

Supplementary Information for

Klotho controls the brain/immune system interface in the choroid plexus

Lei Zhu^{a,1}, Liana R. Stein^{a,1}, Daniel Kim^a, Kaitlyn Ho^a, Gui-Qiu Yu^a, Lihong Zhan^a, Tobias E. Larsson^b & Lennart Mucke^{a,c,2}

Lennart Mucke lennart.mucke@gladstone.ucsf.edu

This PDF file includes:

Supplementary text Figs. S1 to S9 Tables S1 to S4

Supporting Information

Figure S1 | Klotho protein and *Klotho* **mRNA levels in the CP and hippocampus.** (*A*–*E*) Relative klotho protein (*A*–*D*) and *Klotho* mRNA (*E*) levels in the CP or hippocampus were determined by western blot analysis and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), respectively. The genotypes of mice were WT (*A*, *C*–*E*) or as indicated (*B*). Ages were 2–4 months (*A*, *B*), 6 months (*C*) or as indicated (*D*, *E*). No s-KL was detected in the hippocampus of WT mice (*C*). The antibody used for detection also recognizes the KL1 domain of p-KL, which makes up much of the s-KL isoform and is proteolytically released from p-KL. We therefore used klotho-overexpressing (OE) mice that had received a stereotaxic hippocampal injection of lentivirus encoding klotho amino acids 1–980 (roughly corresponding to p-KL) 3 months earlier as a positive control (*C*). *n* = 3–4 mice per age. n.s., not significant. Values in bar graphs are means ± s.e.m.

Figure S2 | Cre-mediated reduction of klotho does not affect the cytoarchitecture of the CP. (*A*) AAV5-CMV-Cre-GFP was injected stereotaxically into the left lateral ventricle of a 3-month-old WT mouse. Coronal brain sections were obtained one month later and stained with DAPI (blue) and an antibody against Cre (pink). (*B*, *C*) Sagittal CP sections stained with hematoxylin and eosin (*B*) or co-labeled for klotho (green) and aquaporin-1 (AQP-1, red) and counterstained with Hoechst 33342 dye (blue) (*C*) obtained from 7–8-month-old WT or *Klotho*^{flox/flox} (Flox) mice 5–6 months after Cre injection. (*D*) Coronal CP sections stained for cytokeratin (green), the endothelial cell marker CD31 (red), and the tight junction marker claudin-1 (gray) obtained from 19–21month-old WT or *Klotho*^{flox/flox} mice 9 months after Cre injection. Scale bars: 250 µm (*A*: hemibrain), 100 µm (*A*: hippocampus, cortex, and thalamus), 50 µm (*A*: Lat. Ventricle, *B*, *D*), 25 µm (*C*).

Figure S3 | **CP-specific reduction of klotho after ICV injection of AAV5-CMV-Cre-GFP**. AAV5-CMV-Cre-GFP (Cre) was injected stereotaxically into the left lateral ventricles of 3-month-old WT and *Klotho*^{flox/flox} (Flox) mice. Levels of klotho and Cre recombinase in the CP of the lateral (Lat.) and 4th ventricles (*A*, *C*) and in the kidney (*B*, *D*) were determined by western blot analysis one month later. Uninjected (Uninj) mice served as an additional negative control. (*A*, *B*) Representative western blots. #, non-specific band above Cre-specific band. (*C*, *D*) Quantitation of relative protein levels normalized to GAPDH levels and expressed relative to mean levels in WT controls that were (C) or were not (D) injected with Cre. n = 3 mice per group. *****P*<0.0001 by two-way ANOVA and Holm-Sidak test. V, ventricle. Values are means ± s.e.m.

Figure S4 | Aging and klotho reduction increase the expression of immune regulators and mediators in the CP. (*A*) Immunostained brain sections illustrating levels of ICAM1 (green) and IRF7 (red) in the CP of 2- vs. 26-month-old WT mice. Scale bar: 100 μm. (*B*) Levels of the indicated mRNAs were measured in the CP of 20–

24-month-old WT and *Klotho*^{flox/flox} (Flox) mice (n = 4-8 per group) 11 months after Cre injection. **P*<0.05, ***P*<0.01 by unpaired, two-tailed *t* test. Values are means ± s.e.m.

Figure S5 | Expression of immune regulators and mediators is also increased in the CP of *kl/kl* mice but not in the hippocampus of *kl/kl* mice or of *Klotho*^{flox/flox} mice with selective depletion of klotho in the CP. (*A*, *B*) ICAM1 expression in the CP of uninjected 2-month-old WT and *kl/kl* mice (n = 9-10 per group) was determined in coronal sections co-labeled for ICAM1 (red) and cytokeratin (gray). Scale bars: 100 µm. (*C*) Levels of the indicated mRNAs in the CP of uninjected, 2-month-old WT and *kl/kl* mice (n = 9-12 per group). (*D*) Hippocampal levels of the indicated mRNAs in 20–24-month-old WT and *Klotho*^{flox/flox} (Flox) mice (n = 8 per group) measured 11 months after Cre injection. (*E*) Hippocampal levels of the indicated mRNAs in uninjected, 2-month-old WT and *kl/kl* mice to the indicated mRNAs in uninjected, 2-month-old WT and *kl/kl* mice to test). n.s., not significant. Values in bar graphs are means ± s.e.m.

Figure S6 | Klotho reduction increases the expression of macrophage but not T-cell-related gene products in the CP. (A-C) CP levels of the indicated mRNAs in 19–21-month-old WT and *Klotho*^{flox/flox} (Flox) mice (n = 4–8 per group) measured 11 months after Cre injection. (D, E) In the same mice, we also determined the number of cells in the CP that expressed the T-cell markers CD3 (D) or CD4 (E). *P<0.05, **P<0.01 by unpaired, two-tailed t test. n.s., not significant. Values are means ± s.e.m.

Figure S7 | Macrophage markers and complement expression are not increased in the CP of 2-monthold *kl/kl* mice. (A–F) Levels of the indicated mRNAs (A–E) and number of LY6C-positive cells (F) in the CP of 2-month-old WT and *kl/kl* mice (n = 9–12 per group). n.s., not significant. Values are means ± SEM.

Figure S8 | Klotho reduction increases *Txnip* expression in the CP but not in the hippocampus or kidney. (*A*–*D*) Hippocampal levels of *Txnip* mRNA (*A*, *B*) and renal levels of TXNIP (*C*) and klotho (*D*) protein in 20–24month-old WT and *Klotho*^{flox/flox} (Flox) mice measured 11 months after Cre injection (*A*) and in uninjected 2month-old WT and *kl/kl* mice (*B*–*D*). n = 8-9 mice per group. ****P*<0.001 by unpaired, two-tailed *t* test. n.s., not significant. Values are means ± s.e.m.

Figure S9 | LPS-ATP treatment does not increase IL-1 β production in primary macrophages from *NIrp3*^{-/-} or *Casp1/4*^{-/-} mice. At DIV 7-10, primary bone marrow-derived macrophages from WT, *NIrp3*^{-/-}, or *Casp1/4*^{-/-} mice were treated with vehicle (Veh) or LPS (100 EU/ml, equivalent to 1 µg/ml) for 20 h and then with vehicle or ATP (1 mM) for 1 h. IL-1 β levels in the culture medium were determined by ELISA. Note log-10 scale. *n* = 3 independent experiments, each of which included 3 wells per treatment. *****P*<0.0001 by unpaired, two-tailed *t* test. Values are means ± s.e.m.

Klotho AQP-1 Hoechst

Figure S6

Figure S8

		<i>Klotho</i> ^{flox/flox} vs. <i>Klotho</i> ^{+/+} mice after	
Gene Product	Analysis	i.c.v. injection of Cre/GFP or GFP	<i>kl/kl</i> vs. WT mice
Arg1	mRNA	↑ (3.6-fold, <i>P</i> =0.002, n=6)	↑ (1.4-fold, <i>P</i> =0.43, n=12)
C1qa	mRNA	↑ (2.5-fold, <i>P</i> =0.006,n=4-7)	No change (n=9-10)
Ccl17	mRNA	↑ (3.3-fold, <i>P</i> =0.03, n=5-7)	↑ (2.3-fold, <i>P</i> =0.08, n=10)
Cx3cr1	mRNA	↑ (1.8-fold, <i>P</i> =0.003, n=5-6)	↑ (1.4-fold, <i>P</i> =0.04, n=12)
Cxcl10	mRNA	↑ (3.3-fold, <i>P</i> =0.02, n=5-7)	No change (n=10-11)
Cyp27b1	mRNA	↑ (1.8-fold, <i>P</i> =0.02, n=8)	↑ (2.1-fold, <i>P</i> =0.046, n=12)
IBA-1	Protein (IHC)	No change (n=3-6)	No change (n=5-6)
ICAM-1	Protein (IHC)	↑ (2.1-fold, <i>P</i> =0.049, n=5-8)	↑ (5.1-fold, <i>P</i> =0.02, n=5-6)
lcam1	mRNA	↑ (2.1-fold, <i>P</i> =0.05, n=5-6)	↑ (1.6-fold, <i>P</i> =0.03, n=9-10)
lfnar1	mRNA	No change (n=8)	Not analyzed
IL-6	mRNA	↑ (4.9-fold, <i>P</i> = 0.06, n=5-7)	↑ (2.9-fold, <i>P</i> =0.26, n=9-10)
lrf7	mRNA	↑ (2.3-fold, <i>P</i> =0.03, n=5-7)	No change (n=10)
Klotho	mRNA	↓ (0.5-fold, <i>P</i> =0.003, n=8)	↓ (0.2-fold, <i>P</i> <0.0001, n=10)
Ly6C	mRNA	↑ (4.4-fold, <i>P</i> =0.04, n=5-7)	No change (n=12)
LY6C	Protein (IHC)	↑ (2.0-fold, <i>P</i> =0.049, n=4-9)	No change (n=6-7)
MAC-2	Protein (IHC)	↑ (2.2-fold, <i>P</i> =0.037, n=7)	No change (n=6)
Nos2	mRNA	↑ (2.3-fold, <i>P</i> =0.02, n=8)	No change (n=12)
TIr9	mRNA	↑ (1.4-old, <i>P</i> =0.06, n=8)	No change (n=10)
Txnip	mRNA	↑ (1.8-fold, <i>P</i> =0.04, n=8)	↑ (1.8-fold, <i>P</i> =0.0004, n=12)

i.c.v., intracerebroventricular. IHC, immunohistochemistry. n, number of mice per group. *P* values were generated by unpaired, two-tailed *t* tests.

Antibody	Company	Catalog No.	Species	Application	Dilution
AE2	Abcam	ab42687	Rabbit	IHC	1:500
AQP1	Santa Cruz Biotechnology	sc-20810	Rabbit	IHC	1:1000
CD3	Abcam	ab16669	Rabbit	IHC	1:500
CD4	BioLegend	100402	Rat	IHC	1:250
CD31	BD Biosciences	550274	Rat	IHC	1:250
Claudin-1	Cell signaling	13255	Rabbit	IHC	1:250
Cre recombinase	EMD Millipore	69050-3	Rabbit	WB, IHC	1:5000, 1:10000
Cytokeratin	Sigma	C5992	lgG1	IHC	1:400
GAPDH	Millipore	MAB374	Mouse	WB	1:2000
IBA-1	Abcam	ab5076	Goat	IHC	1:1000
ICAM1	Abcam	ab119871	Rat	IHC	1:500
IRF7	LSBio	LS-B2945	lgG1	IHC	1:500
Klotho	Abcam	ab154163	Rabbit	WB, IHC	1:1000, 1:500
Klotho	Cosmobio	KO603	Rat	IHC	1:100
LY6C	Abcam	ab15627	Rat	IHC	1:500
MAC-2 (Galectin-3)	Cedarlane	CL8942AP	Rat	IHC	1:500
MHCII	eBioscience	14-5321-81	Rat	IHC	1:200
TMEM119	Abcam	ab209064	Rabbit	IHC	1:500
Transthyretin	Sigma-Aldrich	SAB3500378	Chicken	IHC	1:500
TXNIP	Abcam	ab188865	Rabbit	WB	1:500

Table S2. Antibodies used for immunohistochemistry or western blotting

IHC, immunohistochemistry; WB, western blotting.

Target Gene/Transcript	Taqman Catalog No.		
Arg1	Mm00475988_m1		
C1qa	Mm00432142_m1		
Ccl17	Mm01244826_g1		
Cx3cr1	Mm00438354_m1		
Cxcl10	Mm00445235_m1		
Cyp27b1	Mm01165918_g1		
lcam1	Mm00516023_m1		
lfnar1	Mm00439544_m1		
lfnβ	Mm00439552_s1		
IL-1β	Mm00434228_m1		
lrf7	Mm00516793_g1		
Klotho	Mm00502002_m1		
Ly6c	Mm03009946_m1		
NIrp3	Mm00840904_m1		
Nos2	Mm00440502_m1		
TIr9	Mm00446193_m1		
Txnip	Mm01265659_g1		

Table S3. Taqman qPCR primers from Life Technologies

Table S4. Primers for SYBR Green qPCR quantification

Target Gene/Transcript	Forward (5'-3')	Reverse (3'-5')
Klotho: m-KL, mouse	GGACAATGGCTTTCCTCCTT	TGCACATCCCACAGATAGACA
Klotho: s-KL, mouse	GGACAATGGCTTTCCTCCTT	TCGGATGAGATCCTGACACA