, 19, 3047–3048.

36. Dohm, J.C. and Lottaz, C. and Borodina, T. and Himmel-
bauer, H. (2008) Substantial biases in ultra-short read data
sets from high-throughput DNA sequencing. Nucleic Acids Res.
36(16): e105

37. Mohanty, S.D. (2002). Median based line tracker (MBLT):
model independent and transient preserving line removal from
interferometric data. Class. Quantum Grav., 19(7): 1513-1519.

38. Jones, E. and Oliphant, T. and Peterson, P. et al. (2001) SciPy:
Open source scientific tools for Python.

39. Mokry, M. et al (2010) Accurate SNP and mutation detection
by targeted custom microarray-based genomic enrichment of
short-fragment sequencing libraries. Nucleic Acids Res. 38(10)
e116

40. Desvillechabrol D., Legendre R., Rioualen, C., Bouchier C.,
van Helden J., Kennedy Sean, Cokelaer, T. (2017) Sequanix:
a dynamic graphical interface for Snakemake workflows. Bioin-
formatics, 10.1093/bioinformatics/bty034.

41. Sims, D. et al. (2014) Sequencing depth and coverage: key
considerations in genomic analyses. Nature Reviews Genetics,
15(2), 121-132.

42. Conda: Package, dependency and environment management
for any language. https://conda.io/docs. Accessed 8 Sept 2017.

43. Grüning, B., Dale, R., Sjödin, A., Chapman, B.A, Rowe,
J., Tomkins-Tinch, C., Valieris, R., Köster J., The Bioconda
Team. (2018) Bioconda: sustainable and comprehensive soft-
ware distribution for the life sciences. Nature Methods 15, 475-
476.

44. Kurtzer, G.M and Sochat, V. and Bauer, M.W. (2017) Singu-
larity: Scientific containers for mobility of compute. PLoS One.
12(5).

45. The Sequana resources GitHub repository.
https://github.com/sequana/resources/coverage. Accessed
23d Feb 2018.

46. Desvillechabrol D, Bouchier C, Kennedy S, Cokelaer T
(2018): Supporting data for "Sequana Coverage: Detec-
tion and Characterization of Genomic Variations using Run-
ning Median and Mixture Models." GigaScience Database.
http://dx.doi.org/10.5524/100493

Appendix

Running median implementation

The mean is a measure of the central tendency of a population. It is
not a robust estimator in the presence of large extraneous outliers
in the population. In such a situation, it is preferable to consider a
truncated mean or a median estimator. The median is the middle
point of a sample set in which half the numbers are above the median
and half are below. More formally, let us consider a sample s[i], i =
1, .., n and S[i] the sequence obtained by sorting s[i] in ascending
order (ordering of equal elements is not important here). Then, the
median is defined as

ν = median({s[1], s[2], .., s[n]}) =

{
S
[
n+1
2

]
n odd,

S[n/2]+S[n/2+1]
2 n even.

(8)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.ebi.ac.uk/ena/
https://www.synapse.org/
http://dx.doi.org/doi:10.7303/syn10638358
https://doi.org/10.21105/joss.00352
https://conda.io/docs
https://github.com/sequana/resources/coverage

12 | GigaScience, 2017, Vol. 00, No. 0

Let us now consider a series X(k) where k = 1, .., N. Then,
the running median of X(k) is defined as the sequence ν(k) =
median({X(k), X(k + 1), .., X(k +W)}), k = W/2, .., N – W/2 where
W is a window size defined by the user and the application. The first
W/2 and last W/2 values are undefined so we should have W� N.

Since we perform a sorting of an array of W elements at N posi-
tions, the complexity of the running median is N times the complex-
ity of the sorting algorithm. If W and N are small (e.g., removal
of narrow lines in power spectral density in addition to the over-
all smoothing of time or frequency series [29]), a naive quick-sort
algorithm (O(W2) in the worst case scenario) may be used. How-
ever, better algorithms do exist and can be decreased to O(

√
W) in

the worst case as implemented in [37]. Yet, in NGS applications,
N could easily reach several millions and W may need to be set to
large values up to 50,000 (e.g., to identify long deleted regions).

Instead of computing the median at each position, k, a more
efficient solution consists in re-using the sorted block at k – 1, and
to maintain the block sorted as new elements are added. Indeed,
one only needs to insert the next sample into the sorted block and
delete the earliest sample from the sorted block. A standard Python
module named bisect provides an efficient insertion in sorted data
(keeping the data sorted). The complexity of this sorting algorithm
is O(logW).

Figure 12. Computational cost of running median algorithms as a func-
tion of the window size parameter W (for N = 1e6). Four variants are con-
sidered: SciPy [38] implementation (function medfilt v0.17), Pandas [30]
and 2 Python variants available in Sequana based on a list or blist data
containers (see text for details). The SciPy variant has a O(W) complex-
ity irrespective of the W value. For low W values (W < 20 000), the
two Python variants have O(log(W)) complexity. For larger W values,
the blist keeps its O(log(W)) complexity while the list container follows
a O(W) complexity. Pandas complexity is less clear with a O(W) for
W < 20 000 and O(log(W)) otherwise. The fastest implementation is
clearly the Pandas one even for large W values.

So far, we have neglected the cost of the insertion and deletion
steps, which is not negligible. For instance, in Python language, one
of the most common data structure is the list. It is a dynamically-
sized array (i.e., insertion and deletion of an item from the beginning
or middle of the list requires to move most of the list in memory)
and the look-up, insertion and deletion have a O(n) complexity. So
the running median is actually dominated by the slow O(n) inser-
tion and deletion steps. A better data structure is available thanks
to the blist package; it is based on a so-called B-tree, which is a self-
balancing tree data structure that keeps data sorted. The blist al-
lows searches, sequential access, insertions, and deletions in O(log n)
(see https://pypi.python.org/pypi/blist/ for details).

Based on materials from

http://code.activestate.com/recipes/576930/, we have imple-
mented these two variants of running median functions in Python
available in Sequana [32] library. We also considered established
numerical analysis tools from the SciPy [38] and Pandas [30]
libraries. We finally compare the four implementations in terms of
computation time and complexity as shown in Figure 12. It appears
that the Pandas implementation is the fastest. For W > 20, 000
up to 200,000, our implementation is 2-3 order of magnitude faster
than the SciPy version but 4-5 times slower than Pandas. We
should emphasize the fact that the SciPy function has additional
features since it is available for N-dimensional data sets whereas
we restrict ourselves to 1-D data sets. In Sequana, the two variants
only differ in the data structure being used to hold the data (list
versus blist). The Figure 12 shows the difference between the
list and blist data structures that is marginal for low W values
while for large values asymptotic behaviours are reached showing
the interest of the blist over the list choice. We also see that our
implementation with blist has a lower complexity than the Pandas
implementation. However, for the range considered Pandas is
always the fastest choice.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://pypi.python.org/pypi/blist/
http://code.activestate.com/recipes/576930/

