OMTN, Volume 13

Supplemental Information

Membrane Destabilization Induced

by Lipid Species Increases Activity of

Phosphorothioate-Antisense Oligonucleotides

Shiyu Wang, Nickolas Allen, Xue-hai Liang, and Stanley T. Crooke

Membrane Destabilization Induced by Lipid Species Increases Activity of Phosphorothioate Antisense Oligonucleotides

SUPPLEMENTARY DATA

Supplemental materials

Chemicals and Antibodies

Cholesterol, ceramide, free fatty acids, and fatty acid free bovine serum albumin were from Sigma. N-Rh-PE was from Avanti Polar Lipids. Vybrant[™] Alexa Fluor[™] 555 Lipid Raft Labeling Kit, Bodipy 493/503, Bodipy-C16, NBD-cholesterol, and NBD-ceramide were from ThermoFisher. Magic Red substrate was from Immunochemistry Technologies.

Antibodies against ERK (4695), p44/42 MAPK (Erk1/2) (4370), and LAMP1 (9091S) were from Cell Signaling Technology. Anti-EEA1 (610456) was from BD Bioscience. LBPA antibody (6C4, Z-PLBPA) was from Echelon. Anti-rabbit (170-6515) and anti-mouse (170-6516) secondary antibodies conjugated to HRP were from Bio-Rad. Antibodies against EGFR (ab52894), EGFR (phospho Y1092, ab205827), Ezrin (ab4069), and AF647 (ab150079) as well as anti-mouse secondary antibodies conjugated to AF488 (ab150113) and AF647 (ab150115) and anti-rabbit secondary antibodies conjugated to AF488 (ab150077) were purchased from Abcam.

Primer probe sets for qRT-PCR

Drosha: Forward: 5'- CAAGCTCTGTCCGTATCGATCA-3' Reverse: 5'- TGGACGATAATCGGAAAAGTAATCA-3' Probe: 5'-CTGGATCGTGAACAGTTCAACCCCGAT-3'

Malat1: Forward: 5'-AAAGCAAGGTCTCCCCACAAG-3' Reverse: 5'-TGAAGGGTCTGTGCTAGATCAAAA-3' Probe: 5'-TGCCACATCGCCACCCCGT-3'

Oligonucleotides

Oligonucleotides

IONIS ID 446654 targets human *PETN*: 5'-Cy3-<u>C*T*G* C*T</u>*A* G*C*C* T*C*T* G*G*A* <u>T*T*T*</u> <u>G*A</u>-3'. The underlined nucleotides are 2'-O-MOE modified, the * indicates phosphorothioate backbone and 5' end is labeled with Cy3.

IONIS ID 851810 targets human *PETN*: 5'-Cy5-<u>C*T*G* C*T*A</u>* G*C*C* T*C*T* G*G*A* <u>T*T*T*</u> <u>G*A</u>-3'. The underlined nucleotides are 2'-O-MOE modified, the * indicates phosphorothioate backbone and 5' end is labeled with Cy5.

IONIS ID 395254 targets human *Malat1*: 5'-<u>G*G*C* A*T</u>*A* T*G*C* A*G*A* T*A*A* <u>T*G*T* T*C</u>-3'. The underlined nucleotides are 2'-O-MOE modified, and the * indicates phosphorothioate backbone.

IONIS ID 25690 targets *Drosha*: 5´-<u>A*T*C* C*C*</u>T* T*T*C* T*T*C* C*G*C* <u>A*T*G*T*G</u> -3'. The underlined nucleotides are 2'-O-MOE modified, and the * indicates phosphorothioate backbone.

SUPPLEMENTARY FIGURE LEGENDS

Figure S1. Fatty acids increase PS-ASO activities. A) HeLa or B) HEK cells were treated with indicated concentrations of PS-ASOs targeting *Malat1* for 4 h, followed by replacement with medium without PS-ASOs but containing 200 µM palmitic acid. After 20 h, the levels of Malat1 were determined by gRT-PCR. Percent expression relative to non-PS-ASO treated control is plotted. The error bars represent standard deviations from three independent experiments. P<0.01 for 100 µM versus 0 µM (blue); P<0.01 for 200 µM versus 0 µM (red). P values were computed by two-way ANOVA using Prism. C) A431 cells were treated with PS-ASOs targeting Drosha or Malat1 for 4 h. Medium was replaced with medium without PS-ASO but containing 100 µM palmitic acid (16:0), stearic acid (18:0), palmitoleic acid (16:1), oleic acid (16:1), heptadecylic acid (17:0), or nonadecylic acid (19:0), and cells were incubated for another 20 h. The levels of *Drosha* and *Malat1* RNAs were determined by qRT-PCR. Percent expression relative to non-treated control is plotted. The error bars represent standard deviations from three independent experiments. D) A431 cells pretreated with 200 µM palmitic acid for 16 h were incubated with Cy3-PS-ASO (IONIS ID 446654) for 2 h. Intracellular fluorescence of Cy3-PS-ASO was quantified by flow cytometry. RFU is plotted versus N-Rh-PE concentration; p<0.01 control versus PA treatment (*). P values were computed by student T-test; E) Intracellular RFU of N-Rh-PE at indicated concentrate was quantified by flow cytometry in A431 cells pretreated with 200 µM palmitic acid for 16 h and then N-Rh-PE for 2 h.

2

Figure S2. Free fatty acids induce lipid droplets within 4 h. Immunofluorescent staining for lipid droplets in cells that were treated with 200 μ M palmitic acid for indicated times. The nuclei were stained with DAPI (blue). Scale bars: 2 μ m.

Figure S3. Prolonged treatment of cells with ceramide decreases PS-ASO uptake but increases membrane fusion rates. A) A431 cells were pretreated with 10 μM ceramide for 16 h or were not treated (control). Intracellular fluorescence of Cy3-PS-ASO (IONIS ID 446654) was quantified by flow cytometry. RFU is plotted versus Cy3-PS-ASO concentration. **B)** Intracellular fluorescence of N-Rh-PE in A431 cells pretreated with 10 μM ceramide for 16 h and then incubated with N-Rh-PE for 2 h. RFU is plotted versus N-Rh-PE concentration. p<0.01 control versus ceramide treatment (*). P values were computed by student T-test. **C)** HeLa or **D)** HEK cells were treated with indicated concentrations of PS-ASOs targeting *Malat1* for 4 h, followed by replacement with medium without PS-ASOs but containing 10 μM ceramide. After 20 h, the levels of *Malat1* were determined by qRT-PCR. Percent expression relative to non-PS-ASO treated control is plotted. The error bars represent standard deviations from three independent experiments. P<0.01 for 100 μM versus 0 μM (blue); P<0.01 for 10 μM versus 0 μM (red). P values were computed by two-way ANOVA using Prism.

Figure S4. Prolonged treatment of cells with cholesterol decreases PS-ASO uptake but increases membrane fusion rates. A) Intracellular fluorescence of Cy3-PS-ASO (IONIS ID 446654) was quantified by flow cytometry in A431 cells pretreated with 50 μ M MCD-complexed cholesterol or untreated (control) in the presence of 1 μ M Sandoz 58-035 for 16 h. p<0.01 control versus cholesterol treatment (*). P values were computed by student T-test. **B**)

Intracellular RFU due to N-Rh-PE was quantified by flow cytometry in A431 cells pretreated with 50 μ M MCD-complexed cholesterol in the presence of 1 μ M Sandoz 58-035 for 16 h and then incubated with N-Rh-PE for 2 h. RFU is plotted versus N-Rh-PE concentration. **C)** HeLa or **D)** HEK cells were treated with indicated concentrations of PS-ASOs targeting *Malat1* for 4 h, followed by replacement with medium without PS-ASOs but containing 50 μ M MCD-complexed cholesterol. After 20 h, the levels of *Malat1* were determined by qRT-PCR. Percent expression relative to non-PS-ASO treated control is plotted. The error bars represent standard deviations from three independent experiments. P<0.01 for 100 μ M versus 0 μ M (blue); P<0.01 for 10 μ M versus 0 μ M (red). P values were computed by two-way ANOVA using Prism.

Figure S5. Lipids incorporate into cells within 4 h and do not significantly change lipid raft staining patterns. A) Representative immunofluorescent images of indicated cells incubated with 50 μ M BODIPY-C16, 50 μ M NBD-cholesterol, or 5 μ M NBD-ceramide. The nuclei were stained with DAPI (blue). Scale bars, 2 μ m. B) Representative immunofluorescent images of A431 cells treated with 200 μ M palmitic acid (PA), 10 μ M ceramide (Ceramide) or 50 μ M MCD-complexed cholesterol (Cholesterol), for 16 h and stained for lipid rafts. The nuclei were stained with DAPI (blue). Scale bars, 2 μ m.

Fig. S1.

Fig. S2.

Fig. S3.

Fig. S4.

Fig. S5.

