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Details of the phylogenetic analysis with MrBayes 
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Suppl. Fig. 1. Unedited alignment of amino acid sequences used for the phylogenetic 
study. The alignment was made using ClustalX 2.0. The conserved motif repeated twice in 
A. gossypii protein and in Sed1p is squared. 
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Suppl. Fig. 2. Unedited alignment of amino acid sequences using Probcons. The conserved 
motif is squared. Note that the results are similar to those obtained used with Clustal 2.0, at 
least for the sequence used for the phylogenetic analysis (Fig. 1). 
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Suppl. Fig. 3. Comparison of SPI1 and reporter expression and effect of S. cerevisiae strain 
in growth. A – Comparison of mRNA expression by Northern blot of SPI1 and lacZ 
controlled by SPI1 promoter in the strain YPH499. B – Comparison of the growth 
(measured as optical density at 600 nm) of BY4742 and YPH499 strains in rich (YPD) and 
minimal media (SD). Strains and media are indicated in the legend. The curve is presented 
in semi-logarithmic scale. 
 

 
 

Suppl. Fig. 4. Mutant strains tested without effect in SPI1 induction in post-diauxic 
conditions. SPI1 expression analysed by Northern blot is shown after 8 h growing in YPD 
from OD600= 0.3. The background strain of the mutants is shown at the bottom. 



Vol. 17. No. 3. 2012         CELL. MOL. BIOL. LETT.         
 

S6

 

 
 

Suppl. Fig. 5. Motifs and domains present in Spi1p and Sed1p. A – Amino acid sequence 
of Spi1p and domains found by SMART. Domains are squared in the following colours: 
Red, signal peptide; pink, low complexity areas; blue, intrinsic disorder; RPT (blue), 
internal repeats. B – Distribution of domains found by SMART in Sed1p and Spi1p. The 
same colour code as in A) is used. C – Alignment of the amino acid sequence of Spi1p and 
its homologue Sed1p. Shown in pink is the serine-threonine rich domain, characteristic of 
these proteins and potential substrate of serine-threonine kinases. For Sed1p, shown in blue 
is the repeated domain, present only once in Spi1p (RPT in B). Also shown squared are the 
motifs recognized as domains (indicated by the name) or substrate of post-translational 
modifications. Black continuous: N-myristoylation; red dashed: phosphorylation; green 
dashed: N-glycosylation; FHA: phosphothreonine union; WW4: phosphorylation-
dependent interaction domain; USP7: binding domain; AP: interaction with AP (adaptor 
protein; typical of the endocytic route, very common in membrane or cell wall proteins, 
especially those involved in transport).  
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Suppl. Fig. 6. Secondary structure prediction of Spi1p. -helices are shown as green 
cylinders (H above the amino acid sequence) and -sheets as yellow arrows (E above the 
amino acid sequence). The probability is shown as blue bars over the prediction. The 
results show that in Spi1p there are 9 putative regions adopting a -sheet structure, four of 
them dubious due to their small size and/or their low probability. The first one corresponds 
to the signal peptide, the fourth includes one conserved region (VVSeFTTYCP; Fig. 1B, 
fifth and sixth are also within one conserved domain (TTFVT-TFTVT; Fig. 1B). The 
seventh is the most conserved (TTLTITNCP), and probably is important in the function of 
the protein. Probably these motifs, due to their evolutionary conservation, are part of the 
secondary structure and play a central role in the function of the protein. An α-helix is also 
predicted at the C-terminus of the protein, although with low probability. 
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Suppl. Table 1. Strains and plasmids used in this work. 
 

A. S. cerevisiae strains used in this work. 
 

Strain Genotype Reference 

W303-1a MATa, ade 2-1, ura 3-1, leu 2-3, his 3-1, trp1-1 [1] 

W303-1a 
msn2msn4 

W303-1a msn23::HIS3, msn4-1::TRP1 [2] 

W303-1a cnb1 W303-1a , cnb1::LEU2 [3] 

W303-1a crz1 W303-1a , crz1::G418 [4] 

W303-1a mpk1 W303-1a mpk1::TRP1 [5] 

W303-1a pkc1ts W303-1a pkc1ts-X [6] 

W303-1a puf5 W303-1a uth4::KanMX4 P. Carrasco, doctoral thesis 

W303-1a yak1 W303-1a yak1::KanMX4 P. Carrasco, doctoral thesis 

W303-1a yap1 W303-1a yap1::KanMX4 F. Rández-Gil 

MCY829  MATa his3-200 lys2-801 ura3-52 [7] 

MCY msn1 MCY829 msn1-1::URA3 [7] 

MCY msn5 MCY829 msn5-2::HIS3 [8] 

MCY mig1 MCY829 leu2::HIS3 mig1-2::LEU2 [9] 

BY4741 MAT a, his3-1, leu2-0, met15-0, ura3-0 Euroscarf 

BY4741 pho84 BY4741 pho84::KanMX4 Euroscarf 

BY4741 wsc2 BY4741 wsc2::KanMX4 Euroscarf 

BY4742 MAT, his3-1, leu2-0, lys2-0, ura3-0 Euroscarf 

BY4742 hog1 BY4742 hog1::KanMX4 Euroscarf 

BY4742 pho85 BY4742 pho85::KanMX4 Euroscarf 

BY4742 pop2 BY4742 pop2::KanMX4 Euroscarf 

BY4742 pho4 BY4742 pho4::KanMX4 Euroscarf 

BY4742 sko1 BY4742 sko1::KanMX4 Euroscarf 

BY4742 sst2 BY4742 sst2::KanMX4 Euroscarf 

MLY40 MAT, ura 3-52 [10] 

MLY40 phd1 MLY40 phd1::G418 [10] 

MLY40 sok2 MLY40 sok2::hygB [10] 

 
B. Plasmids used in this work. 
 

Plasmid Description Reference 

YEp352 Multicopy shuttle vector. URA3 marker [11] 

YEp352-PKC1 Multicopy shuttle vector. URA3 marker.  PKC1 in PstI/BglII. [12] 

YEp352-MPK1 Multicopy shuttle vector. URA3 marker. MPK1 in SphI/Ncori. [12] 

YEp357 Multicopy shuttle vector. URA3 marker. lacZ. [13] 

YEp357-
SPI1p/lacZ 

Multicopy shuttle vector. URA3 marker. lacZ expression 
controlled by SPI1 promoter. 

[14] 
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Suppl. Table 2. Transcription factors regulating SPI1 expression. 
 

A. Analysis of transcription factors (TF), using YEASTRACT tool 
(http://www.yeastract.com/), which regulate SPI1 expression documented by direct or indirect 
evidence. Abbreviations: Northern blot (NB); expression microarrays (ARR); chromatin 
immunoprecipitation (ChIP); ChIP-on-CHIP (ChIP-CH), mutant (mt), wild-type (WT).  
 

TF Reference Evidence 

Adr1p [15] Indirect: ARR (WT/TFmt) 

Aft1p [16] Indirect: ARR (WT/TFmt) 

Cat8p [15] Indirect: ARR (WT/TFmt) 

Cin5p [17] Direct: ChIP 

Crz1p [15] 
[18] 

Indirect: ARR (WT/TFmt) 
Indirect: ARR (WT/TFmt) 

Cst6p [15] Indirect: ARR (WT/TFmt) 

Gat4p [15] Indirect: ARR (WT/TFmt) 

Gcr2p [19] Indirect: ARR (WT/TFmt) 

Gis1p [15] Indirect: ARR (WT/TFmt) 

Gzf3p [15] Indirect: ARR (WT/TFmt) 

Haa1p [20] Indirect: NB (WT/TFmt) 

Hap4p [21] Indirect: ARR (WT/TFmt) 

Hot1p [22] Direct: ChIP 

Hsf1p [15] 
[23] 
[24] 
[25] 

Indirect: ARR (WT/TFmt) 
Indirect: RT-PCR (WT/TFmt) 
Indirect: RT-PCR (WT/TFmt) 
Indirect: RT-PCR (WT/TFmt) 

Ino2p [26] Indirect: ARR (WT/TFmt) 

Ino4p [26] Indirect: ARR (WT/TFmt) 

Mbp1p [15] Indirect: ARR (WT/TFmt) 

Mcm1p [27] Indirect: NB (WT/TFmt) 

Met31p [15] Indirect: ARR (WT/TFmt) 

Met4p [28] Indirect: ARR (WT/TFmt) 

Mga1p [15] Indirect: ARR (WT/TFmt) 

Mig1p [15] Indirect: ARR (WT/TFmt) 

Msn2p/Msn4p [15] 
[29] 
[30] 
[31] 
[32] 

Indirect: ARR (WT/TFmt) 
Indirect: ARR (WT/TFmt) 
Indirect: NB (WT/TFmt) 
Indirect: NB (WT/TFmt) 
Indirect: NB (WT/TFmt) 

Pdr3p [33] Indirect: ARR (WT/TFmt) 

Put3p [15] Indirect: ARR (WT/TFmt) 

Rds2p [34] Direct: ChIP-CH 

Rfx1p [15] Indirect: ARR (WT/TFmt) 

Rgm1p [15] Indirect: ARR (WT/TFmt) 
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TF Reference Evidence 

Rme1p [15] Indirect: ARR (WT/TFmt) 

Rox1p [15] 
[35] 

Indirect: ARR (WT/TFmt) 
Indirect: ARR (WT/TFmt) 

Rpn4p [36] Indirect: ARR (WT/TFmt) 

Sfl1p [37] Indirect: ARR (WT/TFmt) 

Skn7p [38] 
[15] 

Direct: ChIP-CH 
Indirect: ARR (WT/TFmt) 

Sko1p [22] 
[39] 

Direct: ChIP 
Direct: ChIP 

Sok2p [40] 
[41] 
[15] 
[42] 

Direct: ChIP-CH 
Indirect: ARR (WT/TFmt) 
Indirect: ARR (WT/TFmt) 
Indirect: ARR (WT/TFmt) 

Ste12p [41] Direct: ChIP-CH 

Stp2p [15] Indirect: ARR (WT/TFmt) 

Tec1p [41] Direct: ChIP-CH 

Yap1p [15] 
[28] 

Indirect: ARR (WT/TFmt) 
Indirect: ARR (WT/TFmt) 

 

Analysis of transcription factors found with Funcassociate 2.0 (http://llama.mshri.on.ca/funcassociate/) 
shows as enriched GO terms (adjusted p-value* < 0.05): nitrogen compound metabolic process  
(< 0.001), ion binding (< 0.001), nucleic acid metabolism (< 0.001), stimulus response (0.009), glucose 
metabolism regulation (0.03) and nutrient response (0.035). 
* In Funcassociate 2.0, p-value is the result of single hypothesis one-sided of the association between 
attribute and query (based on Fisher's exact test) and adjusted p-value is the fraction (as a %) of 1000 
null-hypothesis simulations having attributes with this single-hypothesis p-value or smaller. 
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B. Transcriptional factors (TF), using YEASTRACT, which presents consensus binding 
motif in the sequence of the SPI1 promoter. The position in the sequence relative to the 
transcription start (ATG) is indicated, as well as its orientation (forward in black and reverse 
in red). TF which have been demonstrated as SPI1 regulators, by direct or indirect evidence 
(see A), are underlined. 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis of transcription factors found with Funcassociate 2.0 shows as enriched GO terms (adjusted  
p-value < 0.05): nitrogen compound metabolic process (< 0.001), ion binding (< 0.001), nucleic acid 
metabolism (< 0.001), filamentous growth (0.005) and stress transcriptional response (0.008). Note that 
the most over-represented categories (adjusted p-value  < 0.001) were found in both tables. 
 
 
 
 

TF Position and orientation 

Ash1p  -296, -65, -909, -565, -14 

Azf1p -197 

Cbf1p -888 

Crz1p -358 

Fkh1/2p -561, -812, -766, -333 

Gcr1p -268, -150, -488, -212 

Gis1p -368, -260, -253 

Gln3p -303 

Hac1p -134 

Hsf1p -187, -177 

Mcm1p -311, -290, -168, -278, -372 

Mot3p -306, -978 

Msn2/4p -373, -265, -258 

Nrg1p -872, -700, -264, -257, -155, -373 

Pho4p -889 

Pip2p -366 

Rph1p -373, -265, -258 

Rtg1/3p -575 

Sko1p -708 

Stb5p -565, -497, -366, -105, -879, -547, -322 

Ste12p -993 

Tec1p -207 

Xbp1p -928, -868, -361, -184, -922 

Yap1p -9, -834 

Yap3 -9 

Yrr1p -561 
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