Supplemental Table 1

Genotypes

D. melanogaster males:	D. melanogaster male genotype	Figure
WT	+ ; +/+ ; +/+	Fig. 1, Extended Data Fig. 1
fru ^{Gal4} >UAS-GFP	w- ; UAS-GFP/+ ; fru ^{Gal4} /+	Fig. 2a, Extended Data Fig. 2b-g
WT fru ^{Gal4} >UAS-GCaMP	w- ; UAS-GCaMP/cyo ; fru ^{Gal4} /tm6b	Fig. 3a-b, 4e, 4g (function), 5c, 5e-f, Extended Data Fig. 3e, 4i, 6d, 6h, 7c
ppk23 ^{-/-} fru ^{Gal4} >UAS-GCaMP	w+, Δppk23 ; UAS-GCaMP/+ ; fru ^{Gal4} /+	Fig. 3b, Extended Data Fig. 3e, 4i, 6c-d
ppk23-Gal4>UAS-GCaMP	w- ; UAS-GCaMP/cyo ; ppk23-Gal4/tm6b	Fig. 3d, Extended Data Fig. 3e, 3f
ppk23-Gal4	w- ; +/+ ; ppk23-Gal4/+	Fig. 3e
UAS-CsChrimson	w-, 20xUAS-IVS-CsChrimson.mVenus ; +/+ ; +/+	Fig. 3e
ppk23-Gal4>UAS-CsChrimson	w-, 20xUAS-IVS-CsChrimson.mVenus; +/+ ; ppk23-Gal4/+	Fig. 3e
<i>fru^{LexA}</i> > LexA-Op-GFP, SplitP1- Gal4>UAS-GCaMP	w- ; UAS-GCaMP6s, LexAOp-Tomato/SplitP1- Gal4 AD ; Fru-LexA/ SplitP1-Gal4 DBD	Fig. 4a, 4g (anatomy)
fru ^{LexA} > LexAOp-sPA-t2a-sPA-GFP	w- ; LexAop-SPA-T2A-SPA / LexAop-SPA-T2A- SPA; FruLexA/tm2	Fig. 5b, Extended Data Fig. 5a-c
mAL-Gal4>UAS-GCaMP	w- ; UAS-GCaMP/+ ; R25E04-Gal4/+	Fig. 5d, Extended Data Fig. 6e, 6g
ppk23-Gal4>UAS-GFP	w- ; UAS-GFP/cyo ; ppk23-Gal4/tm6b	Extended Data Fig. 3a-c
P1-Gal4>UAS-GCaMP	w-, UAS-CsChrimson ; +/+ ; R71G01-Gal4/+	Extended Data Fig. 4a-b
<i>fru^{LexA}</i> > LexA-Op-GCaMP, P1- Gal4>UAS-Tomato	w- ; UAS-tdTomato/LexAOp-GCaMP6s ; R71G01-Gal4/fru-LexA	Extended Data Fig. 4g
WT P1-Gal4 > UAS-GCaMP	w- ; UAS-GCaMP/cyo ; 71G01-Gal4/tm6b	Extended Data Fig. 4h
ppk23 ^{-/-} P1-Gal4 >UAS-GCaMP	w+, Δppk23 ; UAS-GCaMP/+ ; 71G01-Gal4/+	Extended Data Fig. 4h
fru ^{LexA} > LexA-Op-GCaMP, vAB3- Gal4>LIAS-Tomato	w-; UAS-tdTomato/LexAOp-GCaMP6s ;	Extended Data Fig. 6a
WT vAB3-Gal4 > UAS-GCaMP	w-; UAS-GCaMP6s/cyo; AbdB-Gal4/tm2	Extended Data Fig. 6a-b
ppk23 ^{-/-} vAB3-Gal4 > UAS-GCaMP	w+, Δppk23; UAS-GCaMP6s/+; AbdB-Gal4/+	Extended Data Fig. 6b

D. simulans males:	D. simulans male genotype	Figure
WT	W+; +/+ ; +/+	Fig. 1, 2b, Extended Data Fig. 1
Gr32a ^{-/-}	w+;ΔGr32a/ΔGr32a ; +/+	Fig. 1, Extended Data Fig. 1
ppk23 -^-	w+, Δppk23 ; +/+ ; +/+	Fig. 1, Extended Data Fig. 1
fru ^{GFP}	w+; +/+ ; fru ^{GFP} /+	Fig. 2a, 4a, 4g (anatomy), 5b, Extended Data Fig. 2a-g, 5a-d
fru ^{-/-}	<i>w-;</i> +/+ <i>;</i> ∆fru/∆fru	Fig. 2b, Extended Data Fig. 2h
fru ^{Gal4}	w+; +/+ ; fru ^{Gal4} /+	Fig. 2c, Extended Data Fig. 2a
fru ^{Gal4} > UAS-CsChrimson	w+ ; +/+ ; 20xUAS-IVS-CsChrimson.tdTomato (2039)/ fru ^{Gal4}	Fig. 2c
WT fru ^{Gal4} > UAS-GCaMP	w- ; +/+ ; <i>fru ^{Gal4}/</i> UAS-GCaMP6s (2186)	Fig. 3a, 3c, 4f, 4h (function), 5c, 5e-f, Extended Data Fig. 3e, 4j, 6c-d, 6h, 7a-g
ppk23 ^{-/-} fru ^{Gal4} >UAS-GCaMP	w+,	Fig. 3c, Extended Data Fig. 3e, 4j

ppk23-Gal4>UAS-GCaMP	w- ; ppk23-Gal4 (2176)/+; UAS-GCaMP (2186)/+	Fig. 3d, Extended Data Fig. 3a-f
ppk23-Gal4	w+ ; ppk23-Gal4 (2176)/+; +/+	Fig. 3e
UAS-CsChrimson	w+; +/+ ; 20xUAS-IVS-CsChrimson.tdTomato (2039)	Fig. 3e
ppk23-Gal4>UAS-CsChrimson	w+ ; ppk23-Gal4 (2176)/+ ; 20xUAS-IVS- CsChrimson.tdTomato (2039)/+	Fig. 3e
P1-Gal4> UAS-CsChrimson	w+ ; R71G01-Gal4/+; 20xUAS-IVS- CsChrimson.mVenus/+	Fig. 4b, 4c, Extended Data Fig. 4a, 4c-f
UAS-CsChrimson	w+ ; +/+; UAS-CsChrimson.mVenus/+	Extended Data Fig. 4d-f, 6f
mAL-Gal4>UAS-GCaMP	w- ; R25E04-Gal4 (2176)/+ ; UAS-GCaMP6s (2186)/+	Fig. 5d, Extended Data Fig. 6e, 6g
mAL-Gal4>UAS-CsChrimson	w+ ; R25E04-Gal4 (2176)/+ ; UAS- CsChrimson.mVenus/+	Extended Data Fig. 6f
mAL-Gal4	w+ ; R25E04-Gal4 (2176)/+ ; +/+	Extended Data Fig. 6f

Landing Sites: attP 2178 (3R), attP 2176 (2L), attP 2186 (3R) and attP 2039 (3L)

D. melanogaster, D. simulans, D. sechellia, D. erecta and D. ananassae females: always wild type (+/+ ; +/+ ; +/+)

Sample Size and Statistics

Figures 1b, d and e

Analysis (1b, d): Courtship Preference = (time spent courting *D. simulans* (sim) female - time spent courting *D. melanogaster* (mel) female)/(total time spent courting)

Analysis (1e): Courtship Preference = (time spent courting *D. simulans* female perfumed with ethanol (+EtOH) - time spent courting *D. simulans* female perfumed with 7,11-HD (7,11-HD))/(total time spent courting)

Null hypothesis: The male spends equal time courting both females thus exhibiting a preference index of zero All are biological replicates assessed with a two-tailed test

Figure	Species	Condition	Targets	Sample Size (# males tested)	Statistical Test	P-value
1b	mel WT	+ tarsi	mel v sim	13	One-sample t-test	<0.0001
	mel WT	- tarsi	mel v sim	17	One-sample t-test	0.9303
	sim WT	+ tarsi	mel v sim	17	One-sample t-test	0.0009
	sim WT	- tarsi	mel v sim	17	One-sample t-test	0.4521
1d	sim	wild type	mel v sim	19	One-sample t-test	<0.0001
	sim	Gr32a	mel v sim	20	One-sample t-test	<0.0001
	sim	ppk23 -⁄-	mel v sim	20	One-sample t-test	0.9931
1e	sim	wild type	EtOH v 7,11-HD	19	One-sample t-test	<0.0001
	sim	ppk23 -/-	EtOH v 7,11-HD	19	One-sample t-test	0.534

Figures 1c

Analysis: Courtship Index = total time male courts a female / total time of the assay Null hypothesis: The courtship index is equivalent for all groups All are biological replicates assessed with a two-tailed test Different letters represent significant differences in courtship behavior

Figure	Genotype	Target female	#	Sample Size (# males tested)	Statistical Test	Multiple comparisons test	Adjusted P-value	Summary	Group
1d	sim wild type	sim	1	25		1v2	>0.9999	ns	1 = A
	sim <i>Gr</i> 32a ^{-/-}	sim	2	24		1v3	>0.9999	ns	2 = A
	sim <i>ppk2</i> 3 -⁄-	sim	3	24	Kruskal- Wallis	1v4	<0.0001	****	3 = A
	sim wild type	mel	4	24	test P<0 0001	1v5	<0.0001	****	4 = B
	sim <i>Gr</i> 32a ⁻∕-	mel	5	24		1v6	>0.9999	ns	5 = B
	sim <i>ppk</i> 23 -⁄-	mel	6	24		2v3	>0.9999	ns	6 = A
						2v4	<0.0001	****	
						2v5	<0.0001	****	
						2v6	0.5992	ns	
						3v4	0.0002	***	
						3v5	<0.0001	****	
						3v6	>0.9999	ns	
						4v5	>0.9999	ns	
						4v6	0.0012	**	
						5v6	0.0004	***	

Figure 2b

Analysis: Courtship Preference = (time spent courting *D. simulans* (sim) female-time spent courting *D. melanogaster* (mel) female)/(total time spent courting)

Null hypothesis: The male spends equal time courting both females thus exhibiting a preference index of zero All are biological replicates assessed with a two-tailed test

Figure	Species	Condition	Target Female	Sample Size (# males tested)	Statistical Test	One-tailed or Two-tailed	P-value
Fig. 2b	sim	wild type	sim v mel	16	One-sample t-test	Two-tailed	<0.0001
	sim	fru -/-	sim v mel	18	One-sample t-test	Two-tailed	0.5644

Figure 2c

Analysis: Courtship Behavior Index = fraction of time male is displaying courtship behavior

Null hypothesis Wilcoxon: Fraction of time spent displaying courtship behaviors in light and dark is equal All are biological replicates assessed with a two-tailed test

Figure	Genotype	Target	Sample Size (# males tested)	Statistical Test	Comparison	P-value
Fig. 2c	fru ^{Gal4}	n/a	5	Wilcoxon matched-pairs signed rank test	with light v without light	0.999
	fru ^{Gal4} >UAS- CsChrimson	n/a	5	Wilcoxon matched-pairs signed rank test	with light v without light	0.034

Figures 3b-d, 4e, 4f

Analysis: Average peak Δ F/F response to a female stimulus measured in the VNC (3b-d) or LPC (4e, f) per male Null hypothesis: Responses to *D. simulans* (sim) female and *D. melanogaster* (mel) female are equal All are biological replicates assessed with a two-tailed test

Figure	Species	Genotype	Stimulus	Sample Size (# males imaged)	Statistical comparison	Statistical Test	P-value
--------	---------	----------	----------	---------------------------------	------------------------	------------------	---------

3b	mel	WT fru ^{Ga/4} > UAS-GCaMP	mel and sim females	14	mel v sim females	Wilcoxon matched-pairs signed rank test	0.0002
	mel	ppk23 ^{./-} fru ^{Gal4} > UAS-GCaMP	mel and sim females	6	mel v sim females	Wilcoxon matched-pairs signed rank test	>0.9999
3с	sim	WT fru ^{Gal4} > UAS-GCaMP	mel and sim females	12	mel v sim females	Wilcoxon matched-pairs signed rank test	0.005
	sim	ppk23 ^{:/-} fru ^{Gal4} > UAS-GCaMP	mel and sim females	6	mel v sim females	Wilcoxon matched-pairs signed rank test	0.6875
3d	mel	ppk23-Gal4> UAS-GCaMP	mel and sim females	6	mel v sim females	Wilcoxon matched-pairs signed rank test	0.0078
	sim	ppk23-Gal4> UAS-GCaMP	mel and sim females	6	mel v sim females	wilcoxon matched-pairs signed rank test	0.0313
4e	mel	fru ^{Gal4} > UAS-GCaMP	mel and sim females	9	mel v sim females	Paired t-test	<0.0001
4f	sim	fru ^{Gal4} > UAS-GCaMP	mel and sim females	12	mel v sim females	Paired t-test	<0.0001

Figures 3e Analysis: Courtship Index = total time male courts a female / total time of the assay Null hypothesis: The courtship index is equivalent for all groups All are biological replicates assessed with a two-tailed test Different letters represent significant differences in courtship behavior

Figure	Species	Genotype	Target female	#	Sample Size (# males tested)	Statistical Test	Multiple comparisons test	Adjusted P-value	Summary	Group
3e	mel	ppk23-Gal4	mel	1	16		1v2	0.4957	ns	1 = A
	mel	UAS-CsChrimson	mel	2	17	Kruskal- Wallis test	1v3	<0.0001	****	2 = A
	mel	ppk23-Gal4> UAS-CsChrimson	mel	3	17	F < 0.000 I	2v3	0.0037	**	3 = B
	sim	ppk23-Gal4	sim	1	24		1v2	>0.9999	ns	1 = A
	sim	UAS-CsChrimson	sim	2	21	Kruskal- Wallis test	1v3	<0.0001	****	2 = A
	sim	ppk23-Gal4> UAS-CsChrimson	sim	3	23	1 -0.0001	2v3	<0.0001	****	3 = B

Figures 4b

Analysis: Courtship Index = total time male courts a female / total time of the assay Null hypothesis: The courtship index is equivalent for all groups All are biological replicates assessed with a two-tailed test

Different letters represent significant differences in courtship behavior

Figure	Species	Genotype	Target	#	Sample Size (# males tested)	Statistical Test	Multiple comparisons test	Adjusted P-value	Summary	Group
4b	sim	71G01-Gal4> UAS-CsChrimson	magnet: pre- stimulation	1	18		1v2	<0.0001	****	1 = A
	sim	71G01-Gal4> UAS-CsChrimson	magnet: during stimulation	2	18	Kruskal- Wallis test P<0.0001	1v3	0.0039	**	2 = B
	sim	71G01-Gal4> UAS-CsChrimson	magnet: post- stimulation	3	18		2v3	0.0014	**	3 = C
	sim	71G01-Gal4> UAS-CsChrimson	sim female: pre- stimulation	1	18		1v2	<0.0001	***	1 = A
	sim	71G01-Gal4> UAS-CsChrimson	sim female: during stimulation	2	18	Kruskal- Wallis test P<0.0001	1v3	0.0001	***	2 = B
	sim	71G01-Gal4> UAS-CsChrimson	sim female: post- stimulation	3	18		2v3	0.0101	*	3 = C
	sim	71G01-Gal4> UAS-CsChrimson	mel female: pre- stimulation	1	20		1v2	<0.0001	****	1 = A
	sim	71G01-Gal4> UAS-CsChrimson	mel female: during stimulation	2	20	Kruskal- Wallis test P<0.0001	1v3	0.0005	***	2 = B
	sim	71G01-Gal4> UAS-CsChrimson	mel female: post- stimulation	3	20		2v3	0.0011	**	3 = C

Figures 4c

Analysis: Courtship Index = total time male courts a female / total time of the assay Null hypothesis: The distribution of courtship indices towards a *D. simulans* (sim) female and *D. melanogaster* (mel) female will be identical

All are biological replicates assessed with a two-tailed test

Figure	Species	Genotype	Light Stimulation	Target Female	Sample Size (# males tested)	Statistical Test	P value
4c	sim	71G01-Gal4> UAS-CsChrimson	Dim	sim	11	Mann	>0.0000
	sim	71G01-Gal4> UAS-CsChrimson	Dim	mel	11	Whitney	~0.9999
	sim	71G01-Gal4> UAS-CsChrimson	0.75 uW/mm2	sim	11	Mann	0 4854
	sim	71G01-Gal4> UAS-CsChrimson	0.75 uW/mm2	mel	11	Whitney	0.4004
	sim	71G01-Gal4> UAS-CsChrimson	1 uW/mm2	sim	11	Mann	0.0005
	sim	71G01-Gal4> UAS-CsChrimson	1 uW/mm2	mel	11	Whitney	
	sim	71G01-Gal4> UAS-CsChrimson	1.25 uW/mm2	sim	11	Mann	-0.0001
	sim	71G01-Gal4> UAS-CsChrimson	1.25 uW/mm2	mel	11	Whitney	<0.0001
	sim	71G01-Gal4> UAS-CsChrimson	1.5 uW/mm2	sim	11	Mann	<0.0004
	sim	71G01-Gal4> UAS-CsChrimson	1.5 uW/mm2	mel	11	Whitney	<0.0001
	sim	sim 71G01- Gal4>UAS- CsChrimson	2 uW/mm2	sim	11	Mann Whitney	<0.0001

sim	sim 71G01- Gal4>UAS- CsChrimson	2 uW/mm2	mel	11		
sim	sim 71G01- Gal4>UAS- CsChrimson	Bright	sim	11	Mann	<0.0001
sim	sim 71G01- Gal4>UAS- CsChrimson	Bright	mel	11	Whitney	<0.0001

Figures 4g, h Analysis: Peak Δ F/F response to a *D. melanogaster* female stimulus per male per tap Sample size is 2-3 technical replicates per 6 biological replicates

Figure	Species	Genotype	Stimulus	Sample Size (# taps)	Statistical Test	Slope ± SE	95% Confidence Intervals of Slope	Goodness of Fit
4g	mel	fru ^{Gal4} >UAS-GCaMP	mel females	17	Linear Regression	0.4114 ± 0.1424	0.1079 to 0.7149	0.3575
4f	sim	fru ^{Gal4} >UAS-GCaMP	mel females	21	Linear Regression	-0.002324 ± 0.06474	-0.1374 to 0.1327	0.0914

Figures 5c, d

Analysis: Average peak Δ F/F response to a female stimulus per male Null hypothesis: Responses to *D. simulans* (sim) female and *D. melanogaster* (mel) female are equal All are biological replicates assessed with a two-tailed test

Figure	Species	Genotype	Stimulus	Sample Size (# males imaged)	Statistical comparison	Statistical Test	P- value
5c	mel	fru ^{Gal4} > UAS-GCaMP	mel and sim females	7	mel v sim female	Paired t-test	0.0031
	sim	fru ^{Gal4} > UAS-GCaMP	mel and sim females	7	mel v sim female	Paired t-test	0.0093
5d	mel	25E04-Gal4> UAS-GCaMP	mel and sim females	6	mel v sim female	Paired t-test	0.005
	sim	25E04-Gal4> UAS-GCaMP	mel and sim females	6	mel v sim female	Paired t-test	0.0059

Figures 5f

Analysis: Average peak Δ F/F response to vAB3 stimulation per male

Null hypothesis: Responses in P1 neurons are equal in D. simulans (sim) and D. melanogaster (mel) males All are biological replicates assessed with a two-tailed test

Figure	Species	Genotype	Condition	Sample Size (# of males imaged)	Statistical comparison	Statistical Test	P-value
5f	mel	fru ^{Gal4} >UAS-GCaMP	mAL intact (+)	7	P1 mel male	Unpaired t-test with	0.0000
	sim	fru ^{Gal4} >UAS-GCaMP	mAL intact (+)	7	v P1 sim male	Welch's correction	0.0003
	mel	fru ^{Gal4} >UAS-GCaMP	mAL severed (-)	8	P1 mel male	Unpaired t-test with	0.0219
	sim	fru ^{Gal4} >UAS-GCaMP	mAL severed (-)	8	v P1 sim male	Welch's correction	0.0318

Extended Data Figure 1e

Analysis: Courtship Index = total time male courts a female / total time of the assay Null hypothesis: The courtship index is equivalent for all groups All are biological replicates assessed with a two-tailed test

Target females: *D. simulans* (sim), *D. sechellia* (sech), *D. melanogaster* (mel), *D. erecta* (erc) and *D. ananassae* (ana) Different letters represent significant differences in courtship behavior

Figure	Genotype	Target female	#	Sample Size (# males tested)	Statistical Test	Multiple comparisons test	Adjusted P-value	Summary	Group
Ex. Data	sim wild type	sim	1	25	Kruskal-	1v2	>0.9999	ns	1 = A
Fig. 1e	sim <i>Gr</i> 32a⁻⁄⁻	sim	2	24	Wallis test	1v3	0.4081	ns	2 = A
	sim <i>ppk23</i> -∕-	sim	3	24	P=0.0515	2v3	0.0572	ns	3 = A
	sim wild type	sech	1	10	Kruskal-	1v2	>0.9999	ns	1 = A
	sim <i>Gr</i> 32a ^{-/-}	sech	2	13	Wallis test	1v3	0.0438	*	2 = A
	sim <i>ppk23</i> ^{-/-}	sech 3 13	13	P=0.0022	2v3	0.0026	**	3 = B	
	sim wild type	mel	1	25	Kruskal-	1v2	>0.9999	ns	1 = A
	sim <i>Gr</i> 32a ^{-/-}	mel	2	24	Wallis test	1v3	0.0001	***	2 = A
	sim <i>ppk23^{-/-}</i>	mel	3	24	P<0.0001	2v3	<0.0001	****	3 = B
	sim wild type	erc	1	25	Kruskal-	1v2	>0.9999	ns	1 = A
	sim <i>Gr</i> 32a ^{-/-}	erc	2	24	Wallis test	1v3	0.0037	**	2 = A
	sim <i>ppk23^{-/-}</i>	erc 2 24 erc 3 24	24	P=0.0003	2v3	0.0008	***	3 = B	
	sim wild type	ana	1	17	Kruskal-	1v2	>0.9999	ns	1 = A
	sim <i>Gr</i> 32a ^{-/-}	- a ^{-/-} ana 2 9	9	Wallis test	1v3	0.0033	**	2 = A	
	sim <i>ppk23</i> ^{-/-}	ana	3	16	P=0.0022	2v3	0.034	*	3 = B

Extended Data Figure 2h

Analysis 2h: Chaining Index = fraction of time when more than three males were simultaneously courting Null hypothesis unpaired t-test: The male spends equal time chaining All are biological replicates assessed with a two-tailed test

Figure	Genotype	Target	Sample Size (# males tested)	Statistical Test	Comparison	P-value
Ex Data Fig. 2h	sim wild type	8 wild type males	8	Unpaired t-test	WT v	0.0004
	sim <i>fru</i> -/-	8 <i>fru</i> ^{-/-} males	8	two-tailed	males	0.0004

Extended Data Figure 3a

Analysis: counting number of ppk23+ soma are present in the distal three tarsal segments of the male's foreleg tarsi Null hypothesis unpaired t-test: Males have equal number of soma

All	are	bio	logical	repli	icates	assessed	with a	a t	wo-	tailed	test	
-----	-----	-----	---------	-------	--------	----------	--------	-----	-----	--------	------	--

Figure	Species	Genotype	Sample Size (# males examined)	Statistical Test	Comparison	P-value
Ex Data Fig. 3a	mel	ppk23-Gal4> UAS-GFP	6	Unpaired t-test	# ppk23+	
	sim	ppk23-Gal4> UAS- GCaMP	6	with equal SD, two-tailed	soma in mel v sim males	0.7014

Extended Data Figure 3e

Analysis: peak $\Delta F/F$ response to individual taps by a male

Null hypothesis: Responses are equivalent for all groups

2-3 technical replicates per several biological replicates assessed with a two-tailed test

Different letters represent significant differences in courtship behavior

Figure	Species	Genotype	Female Stimulus	#	Sample Size (# taps)	Statistical Test	Multiple comparisons test	Adjusted P-value	Summary	Group
Ex	mel	WT fru ^{Gal4} > UAS-GCaMP	mel	1	19		1v2	0.0002	***	1 = A
Data Fig 3e	mel	WT fru ^{Gal4} > UAS-GCaMP	sim	2	17	One-way	1v3	<0.0001	****	2 = B
	mel	ppk23 ^{-/-} fru ^{Gal4} > UAS-GCaMP	mel	3	17	P<0.0001	1v4	<0.0001	***	3 = C
	mel	ppk23 ^{-/-} fru ^{Gal4} > UAS-GCaMP	sim	4	18		2v3	0.0004	***	4 = C
							2v4	0.0001	***	
							3v4	0.9932	ns	
	sim	WT fru ^{Gal4} > UAS-GCaMP	mel	1			1v2	<0.0001	****	1 = A
	sim	WT fru ^{Gal4} > UAS-GCaMP	sim	2		One-way	1v3	<0.0001	***	2 = B
	sim	ppk23 ^{-/-} fru ^{Gal4} > UAS-GCaMP	mel	3		ANOVA P<0.0001	1v4	<0.0001	***	3 = C
	sim	ppk23 ^{./-} fru ^{Gal4} > UAS-GCaMP	sim	4			2v3	0.00124	**	4 = C
							2v4	0.00232	**	
							3v4	0.997	ns	
	mel	ppk23-Gal4> UAS-GCaMP	mel	1	21		1v2	0.0001	***	1 = A
	mel	ppk23-Gal4> UAS-GCaMP	sim	2	21	One-way ANOVA	1v3	0.2301	ns	2 = B
	sim	ppk23-Gal4> UAS-GCaMP	mel	3	18	P<0.0001	1v4	0.0247	*	3 = A
	sim	ppk23-Gal4> UAS-GCaMP	sim	4	17		2v3	<0.0001	****	4 = B
							2v4 3v4	0.5184 <0.0001	NS ****	

Extended Data Figure 3f Analysis: Average peak $\Delta F/F$ response to bristle stimulation per male Null hypothesis: Responses are equivalent for all groups All are biological replicates assessed with a two-tailed test

Figure	Species	Genotype	Chemical Stimulus	Sample Size (# males imaged)	Statistical comparison	Statistical Test	P- value
Ex Data Fig 3f	mel	ppk23-Gal4> UAS-GCaMP	7,11-HD	5	Soma A v B	Paired t-test	0.0303
	mel	ppk23-Gal4> UAS-GCaMP	EtOH	5	Soma A v B	Paired t-test	0.099
	sim	ppk23-Gal4> UAS-GCaMP	7,11-HD	5	Soma A v B	Paired t-test	0.0218
	sim	ppk23-Gal4> UAS-GCaMP	EtOH	5	Soma A v B	Paired t-test	0.2075

mel	ppk23-Gal4> UAS-GCaMP	7,11-HD	5		Unpaired t-	0.0004
sim	ppk23-Gal4> UAS-GCaMP	7,11-HD	5	mei v sim	test	0.2834

Extended Data Figure 4b-f, 6f Analysis: Courtship Index = total time male courts a female / total time of the assay Null hypothesis: The courtship index is equivalent for all groups All are biological replicates assessed with a two-tailed test

Figure	Species	Genotype	Target female	#	Sample Size (# males tested)	Statistical Test	Multiple comparisons test	Adjusted P-value	Summary	Group
Ex Data Fig. 4b	mel	71G01-Gal4> UAS-CsChrimson	magnet: pre- stimulation	1	6		1v2	<0.0001	****	1 = A
	mel	71G01-Gal4> UAS-CsChrimson	magnet: during stimulation	2	6	Kruskal- Wallis test P<0.0001	1v3	0.0428	*	2 = B
	mel	71G01-Gal4> UAS-CsChrimson	magnet: post- stimulation	3	6		2v3	0.0428	*	3 = C
Ex Data Fig. 4c	sim	71G01-Gal4> UAS-CsChrimson	magnet: 0mm/s	1	11		1v2	0.5369	ns	1 = A
	sim	71G01-Gal4> UAS-CsChrimson	magnet: 3 mm/s	2	7		1v3	<0.0001	****	2 = A
						One-way				
	sim	71G01-Gal4> UAS-CsChrimson	magnet: 6 mm/s	3	11	ANOVA P<0.0001	1v4	<0.0001	****	3 = B
	sim	71G01-Gal4> UAS-CsChrimson	magnet: 10 mm/s	4	11		1v5	<0.0001	****	4 = B
	sim	71G01-Gal4> UAS-CsChrimson	magnet: 20 mm/s	5	11		2v3	0.0003	***	5 = B
							2v4	<0.0001	****	
							2v5	<0.0001	****	
							3v4	0.6909	ns	
							3v5	0.2097	ns	
							4v5	0.9076	ns	
Ex Data Fig. 4d	sim	71G01-Gal4	magnet: during stimulation	1	5		1v2	>0.9999	ns	1 = A
	sim	UAS-CsChrimson	magnet: during stimulation	2	5	Kruskal- Wallis test P<0.0001	1v3	0.0029	**	2 = B
	sim	71G01-Gal4> UAS-CsChrimson	magnet: during stimulation	3	18		2v3	0.0017	**	3 = C
	sim	71G01-Gal4	magnet: post- stimulation	1	5	Kruskal- Wallis	1v2	>0.9999	ns	1 = A
	sim	UAS-CsChrimson	magnet: post- stimulation	2	5	test P=0.0002	1v3	0.0173	*	2 = A

	sim	71G01-Gal4> UAS-CsChrimson	magnet: post- stimulation	3	18		2v3	0.0011	**	3 = B
Ex Data Fig. 4e	sim	71G01-Gal4	sim female: during stimulation	1	12		1v2	>0.9999	ns	1 = A
	sim	UAS-CsChrimson	sim female: during stimulation	2	12	Kruskal- Wallis test P<0.0001	1v3	<0.0001	****	2 = A
	sim	71G01-Gal4> UAS-CsChrimson	sim female: during stimulation	3	20		2v3	<0.0001	****	3 = B
	sim	71G01-Gal4	sim female: post- stimulation	1	12		1v2	>0.9999	ns	1 = A
	sim	UAS-CsChrimson	sim female: post- stimulation	2	12	Kruskal- Wallis test P<0.0001	1v3	<0.0001	****	2 = A
	sim	71G01-Gal4> UAS-CsChrimson	sim female: post- stimulation	3	20		2v3	<0.0001	****	3 = B
Ex Data Fig. 4f	sim	71G01-Gal4	mel female: during stimulation	1	11		1v2	>0.9999	ns	1 = A
	sim	UAS-CsChrimson	mel female: during stimulation	2	12	Kruskal- Wallis test P<0.0001	1v3	<0.0001	****	2 = A
	sim	71G01-Gal4> UAS-CsChrimson	mel female: during stimulation	3	18		2v3	<0.0001	***	3 = B
	sim	71G01-Gal4	mel female: post- stimulation	1	11		1v2	>0.9999	ns	1 = A
	sim	UAS-CsChrimson	mel female: post- stimulation	2	12	Kruskal- Wallis test P<0.0001	1v3	<0.0001	****	2 = A
	sim	71G01-Gal4> UAS-CsChrimson	mel female: post- stimulation	3	18		2v3	<0.0001	***	3 = B
Ex Data Fig. 6f	sim	25E04-Gal4	sim female	1	19	K	1v2	>0.9999	ns	1 = A
	sim	UAS-CsChrimson	sim female	2	17	Kruskal- Wallis test P<0.0001	1v3	0.0081	**	2 = A
	sim	25E04-Gal4> UAS-CsChrimson	sim female	3	19		2v3	0.0006	***	3 = B

Extended Data Figure 4h-j, 6b, 6d, 6g Analysis: peak Δ F/F response to individual taps by a male Null hypothesis: Responses are equivalent for all groups 2-3 technical replicates per biological replicate assessed with a two-tailed test

Figure	Species	Genotype	Female Stimulus		Sample Size (# of taps)	Statistical Test	Dunn's multiple comparisons test	Adjusted P-value	Summary	Group
Ex	mel	WT 71G01-Gal4> UAS-GCaMP	mel	1	9		1v2	0.0012	**	1 = A
Fig. 4h	mel	WT 71G01-Gal4> UAS-GCaMP	sim	2	9	One-way	1v3	0.0003	***	2 = B
	mel	ppk23 ^{-/-} 71G01-Gal4> UAS-GCaMP	mel	3	9	P<0.0001	1v4	0.0006	***	3 = B
	mel	ppk23 [∿] 71G01-Gal4> UAS-GCaMP	sim	4	9		2v3	0.9538	ns	4 = B
							2v4 3v4	0.9937 0.9938	ns ns	
Ex Data	mel	WT fru-Gal4> UAS-GCaMP	mel	1	12		1v2	0.0012	**	1 = A
Fig. 4i	mel	WT fru-Gal4> UAS-GCaMP	sim	2	12	One-way	1v3	<0.0001	****	2 = B
	mel	ppk23 [≁] fru-Gal4> UAS-GCaMP	mel	3	12	ANOVA P<0.0001	1v4	0.0003	***	3 = B
	mel	ppk23 ^{√-} fru-Gal4> UAS-GCaMP	sim	4	12		2v3	0.8855	ns	4 = B
							2v4 3v4	0.9907 0.9705	ns ns	
								0.0700		
Ex Data Fig. 4j	sim	WT fru-Gal4> UAS-GCaMP	mel	1	21		1v2	<0.0001	****	1 = A
	sim	WT fru-Gal4> UAS-GCaMP	sim	2	21	One-way ANOVA P<0.0001	1v3	<0.0001	****	2 = B
	sim	ppk23 [≁] fru-Gal4> UAS-GCaMP	mel	3	24		1v4	<0.0001	****	3 = C
	sim	ppk23 [≁] fru-Gal4> UAS-GCaMP	sim	4	24		2v3	0.0002	***	4 = C
							2v4	0.0002	***	
							3v4	0.9271	ns	
Ex Data Fig.6b	mel	WT AbdB-Gal4> UAS-GCaMP	mel	1	9		1v2	0.0041	**	1 = A
	mel	WT AbdB-Gal4> UAS-GCaMP	sim	2	9	Kruskal- Wallis	1v3	0.0004	***	2 = B
	mel	ppk23 ^{-/-} AbdB-Gal4> UAS-GCaMP	mel	3	9	P=0.0002	1v4	0.0056	**	3 = B
	mel	ppk23 ^{-/-} AbdB-Gal4> UAS-GCaMP	sim	4	9		2v3	>0.9999	ns	4 = B
							2v4 3v4	>0.9999 >0.9999	ns ns	
Ex Data Fig.6d	mel	WT fru-Gal4> UAS-GCaMP	mel	1	18	One-way	1v2	<0.0001	****	1 = A
i ig.ou	mel	WT fru-Gal4> UAS-GCaMP	sim	2	16	ANUVA P<0.0001	1v3	<0.0001	****	2 = B

	mel	ppk23 [≁] fru-Gal4> UAS-GCaMP	mel	3	18		1v4	<0.0001	****	3 = B
	mel	ppk23 ^{-/-} fru-Gal4> UAS-GCaMP	sim	4	18		2v3	0.4977	ns	4 = B
							2v4	0.3786	ns	
							3v4	0.9967	ns	
	sim	WT fru-Gal4> UAS-GCaMP	mel	1	22		1v2	<0.0001	***	1 = A
	sim	WT fru-Gal4> UAS-GCaMP	sim	2	21	One-way ANOVA	1v3	<0.0001	****	2 = B
	sim	ppk23 [≁] fru-Gal4> UAS-GCaMP	mel	3	18	P<0.0001	1v4	<0.0001	****	3 = B
	sim	ppk23 ^{-/-} fru-Gal4> UAS-GCaMP	sim	4	18		2v3	0.858	ns	4 = B
							2v4	0.8457	ns	
							3v4	>0.9999	ns	
Ex Data	mel	25E04-Gal4> UAS-GCaMP	mel	1	19		1v2	0.0001	***	1 = A
Fig. 6g	mel	25E04-Gal4> UAS-GCaMP	sim	2	15	One-way ANOVA	1v3	0.6114	ns	2 = B
	sim	25E04-Gal4> UAS-GCaMP	mel	3	15	P<0.0001	1v4	<0.0001	****	3 = A
	sim	25E04-Gal4> UAS-GCaMP	sim	4	15		2v3	0.0104	*	4 = B
							2v4	0.2239	ns	
							3v4	<0.0001	****	

Extended Data Figures 6c, h Analysis: Average peak Δ F/F response to a female stimulus per male Null hypothesis: Responses to *D. simulans* (sim) female and *D. melanogaster* (mel) female are equal All are biological replicates assessed with a two-tailed test

Figure	Species	Genotype	Female Stimulus	Sample Size (# of males imaged)	Statistical comparison	Statistical Test	P-value	
Ex Data Fig.6c	mel	ppk23 ^{/-} fru-Gal4> UAS-GCaMP	mel	6	mel female			
	ppk23 ^{-/-} mel fru ^{Gal4} > UAS-GCaMP		sim	6	v sim female	Paired t-test	0.7189	
	sim	ppk23 ^{-/-} fru ^{Gal4} > UAS-GCaMP	mel	5	mel female v	Paired t-test	0.9361	
	ppk23 ^{2/-} sim fru ^{Gal4} > UAS-GCaMP		sim	5	sim female			
Ex Data Fig. 6h	mel	fru ^{Gal4} >UAS-GCaMP pre-PTX injection	VAS-GCaMP TX injection mel	6	mel female pre v	Paired t-test	0.0089	
	mel	mel fru ^{Gal4} >UAS-GCaMP post-PTX injection		6	post PTX			
	mel	fru ^{Gal4} >UAS-GCaMP pre-PTX injection	sim	6	sim female pre v	Paired t-test	0.7516	
	mel fru ^{Gal4} >UA post-PT2	fru ^{Gal4} >UAS-GCaMP post-PTX injection	sim	6	post PTX		0010	

sim	fru ^{Gal4} >UAS-GCaMP pre-PTX injection	mel	6	mel female pre v post PTX	Deiredttert	0.0004
sim	fru ^{Gal4} >UAS-GCaMP post-PTX injection	mel	6		Palled t-lest	0.0001
sim	fru ^{Gal4} >UAS-GCaMP pre-PTX injection	sim	6	sim female	Daired t toat	0.2620
sim	fru ^{Gal4} >UAS-GCaMP post-PTX injection	sim	6	post PTX	Palled t-lest	0.3620

Extended Data Figures 7c, e, Analysis: Average peak Δ F/F response to vAB3 stimulation in a given neural population per male Null hypothesis: Responses across different conditions are equal All are biological replicates assessed with a two-tailed test

Figure	Species	Genotype	Neural Population Imaged	#	Sample Size (# males imaged)	Statistical Test	Multiple comparisons test	Adjusted P-value	Summary	Group
Ex	mel	fru ^{Gal4} >UAS-GCaMP pre-severing	vAB3	1	6		1v2	>0.9999	ns	1 = A
Data Fig. 7c	mel	fru ^{Gal4} >UAS-GCaMP mock severing	vAB3	2	6	Kruskal- Wallis test P=0.0004	1v3	0.0043	**	2 = A
	mel	fru ^{Gal4} >UAS-GCaMP vAB3 severing	vAB3	3	6		2v3	0.0242	*	3 = B
	mel	fru ^{Gal4} >UAS-GCaMP pre-severing	mAL	1	6		1v2	>0.9999	ns	1 = A
	mel	fru ^{Gal4} >UAS-GCaMP mock severing	mAL	2	6	Kruskal- Wallis test P=0 0003	1v3	0.0062	**	2 = A
	mel	fru ^{Gal4} >UAS-GCaMP vAB3 severing	mAL	3	6	1 0.0000	2v3	0.0175	*	3 = B
	sim	fru ^{Gal4} >UAS-GCaMP pre-severing	vAB3	1	7		>0.9999	>0.9999	ns	1 = A
	sim	fru ^{Gal4} >UAS-GCaMP mock severing	vAB3	2	7	Kruskal- Wallis test P=0.0005	0.0074	0.0043	**	2 = A
	sim	fru ^{Gal4} >UAS-GCaMP vAB3 severing	vAB3	3	7		0.0148	0.0242	*	3 = B
	sim	fru ^{Gal4} >UAS-GCaMP pre-severing	mAL	1	7		1v2	>0.9999	ns	1 = A
	sim	fru ^{Gal4} >UAS-GCaMP mock severing	mAL	2	7	Kruskal- Wallis test P=0 0005	1v3	0.0074	**	2 = A
	sim	fru ^{Gal4} >UAS-GCaMP vAB3 severing	mAL	3	7	1 0.0000	2v3	0.0148	*	3 = B
Ex Data Fig. 7e	mel	fru ^{Gal4} >UAS-GCaMP pre-severing	vAB3		8	mel vAB3	Unpaired t-	0 4508		
	sim	fru ^{Gal4} >UAS-GCaMP pre-severing	vAB3		8	v sim vAB3	test	0.4000		
	mel	fru ^{Gal4} >UAS-GCaMP pre-severing	mAL		12	mel mAL	Unpaired t-	0 1636		
S	sim	fru ^{Gal4} >UAS-GCaMP pre-severing	mAL		8	sim mAL	test	0.1000		

Extended Data Figures 7f, g Analysis: Peak Δ F/F response to an individual stimulation of vAB3 Null hypothesis: Responses across conditions and species are equal

All are technical replicates assessed with a two-tailed test

Figure	Species	Genotype	Neural Population Imaged	#	Sample Size (# stimulations)	Statistical Test	Multiple comparisons test	Adjusted P-value	Summary	Group
Ex Data Fig. 7f	mel	fru ^{Gal4} >UAS-GCaMP pre-severing mAL	vAB3	1	15		1v2	0.8467	ns	1 = A
	sim	fru ^{Gal4} >UAS-GCaMP pre-severing mAL	vAB3	2	15		1v3	0.9779	ns	2 = A
	mel	fru ^{Gal4} >UAS-GCaMP post-severing mAL	vAB3	3	14	One-way ANOVA P=0.1363	1v4	0.3557	ns	3 = A
	sim	fru ^{Gal4} >UAS-GCaMP post-severing mAL	vAB3	4	16		2v3	0.6811	ns	4 = A
							2v4	0.0956	ns	
							3v4	0.6701	ns	
Ex Data Fig. 7g	mel	fru ^{Gal4} >UAS-GCaMP pre-severing mAL	P1	1	15		1v2	0.0001	***	1 = A,B
	sim	fru ^{Gal4} >UAS-GCaMP pre-severing mAL	P1	2	15	One-way	1v3	>0.9999	ns	2 = C
	mel	fru ^{Gal4} >UAS-GCaMP post-severing mAL	P1	3	14	ANOVA P<0.0001	1v4	>0.9999	ns	3 = B
	sim	fru ^{Gal4} >UAS-GCaMP post-severing mAL	P1	4	16		2v3	<0.0001	****	4 = B
							2v4	0.00147	*	
							3v4	0.4821	ns	

Supplemental Table 2

CRISPR and genotyping primers: Extended Data Fig. 1d - Sim Gr32a CRISPR CrSim_Gr32a-F: gaaattaatacgactcactataGGCGAGATTCTTCGCGGATAgttttagagctagaaatagc

Extended Data Fig. 1d - Genotype sim Gr32a mutant SimSeq_Gr32a-F: CCCGAACACTTGGGTAATTG SimSeq_Gr32a-R: CGATCCACTGGTTCACATTG

Extended Data Fig. 1d - Sim ppk23 CRISPR CrSim_ppk23-F: gaaattaatacgactcactataGGTCTGGAACTTCTCCCAGgttttagagctagaaatagc

Extended Data Fig. 1d - Genotype sim ppk23 mutant SimSeq_ppk23-F: SimSeq_ppk23-R: CCTGGGCCTCGTCGTAGTTA

Extended Data Fig. 2a - Fru Intron CRISPR CrSim_FruIntron-F: gaaattaatacgactcactataGGTCCGCGGAAAAGGGCGTAgttttagagctagaaatagc

Extended Data Fig. 2a - Fru Intron attP oligo GCTTTGGGCGTTTGATTCTCGACGCTTAGCGCTCGGAATTCAGTGCTCAGTTCAGTAGGTGACACCATTGCGCTACG CCCCCAACTGAGAGAACTCAAAGGTTACCCCAGTTGGGGCACTACGCGGCCGCCGTAGGTGTTTTGGTCGGCCCAC GACGTCTGGCCTATATTGCCACATATGGCAGTATATGCAACTCCTCCCG

Extended Data Fig. 2a - Genotype sim Fru-attP Intron Sim_FruIntron-ExF: GCTTTGGGCGTTTGATTCT Sim_FruIntron-ExR: GCACAACCCACATAAATCTCAA

Extended Data Fig. 2a - Genotype sim Fru-GFP Sim_FruGFP-InR: TTGGGACAACTCCAGTGAAA

Extended Data Fig. 2a - Genotype Fru-GAL4 Sim_FruGAL4-InR: TCGGTTTTTCTTTGGAGCAC

Extended Data Fig. 2h - Fru Exon CRISPR

CrSim_FruExon-F: gaaattaatacgactcactataGGTCCGCGGAAAAGGGCGTAgttttagagctagaaatagc

Extended Data Fig. 2h - Fru Exon attP oligo GCTTTCAGCCAGAGCCAAATTGTTGGCGACGTCACAGGATTATTTTGGCAATCCATACGCCCTTTTCCGCGGCTACG

CCCCCAACTGAGAGAACTCAAAGGTTACCCCAGTTGGGGCACTACgaattcACCGCCCACAACACTGCGGCCACGCGA GTCGCCGCTGGGCGTGGGCCACCCTCACGGCCATGGGCACCTGCA

Extended Data Fig. 2h - Genotype sim Fru-attP Exon Sim_FruExon-F: GAGGCAATCGGTGGCTATAA Sim_FruExon-R: GGAGGCTTACCTAGGGGATG

attB-SAS-GFP Plasmid:

Forward primer for eGFP with SAS+Kozak sequences and reverse primer for eGFP with SV40 termination sequence SAS-Kozak-GFP-F:

GFP-SV40-R:

Nested PCR primers to add on gibson overhangs to GFP PCR product *Gib-GFP-pHDattP-F:* acacctgcgatcgtagtgccccaactggggtaacctttgaAAAAGCAGGCTTCAGTCGAT *Gib-GFP-pHDattP-R:* tatagcatacattatacgaagttatctacgcccccaacGGGGACCACTTTGTACAAGAAA

Linearize pHD-DsRed-attP plasmid Gib-Linear-pHDattP-F: gttgggggggtagataacttc Gib-Linear-pHDattP-R: tcaaaggttaccccagttgg

oligo for inserting attB

EcoRI-attB: AATTcGGAGTACGCGCCCGGGGAGCCCAAGGGCACGCCCTGGCACCCGCACCGCGGgc attB-NotI:

ggccgcCCGCGGTGCGGGTGCCAGGGCGTGCCCTTGGGCTCCCCGGGCGCGTACTCCg

Sequencing primers for attB-SAS-GFP insertion DsRed-GFP-Seq-LeftF: CATGCCGAACTCAGAAGTGA DsRed-GFP-Seq-LeftR: TTGGGACAACTCCAGTGAAA pHD-GFP-Seq-RightF: TCCAACCTATGGAACTGAACTTG pHD-GFP-Seq-RightR: CGACGTGTTCACTTTGCTTG

attB-SAS-Gal4 Plasmid: Forward and reverse primer for Gal4 with Gibson assembly overhang *Gibson-Gal4-F* ATTTATCTCTCTCCGCAGCAAAGAAAGATGAAGCTACTGTCTTCTATCG *Gibson-Gal4-R*

GATCCACTAGTTCTAGAGCGGCGCATAGGCCACTAGTtaaagatc