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Appendix Figure 1.  Schematic representation of the overall study design (A) and  
                                  the inpatient studies (B) 

(A) Each subject participated in two metabolic tests - the first designed to assess insulin 
sensitivity (Admission #1) and the second designed to measure fasting fatty acid metabolism 
(Admission #2).  During admission #1, subjects underwent a frequently-sampled insulin-
modified IVGTT (described in the text).  (B) During Admission #2, subjects were studied over 
an 18h period for measurement of fatty acid flux from DNL, dietary fat, and adipose-derived 
fatty acids in plasma FFA and VLDL-TG.
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Subjects 

Based on the results of the initial screen, eligible subjects were invited to attend a more 

comprehensive screening to 1) assess characteristics of the metabolic syndrome (elevated 

plasma TG, waist circumference, and low HDL-cholesterol (1) , 2) obtain a medical history 

and weight history (loss/gain) and 3) rule out diabetes (fasting glucose concentrations <126 

mg/dL, HbA1c <6.5%) and pre-existing liver disease including hepatitis, cirrhosis, biliary 

atresia, cholestasis, and genetic disorders.  Subjects were excluded if they smoked, had 

known metabolic abnormalities including elevated thyroid hormone levels, used dietary 

supplements beyond multivitamins, or had unusual eating habits (dietary restrictions, very 

low-fat diets).  Subjects were also interviewed by a registered dietitian regarding frequency 

and quantity of alcohol intake, and were excluded if they consumed >140 g/week for men and 

>70 g/week for women. 

 

Following the second screening visits, 24 subjects were willing to participate in the research 

protocol, which required controlled food intake and activity on an outpatient basis, multiple 

inpatient visits with isotopes administered via IV and the diet, and an 1H-MRS to determine 

liver fat content (2).  The sample size was powered to assess lipogenesis and detect 

metabolic differences in high vs. low liver-fat subjects (3-5). 

 

Once entered into the study, each subject participated in two in-patient tests (appendix fig. 1) 

- the first (admission #1) designed to assess insulin sensitivity using a frequently-sampled, 

insulin-modified intravenous glucose tolerance test (IVGTT) (6) and the second (admission 

#2) designed to measure fatty acid metabolism.  Prior to admission #1, subjects completed a 

3d food intake diary and a 24h dietary recall and interview with a registered dietitian to 
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determine usual dietary intake.  Food records were analyzed using the Nutrition Data System 

for Research (NDSR 2009; Minneapolis, MN) and using this information, the 24h recall and 

indepth interview, a weight-maintaining menu based was designed by the dietitian, prepared 

by the Clinical and Translational Research Center (CTRC) kitchen.  The weight-maintaining 

diet including all foods and beverages was given to the subjects to consume on an outpatient 

basis for 3d prior to admission #1 and 7d prior to admission #2.  No alcohol was consumed 

for 3d before each admission.  Subjects had stable body weight and maintained pre-

enrollment physical activity before and during the two-week testing period. 

 

Testing timelines 

For admission #1, subjects reported to the CTRC at 0700 to undergo the IVGTT, as described 

in detail previously (6).  Glucose and insulin responses were analyzed using the minimal 

model technique and MINMOD Millenium software (7).  Body composition was determined by 

DEXA (Hologic Discovery W, QDR series; Bedford, MA) and intrahepatic-TG was measured 

by 3.0 Tesla 1H-MRS (2).  Subjects wore an Actical® accelerometer at hip level (Actical®; 

V2.1; Philips Healthcare; Andover, MA) for 4d to assess physical activity levels (9).  METs 

were calculated based on counts per minute of activity and sedentary activity corresponded to 

0-1 MET, light activity 1-3 MET, and moderate activity 3-6 MET (9). 

 

The last day of admission #1, the subjects were given 3 loading doses of D2O to bring body 

water enrichments to at least 0.6%.  After this, they consumed 50g doses of 70% deuterated 

water (D2O; Cambridge Isotope Laboratories, Inc.; Andover, MA) twice per day (BID) for 3d 

and once per day for the final 7d before admission #2 (appendix fig. 1) (10).  This duration of 

D2O administration was chosen to improve the assessment of hepatic de novo lipogenesis 
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(DNL) in subjects with fatty liver (larger intrahepatic TG pool sizes) compared to overnight 

D2O administration or 10d of acetate infusion, as we have performed previously (4).  After the 

10d of dosing, body water D2O enrichments averaged 0.86 ± 0.18% in the subjects (Metabolic 

Solutions Inc., Nashua, NH). 

 

To begin admission #2, each subject was admitted to the CTRC and IV lines were placed.  At 

1800h, the subject consumed a standardized evening meal consisting of solid foods (banana 

and cereal with skim milk) and a beverage (cocoa, corn oil, heavy cream, sucrose, and skim 

milk) containing 1g of U-13C-palmitate (Isotec/Sigma, Miamisburg, OH) to trace meal fat 

absorption and incorporation into lipoprotein-TG, as well as spillover of dietary fatty acids into 

the plasma FFA pool (11).  This meal provided 38% of total daily energy needs and the 

composition was 831 ±131 kcal, 42.4 ± 2.6 g fat, 17.3 ± 6.7 g protein, and 103.6 ± 25.4 g 

carbohydrate (analyzed using NDSR).  Subjects remained fasted after the meal, and the next 

morning breakfast was withheld to allow for complete turnover of the plasma VLDL-TG pool 

(18h since the last meal).  At midnight an IV infusion of [1,2,3,4]-13C4-palmitate (7 µg/kg/min; 

Isotec; St. Louis, MO) was initiated to measure 1) the contribution of plasma FFA to hepatic-

TG synthesis (11), 2) the rate of appearance of adipose FFA and 3) the rate of appearance of 

dietary FA spillover (see below).  Fasting indirect calorimetry was performed from 0800 to 

0830 on day 2 using a metabolic cart (VMax Encore, Viasys Healthcare; San Diego, CA) and 

energy expenditure, fat and glucose oxidation were calculated using standard equations (12), 

with protein catabolism calculated based on the NDSR-calculated protein intake from the 

previous day. 
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Laboratory procedures and fatty acid analysis 

From 1800 on day 1 through noon on day 2 of admission #2, blood was collected at 26 time 

points and plasma immediately separated, kept on ice, and a preservation cocktail of PMSF, 

chloramphenicol, gentamicin sulfate, benzamidine and Trolox was added (11).  Plasma FFA, 

TG, and glucose concentrations were measured enzymatically (kit #991-34891, #998-

40391/994-40491, and #439-90901, respectively, Wako Diagnostics, Richmond, VA).  Insulin 

was measured by ELISA (#EZHI-14L, Millipore Corporation, Billerica, MA) and apoB48 

(AKHB48E; Shibayagi Co., Ltd., Biovendor LLC, Asheville, NC) was measured by ELISA.  

Due to volume limitations on the amount of blood drawn, at 14 of these time points (from 

midnight until noon), total TG-rich lipoproteins (TRL) were isolated from plasma by fixed-angle 

ultracentrifugation at 40,000 RPM for 20h in a 50.3Ti rotor (Beckman Instruments; Palo Alto, 

CA) at 15°C (11).  After lipoprotein isolation from plasma, TG was separated from TRL and 

TG-fatty acids were prepared for GC/MS as described previously (11).  FFA from plasma 

were also prepared for GC/MS as described (13).  The labeling patterns of TG and FFA were 

determined by measurement of isotopic enrichments on an Agilent 6890N GC coupled to a 

5975 MS detector and 7683B injector (Agilent Technologies, Palo Alto, CA) (5).  Enrichments 

were determined by selective ion monitoring for m/z of 270, 271, 272, 274, and 286 under 

electrical ionization using 4-6 point standard curves.  The different species of fatty acids in 

lipoprotein-TG and plasma FFA were measured by GC with flame ionization detector (14). 

 

Calculations and statistical analysis 

TG- fatty acid sources  

The identity of fatty acid sources contributing to TG synthesis were calculated using our 

previously-established, multiple stable-isotope procedure (4, 5, 11, 13, 15, 16).  Briefly, the 
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potential sources of fatty acids that contribute to lipoprotein-TG production (dietary fat, 

adipose fatty acids, and hepatic de novo lipogenesis) are each labeled with a different isotope.  

Palmitate serves as the marker for all fatty acids because it is the primary product of de novo 

lipogenesis and it is the second most prominent fatty acid in the diet.  Here, the contributions 

of the fatty acid sources are presented first as a proportion of TRL-TG fatty acids, which 

reflects the flux of fatty acids into intracellular-TG synthesis (4, 17-19) as demonstrated in 

liver biopsy studies previously published by us (4) and others (20, 21).  The proportions of 

palmitate derived from each source are then multiplied by the absolute concentrations of TRL-

TG palmitate to determine the quantitative contributions of these sources to TG-palmitate 

concentrations.  Finally, these values are divided by the percentage of TRL-TG fatty acids 

that are palmitate to reflect all TG-fatty acids derived from each source.  It is possible that not 

all fatty acid sources contributing to VLDL-TG will be identified using these three stable 

isotopes, as we have demonstrated previously (4, 15).  The fatty acids remaining unlabeled at 

the end of the 18h study could be derived from visceral stores or from intrahepatic-TG 

droplets (22). 

 

The plasma FFA pool can be diluted by spillover of dietary fatty acids, therefore a correction 

is applied to the calculation of FFA arising from adipose tissue to account for FA that do not 

arise from adipose lipolysis (i.e. that instead arise from dietary spillover) (11).  Mass 

isotopomer distribution analysis was used to calculate the percentage of newly made 

palmitate in VLDL (11).  DNL was calculated from samples throughout the evening (from 

midnight to noon).  Fasting DNL was defined as the percent contribution of newly synthesized 

FA in the VLDL-TG pool expressed as an average of the last two blood samples taken (10:30 

and 11:45 in the morning).  Due to the lengthy labeling period (10d), DNL-derived FA in 
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VLDL-TG may arise from newly synthesized FA in the liver (as well as previously synthesized 

FA that has been stored in IHTG), FA synthesized in adipose tissue, and DNL-FA that have 

been exported in VLDL-TG and entered the plasma FFA pool through lipolysis of either VLDL 

particles or stored adipose-TG.  To reduce the potential over-accounting of hepatically-

derived DNL-FA, the proportion of DNL-FA in the fasting plasma FFA pool was measured 

(average ± SD, 5.7% ± 4.7%) and taken into consideration in the calculation of the proportion 

of DNL-FA in VLDL-TG. 

 

The model of VLDL-TG production rate 

Fractional VLDL-TG turnover rate was calculated by modeling the rise to plateau enrichment 

of [1,2,3,4]-13C-palmitate into lipoprotein-TG using SigmaPlot (V12.0; Systat Software Inc., 

San Jose, CA) (11).  This model assumes that the plasma FFA label, when used for 

lipoprotein-TG synthesis occurs almost entirely in the liver.  Although there are some data in 

rodents that suggest the intestine can take up plasma FFA and use them for TG synthesis, 

this has not been demonstrated in humans.  Further, our previous data from fasting and fed 

humans do not support this concept.  We have found that an IV infusion during the fasting 

state will label TG in both large TRL which are VLDL with minute amounts of chylomicrons 

produced in the fasting state, and small TRL, which are again, primarily VLDL particles.  

However, as we continue to infuse this label during the fed-state, the label’s presence drops 

out of the buoyant particle fraction (Sf >400), and this buoyant fraction represents primarily 

chylomicrons.  For detailed illustration of these observations, please refer to the figure shown 

at the end of this document (appendix figure 2). 
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These data demonstrate that even in a mixed fraction of TRL particles (containing both 

chylomicrons and VLDL) the IV-infused 13C4-palmitate is utilized for VLDL-TG synthesis.  In 

the present study, we started collecting samples for analysis of VLDL-TG production rate at 

midnight.  However, at this time, the TRL fraction contains both chylomicrons and VLDL.  As 

the infusion continues throughout the early morning hours, the subject becomes more fasted 

and the apoB48 concentrations of this fraction decay to low levels between 0300-0600;  

thereafter isolated TRL contain VLDL.  At the end of the measurement (1200 noon, or 18h 

after the last meal), the TRL fraction represents VLDL, a commonly made assumption by 

nearly all investigators in the field, even though some chylomicrons can still be present in the 

fasting state.  Using this information we modeled the 13C4-label in the TRL throughout this 

period to obtain production rate data for VLDL-TG.  On the other hand, we used the final 

fractional sources of palmitate at the end of the experiment to determine the contribution of 

FA sources from diet, adipose and de novo lipogenesis to VLDL-TG synthesis at steady state. 

 

Plasma FFA sources 

Sources of plasma FFA include 1) the adipose tissue, which supplies the majority of FFA in 

the fasting state, and 2) dietary fatty acids, liberated from chylomicrons undergoing lipolysis in 

the plasma via the enzyme lipoprotein lipase – the so-called spillover pathway (11) (38,39). 

 

The rate of appearance of adipose fatty acids (Adipose RaFFA) was calculated using 

standard dilution equations (24) which have been corrected for the presence of dietary 

spillover (as above) (11).  A standard set of assumptions was used for the calculations: (1) 

serum volume was 4.5% total body weight, (2) palmitate served as a marker for all other FA in 

the diet and plasma, and (3) the incorporation of the plasma FFA label into VLDL-TG was 
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used to calculate VLDL-TG production rate (11).  Fasting RaFFA was determined as the 

average between the 1030 and 1145 time points. 

 

The IV infusate was measured by GC and GC/MS to determine the FA composition and the 

amount of unlabeled FA present from the albumin solution used in the infusion (11).  The 

calculations for RaFFA were adjusted for unlabeled FA occurring in the infusate solution (11).  

The amount of FA arising from spillover of meal-fat was also determined to correct for 

contribution of these FA in order to determine FFA arising from adipose-TG lipolysis alone 

(11).  The composition of plasma FFA was determined by GC and the percentage of palmitate 

used to determine total RaFFA (11). 

 

The quantity of FFA arising from spillover was determined by the presence of the dietary label 

(U-13C-palmitate) found in the FFA pool (11).  Knowing these data, in combination with 

measured meal palmitate enrichments, unlabeled dietary fatty acids which have also spilled 

over to produce FFA were accounted for in the calculation of total dietary fatty acid spillover 

(11).  We have extended this method to calculate the rate of appearance of spillover fatty 

acids (RaSpillover) using the known rate of IV infusion of [1,2,3,4]-13C-palmitate and 

comparing the proportion of this tracer in the plasma FFA pool to that of the dietary fatty acids.  

This calculation is as follows: 
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where Ri13C4-Palm = infusion rate of [1,2,3,4]-13C-palmitate;  FFA13C4-Palm (%) = enrichment of 

[1,2,3,4]-13C-palmitate in the plasma FFA pool;  and FFASpillover (%) = proportion of total dietary-

derived fatty acids (labeled and unlabeled) in the plasma FFA pool.  Adipose RaFFA and 
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RaSpillover were determined at each time point from midnight to noon on day 2.  The 

composition of plasma FFA was determined by GC and the percentages of palmitate were 

used to determine total RaFFA, Adipose RaFFA (11), and RaSpillover.
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Appendix Figure 2.  Presence of 13C4-palmitate, infused IV, as it appears in more buoyant  
     (Sf >400) and less buoyant (Sf 60-400) TG-rich lipoproteins during the fasted and fed states 
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