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Supplementary Information 

Computational methods 

Neural network models are developed in Keras (Version 2.0.2) and trained using the 

Theano backend (Version 1.0.0). All trainings are performed on a single NVIDIA 

GeForce GTX 1080 GPU. The code is developed in Python 2.7. 

 

Frequency vs rank plots for catalysts, reagents and solvents 

Supplementary Figures 1-3 are the frequency vs. rank plots for catalyst, solvent and 

reagent in Reaxys. It can be seen some duplicated records of the same chemical exists 

(e.g. palladium diacetate as catalyst and sodium hydroxide as reagent). We kept these as 

different classes as there is not a good way to systematically identify and curate this issue 

as it is not clear what is the pattern of these duplicated chemicals with different ids. 

However, during the training, the model learns that they are very similar entities because 

one or another of these duplicated chemicals are used in the same type of reactions. 
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Supplementary Figure 1. Frequency vs. rank plot for catalyst in Reaxys (with the top ones 

labeled in yellow) 
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Supplementary Figure 2. Frequency vs. rank plot for solvent in Reaxys (with the top ones 

labeled in yellow) 

 

 

Supplementary Figure 3. Frequency vs. rank plot for reagent in Reaxys (with the top ones 

labeled in yellow) 

 

Comparison of prediction accuracies with a null model 

A null model is defined to always give the same prediction of top ten combinations 

chosen based on the frequencies of the catalysts, solvents and reagents. The top 10 

combinations of the null model are listed below in Supplementary Table 1.  

Supplementary Table 1. The top-ten combinations used in the null model 
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Rank Catalyst Solvent 1  Solvent 2 Reagent 1 Reagent 2 
1      
2  DCMa    
3  THF    
4    TEA  
5    K2CO3  
6  DCM  TEA  
7  THF  TEA  
8  DCM  K2CO3  
9  THF  K2CO3  
10 Pd on activated 

charcoal 
    

a: DCM: dichloromethane, THF: tetrahydrofuran, TEA: triethylamine 

The comparison of prediction accuracies are shown in Supplementary Table 2. The 

accuracy values shown are for top-three exact matches. In general, it can be seen that the 

accuracy values are much lower for the null model. The accuracy of c, s2 and r2 

predictions for the null model are high, since a majority of reactions do not use a catalyst, 

a second solvent or a second reagent, but the trained model is still better than the null 

model by a large margin. 

Supplementary Table 2. Comparison of accuracy for the true context to be in the top-3 

predictions to a null model 

 Trained neural 
network model 

Null model 

c  93.6% 87.3% 
s1 75.8% 49.4% 
s2 90.1% 85.6% 
r1  73.2% 22.0% 
r2  89.3% 82.3% 
c, s1, r1 57.3% 5.7% 
c, s1, s2, r1, r2 50.1% 4.7% 

a c, s1, s2, r1, r2 refer to catalyst, solvent 1, solvent 2, reagent 1 and reagent 2, respectively; 
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For temperature prediction, we analyzed a baseline model that predicts the most 

frequently used temperature for all reactions. Supplementary Figure 4 shows the 

distribution of temperature for reactions in the test set. The most frequently used 

temperature is the room temperature (20 ℃) which covers a majority of reaction, and the 

accuracy of the predicted temperature by the baseline model (which is always 20 ℃) 

being within the ±10℃ or ±20℃ range of the recorded temperature are 40.0% and 

49.4%. In the meantime the distribution spans a wide range. Simply predicting the room 

temperature (20 ℃) will result in a mean absolute error of 35.3 ℃, which is significantly 

larger than prediction given by the trained model and would be misleading for reactions 

that require high or low temperatures. 

 

Supplementary Figure 4. Temperature distribution for reactions in the test set 

 

Full list of evaluation of reaction examples 
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Comparison with the neighbor approach 

The nearest-neighbor method searches the training set for the reaction with the maximum 

similarity to the reaction for prediction. Cosine similarity of the reaction fingerprint1 is used to 

quantify reaction similarity. A thorough search is performed for the 62 reactions in 

Supplementary Table 3. The top-ten most similar reactions are retrieved, and the top-one 

prediction and the prediction within top-ten that has the maximum elements matching the true 

condition are listed in Supplementary Table 6. Good suggestions are found for a majority of the 

cases, and the overall accuracy for these 62 reactions is comparable to the neural network model. 

However, the search for one reaction takes ~40 minutes on a single intel® Xeon(R) CPU E5-

2690 0 @2.90GHz, as compared to ~100ms for the neural network approach running on the 

same machine, which is over 10,000 times faster. Further, the nearest neighbor method proposes 

conditions by simply copy and paste, which does not have the ability to infer missing 

information.   
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Evaluation of the Michael additions used by Marcou et al. 2 

Among the 52 reactions, 34 of them are found in the final dataset, and we have detailed information 

about these reactions for evaluation. The model is retrained with these reactions excluded from the 

training set. The top-ten accuracy of these 34 reactions for similar matches is 47.0%, and the 

accuracy for similarly matching catalyst, solvent 1 and reagent 1 is 55.9%, lower than the overall 

accuracy of the entire dataset, yet a significant improvement over literature results.2 Furthermore, 

it has been pointed out that many of these reactions can occur under different conditions, meaning 

some predictions are not necessarily wrong, even when they differ from the recorded context. For 

example, Supplementary Figure 5 shows reactions where the exact recorded condition is not 

predicted. The first example has a different solvent predicted, but it is similar to the recorded 

solvent (both are alcohols).3 For the second example, although the model does not suggest the 

correct solvent and reagent in the first choice, it recognizes the need for basic conditions in the 

subsequent suggestions, with the second suggestion being piperidine and the third being 

triethylamine.4 Supplementary Figure 5(C) is another example of data quality that complicates the 

analysis. Two reagents NaHCO3 and HCl are not commonly used in the same reactions but in 

separate steps which is the case in the reported procedure.5 Additionally, the true solvent used for 

the reaction is ethanol where diethyl ether is used as an extraction solvent in workup. The full 

prediction results are presented in Supplementary Table 7.  
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Supplementary Figure 5. Examples of Michael additions where none of the recorded c, s1 or r1 

are predicted. A) Methanol is predicted, which is similar to the recorded solvent (isopropanol); B) 

the top prediction is incorrect, but subsequent predictions suggest bases as reagents (the second 

suggestion is piperidine and the third is triethylamine); C) the reaction has incompatible reagents 

that are used in different stages but not reflected in the reaction record. 
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Feature definition used in the Morgan fingerprints 

Supplementary Table 8. Feature definition as defined by Gobbi et al. 6 

Invariants SMARTS 
Hydrogen bond donor  [[N;!H0;v3],[N;!H0;+1;v4],[O,S;H1;+0],[n;H1;+0]] 
Hydrogen bond 
acceptor  

[$([O,S;H1;v2]−[!$(*4[O,N,P,S])]),[O,S;H0;v2], 
[O,S;−],$([N&v3;H1,H2]−[!$(*4[O,N,P,S])]), [N;v3;H0],[n,o,s;+0],F] 

Basic group  
 

[$([N;H2&+0][[C,a];!$([C,a](4O))]),$([N;H1&+0]([[C,a]; !$([C,a](4O))])[[C,a];!
$([C,a](4O))]),$([N;H0&+0]([C;!$(C(4O))])([C;!$(C(4O))])[C;!$(C(4O))]), 
[N,n;X2;+0]] 

Hydrophobic group  [$([C;H2,H1](!4*)[C;H2,H1][C;H2,H1][[C;H1,H2,H3]; 
!$(C4*)]),$(C([C;H2,H3])([C;H2,H3])[C;H2,H3])] 

Acidic group  [O;H1]−[C,S](4[O,S,P]) 
Halogen  [F,Cl,Br,I] 
Attachment point to 
aliphatic ring  

[$([A;D3](@*)(@*)∼*)] 

Attachment point to 
aromatic ring  

[$([a;D3](@*)(@*)*)] 

Any unusual atom (not 
H,C,N,O,F,S,Cl,Br,I)  

[!#1;!#6;!#7;!#8;!#9;!#16;!#17;!#35;!#53] 
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