Supplementary Information

Engineered K1F bacteriophages kill intracellular *Escherichia coli* K1 in human epithelial cells

Christian Moeller-Olsen¹, Siu Fung Stanley Ho¹, Ranti Dev Shukla², Tamas Feher² and Antonia P. Sagona^{*1}

*Corresponding author, Antonia P. Sagona: <u>A.Sagona@warwick.ac.uk</u>

- School of Life Sciences, University of Warwick, Gibbet Hill Road CV4 7AL, Coventry, UK
- 2. Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Hungary

Plasmid	Donor DNA cassette
pSBGFP	${\tt gaattcgcggccgcttctagagGctgtgggtactgtgaagctgcgtgatttggcgctggaacgtgaccgtgacgtagatgct}$
-	${\tt cagggtgacctgattgtcggtaaatacgctatgggccacggtggtctgcgtccagaagcagcagcgcactggttttcagcc}$
	cagcggagATGCGTAAAGGCGAAGAGCTGTTCACTGGTGTCGTCCCTATTCTGGTGGAACTGGATGGTGATGTCAACGGTCA
	TAAGTTTTCCGTGCGTGGCGAGGGTGAAGGTGACGCAACTAATGGTAAACTGACGCTGAAGTTCATCTGTACTACTGGTAAA
	CTGCCGGTACCTTGGCCGACTCTGGTAACGACGCTGACTTATGGTGTTCAGTGCTTTGCTCGTTATCCGGACCATATGAAGC
	AGCATGACTTCTTCAAGTCCGCCATGCCGGAAGGCTATGTGCAGGAACGCACGATTTCCTTTAAGGATGACGGCACGTACAA
	AACGCGTGCGGAAGTGAAATTTGAAGGCGATACCCTGGTAAACCGCATTGAGCTGAAAGGCATTGACTTTAAAGAAGACGGC
	AATATCCTGGGCCATAAGCTGGAATACAATTTTAACAGCCACAATGTTTACATCACCGCCGATAAACAAAAAAATGGCATTA
	AAGCGAATTTTAAAATTCGCCACAACGTGGAGGATGGCAGCGTGCAGCTGGCTG
	TGATGGTCCTGTTCTGCTGCCAGACAATCACTATCTGAGCACGCAAAGCGTTCTGTCTAAAGATCCGAACGAGAAACGCGAT
	CATATGGTTCTGCTGGAGTTCGTAACCGCAGCGGGCATCACGCATGGTATGGATGAACTGTACAAATAAgcacttttagcca
	acctaacgtcgctacagtagcggctgcacctgaagaggagactctaactcctcaacagaaagctgcgcgtactcgtgctgcg
	aacagggccgataaactggctgagtccaacaactaattgaaaccccttgggtgcctactagtagcggccgctgcag
pSBN	gaattcgcggccgcttctagagaagcctgtaggactaaactatcactatagggagaccaagagatgctctgaaatgaagagac
1	tcaatgtttccctattacttcagtccatacggattgggcgtacagtaagta
	tagcatATGCGTAAAGGCGAAGAGCTGTTCACTGGTGTCGTCCCTATTCTGGTGGAACTGGATGGTGATGTCAACGGTCATAA
	GTTTTCCGTGCGTGGCGAGGGTGAAGGTGACGCAACTAATGGTAAACTGACGCTGAAGTTCATCTGTACTACTGGTAAACTGC
	CGGTACCTTGGCCGACTCTGGTAACGACGCTGACTTATGGTGTTCAGTGCTTTGCTCGTTATCCGGACCATATGAAGCAGCAT
	GACTTCTTCAAGTCCGCCATGCCGGAAGGCTATGTGCAGGAACGCACGATTTCCTTTAAGGATGACGGCACGTACAAAACGCG
	TGCGGAAGTGAAATTTGAAGGCGATACCCTGGTAAACCGCATTGAGCTGAAAGGCATTGACTTTAAAGAAGACGGCAATATCC
	TGGGCCATAAGCTGGAATACAATTTTAACAGCCACAATGTTTACATCACCGCCGATAAACAAAAAAATGGCATTAAAGCGAAT
	TTTAAAATTCGCCACAACGTGGAGGATGGCAGCGTGCAGCTGGCTG
	TGTTCTGCTGCCAGACAATCACTATCTGAGCACGCAAAGCGTTCTGTCTAAAGATCCGAACGAGAAACGCGATCATATGGTTC
	TGCTGGAGTTCGTAACCGCAGCGGGCATCACGCATGGTATGGATGAACTGTACAAAGGcGGTGGcGGTTCTGGtGGcGGtGGc
	${\tt TCTGGcGGTGGcGGTTCTatggcaaacgttccgggtcagaaaattggtacagaccaaggtaaaggcaaatccagctccgacgc$
	tcttgcgttgttcctgaaggtatttgccggtgaagtcctgaccgcattcactcgccgctctgtaactgctgacaagcatattg
	tctactagtagcggccgctgcag

Table S	52. List	of oligo	nucleotides	used in	this stu	dv
		or ongo	indere o cideo			· · · ·

primers used for plasmid construction:						
VF2	tgccacctgacgtctaagaa	pSB6A1 vector specific forward primer, flanking cloning site				
VR	attaccgcctttgagtgagc	pSB6A1 vector specific reverse primer, flanking cloning site				
GFPfw	GTTCTGCTGGAGTTCGTAACC	gfp gene, forward primer				
crRNA_g10FW	AAACagcggagtaagcacttttagccaacctaacG	spacer in plasmid pCas9g10				
crRNA_g10Rev	AAAACgttaggttggctaaaagtgcttactccgct	spacer in plasmid pCas9g10 , reverse strand				
g10CHECKrev	ggctaaaagtgcttactccgc	insert-specific checking primer for cloning spacer in plasmid pCas9g10				
crRNA_K1FC/1fw	AAACgctgagtccaacaactaattgaaaccccttG	spacer in plasmid pCas9K1FC1				
crRNA_K1FC/1rev	AAAACaaggggtttcaattagttgttggactcagc	spacer in plasmid pCas9K1FC1 , reverse strand				
C1checkFW	acgctgagtccaacaactaattg	insert-specific checking primer for cloning spacer in plasmid pCas9K1FC1				
crRNA_K1FC/2fw	AAACgaaggcacccaaggggtttcaattagttgtG	spacer in plasmid pCas9K1FC2				
crRNA_K1FC/2rev	AAAACacaactaattgaaaccccttgggtgccttc	spacer in plasmid pCas9K1FC2 , reverse strand				
C2checkFW	aaaacgaaggcacccaagg	insert-specific checking primer for cloning spacer in plasmid pCas9K1FC2				
pCASfor	CAGCTAGGAGGTGACTGAAG	vector-specific forward checking primer for cloning spacers in pCas9 plasmids				
pCASrev	GGACGATCACACTACTCTTC	vector-specific reverse checking primer for cloning spacers in pCas9 plasmids				
primers specific for K1F genome:						
g11rev	GTGAAAGTGGTTGACTGAGTGG	gene11 reverse primer				
g10fw	GGCGACCGTTACTTCTACACC	gene10 forward primer				
g9fw	CAGACCGAAGCATTCAGCTCC	gene9 forward primer				
AS054	CCTGATTGTCGGTAAATACGCT	gene10 forward primer, 3' end				

construct				pure clone
name	phage name	donor plasmid	selection plasmid	accomplished
g10::gfp	K1Fg10::gfp	pSBGFP	pCas9g10	No
gfp::g10	K1Fgfp::g10	pSBN	-	No
g10b::gfp	K1Fg10b::gfp	pSBC3	pCas9K1FC1, pCas9K1FC2	Yes

 Table S3. Recombinant phage constructs and the plasmids used to engineer them

Supplementary Figure S1. Bacteriophage K1F is specific in targeting *E. coli* EV36. **A.** The optical density of bacterial liquid cultures was measured at 600 nm over a period of 3.5 hours. Phages were added to the *E. coli* cultures when they reached the exponential phase (2hrs) LEFT. Infection in *E. coli* EV36 liquid culture. The blue curve shows *E.coli* EV36 culture containing no phage. The orange and grey curves show cultures infected with phage K1F and

phage T7 respectively. RIGHT. Infection in *E. coli* MG1655 liquid culture. The red curve shows *E. coli* MG1655 culture containing no phage. The black and grey curves show cultures infected with phage K1F and phage T7 respectively. **B**. Clonal phage K1F was isolated from a single plaque. LEFT. Single plaques of phages K1F on a lawn of *E. coli* EV36. RIGHT. Phage K1F added onto *E. coli* MG1655 lawn and no plaques are present. **C.** Transmission electron microscopy imaging showing CsCl column purified K1F phages negatively stained with uranyl acetate. **D**. *E. coli* EV36 cells were made electrocompetent and they were transformed with a RFP plasmid (PSB6A1 from BioBrick collection) to obtain red colour and can be easily visualized by microscopy. **E.** Determination of phage K1F infection efficiency of *E. coli* EV36-RFP cells. LEFT. Optical density of liquid cultures was measured at 600 nm over a period of 90 minutes. The green and red curves show cultures of *E. coli* EV36 and *E. coli* EV36-RFP respectively. K1F phages were added to cultures at time zero. RIGHT. Plaque assay showing plaques of K1F at 10⁻⁷ dilution on a lawn of *E. coli* EV36-RFP.

Supplementary Figure S2. CRISPR/Cas selection of fluorescent phage K1F. **A.** Map of plasmid pCas9K1FC1 used for CRISPR/Cas selection. Plasmid pCas9K1FC2 is identical except for the CRISPR-spacer sequence. **B.** Rationale of CRISPR/Cas selection applied on a phage mix. The crRNA of the CRISPR/Cas system is engineered such as to

cleave wild type sequences, but leave the recombinant construct intact, thereby enriching recombinant bacteriophages. **C.** The PCR product obtained with primers GFPfw and g11rev demonstrates the presence of *g10::gfp* within a phage mix obtained by phage growth on bacteria harbouring the appropriate donor plasmid. **D.** In a parallel effort to engineer *g10b::gfp*, the phage mix obtained likewise was exposed to *in vivo* CRISPR/Cas selection permitting the isolation of pure recombinant plaques displaying an elongated g9fw-g11rev PCR product, marking the integration of the GFP gene. M: GeneRuler 1 kb Plus DNA Ladder.

Supplementary Figure S3. SYTOX Bacterial Death Assay control bacteriophage-host pairs. Graph shows the average percentage of colocalisation of RFP-tagged bacteria and SYTOX DNA stain over three biological replicates +/- standard deviation. No statistical difference was observed. LEFT. The validity of the assay and the specificity of phage K1F was challenged using *E. coli* MG1655-RFP, a host that does not express the K1 capsid. **RIGHT.** The susceptibility of *E. coli* EV36-RFP was challenged using phage T7, a pathogen that does not naturally infect K1 expressing hosts.

Supplementary Figure S4. *E. coli* EV36-RFP concentration dependent invasion in T24 cells. Human bladder epithelial T24 cells were incubated with *E. coli* EV36-RFP for two hours at final CFU/ml concentrations of 5.65 x 10^{6} , 1.13×10^{7} and 2.26×10^{7} . The fixed cells were imaged and prevalence of T24 cells with intracellular *E. coli* EV36-RFP was quantified as a percentage of the total T24 cell population. A representative graph of an experiment performed in biological triplicates is shown here as the average +/- standard deviation as error bars. P-values are displayed as p≤0.05 (*), p≤0.01 (**), p≤0.001 (***), p≤0.0001 (****) and not statistical significant p≥0.05 (ns). The p-value between CFU/ml 5.65 x 10^{6} and 1.13×10^{7} is $3.14*10^{-5}$, and between CFU/ml 1.13×10^{7} and 2.26×10^{7} is $1.56*10^{-3}$.

Supplementary Figure S5. Time course measurements of planktonic bacteria and free phages. A representative graph of an experiment performed in biological triplicates is shown here as the average +/- standard deviation as error bars. **A.** Measured concentration of planktonic *E. coli* EV36 as illustrated by CFU/ml over a two-hour time course. Bacteriophage K1F was added after one hour to corresponding wells. **B.** Measured concentration of free bacteriophage K1F as illustrated by PFU/ml over a two-hour time course.

Supplementary Figure S6. Negative controls for phage K1F-GFP signal and co-localization assays. **A-B.** Imaging of fixed T24 cells for comparison of phage K1F wild type and phage K1F-GFP. *E.coli* EV36-RFP incubated with either bacteriophage prior to fixation. (A) Showing phage K1F wild type infection of *E.coli* EV36-RFP. No fluorescent signal is observed from phage K1F wild type. **B.** Showing phage K1F-GFP infection of *E.coli* EV36-RFP, where the fluorescent signal is clearly visible (arrows). **C-E.** Negative controls for co-localization assays. Each secondary antibody used was incubated individually on fixed T24 cells and mounted with a DAPI containing medium on microscope slides. Each horizontal panel shows a representative image of each channel captured (405nm, 633nm) and merged. **C.** Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 (Invitrogen) **D.** Cy-5 conjugated AffiniPure donkey anti-goat IgG (H+L) (Jackson ImmunoResearch) **E.** Cy-5 conjugated AffiniPure goat anti-rabbit IgG (H+L).

Supplementary Figure S7. Time-lapse live microscopy of epithelial human cells invaded by *E. coli* EV36 and incubated with fluorescent bacteriophage K1F. **A.** T24 epithelial human cells were incubated for 1 h with *E.coli* EV36-RFP bacteria grown to OD_{600} of 0.2, with further filming for 1 h (pictures were taken every 10 seconds). **B.** T24 epithelial human cells were incubated for 1 h with *E.coli* EV36-RFP bacteria grown to OD_{600} of 0.2. Fluorescent bacteriophage K1F was added and was incubated for 20 minutes, followed by 20 minutes filming (pictures were taken every 10 seconds). In both **A** and **B**, human cells were stained with SiR-tubulin reagent for live microtubules and NucBlue Live ReadyProbes Reagent, for the nuclear staining.

В

A

Supplementary Figure S8. Time-lapse live microscopy of bacteriophage K1F clearing *E. coli* EV36 bacterial infection in epithelial human cellular environment. **A.** T24 epithelial human cells were incubated for 3 h with *E.coli* EV36-RFP bacteria grown to OD_{600} of 0.6, with further filming for 2 h (pictures were taken every 1 min). **B.** T24 epithelial human cells were incubated for 1 h with *E.coli* EV36-RFP bacteria grown to OD_{600} of 0.2. Bacteriophage K1F was added and was incubated for 45 minutes, followed by 1 h filming (pictures were taken every 10 seconds). In both **A** and **B**, human cells were stained with NucBlue Live ReadyProbes Reagent, for the nuclear staining. In **B**, human cells were stained also with SiR-tubulin reagent for live microtubules.

А

в

Uncropped gels

Uncropped gel Supplementary Fig. 2C

Uncropped gel Supplementary Fig. 2D