Supplementary Materials for

Partial Purification, Identification, and Quantitation of Antioxidants from Wild Rice *Zizania latifolia*

Mei-Jun Chu, Xin-Min Liu, Ning Yan, Feng-Zhong Wang, Yong-Mei Du * and Zhong-Feng Zhang *

Contents

Table S1 . Phenolic acids and flavonoids found in wild rice in previous reports. 1
Table S2 . Physical properties of six macroporous resins. 6
Table S3. The ion transitions, optimized MS parameters, and linear relationships of the standards in
UPLC-QqQ-MS/MS analysis7
Figure S1. The radical scavenging activities of DPPH (A) and ABTS (B), reducing power (C), total
flavonoid content (TFC) (D), and total phenolic content (TPC) (E) of different solvent extracts of
wild rice collected from Jingzhou. Different letters within the same figure mean statistical difference
(<i>p</i> < 0.05)
Figure S2. Dynamic breakthrough curve of antioxidants on D101 resin column
Figure S3. Structures of phenolic compounds identified in wild rice
Figure S4 . Base peak chromatograms of Fr. 1 (A) and Fr. 2 (B) in HPLC-LTQ-Orbitrap-MS ⁿ analysis.
Figure S5. HPLC fingerprint chromatograms at 360 nm (A) and 280 nm (B) of the four fractions (Frs.
1-4) eluted from D101 resin column. The gradient solvent system consisting of A (methanol) and B
(water containing 0.1% acetic acid, <i>v</i> / <i>v</i>) was as follows: 0–10 min, 5–10% A; 10–30 min, 10–15% A;
30–40 min, 15–20% A; 40–50 min, 20–25% A; 50–60 min, 25–35% A; 60–70 min, 35–90% A; 70–80 min,
90–60% A

Compound	Species	Collection Region of Sample	Identification Method	Reference
Phenolic acids and their	derivatives			
Trans-ferulic acid	Z. aquatica	North-Ontario and	HPLC	[1]
Cis-ferulic acid	_	Saskatchewan, Canada		
Ferulic acid	Z. aquatica	Dinorwic, Ontario,	HPLC-MS/MS	[2]
		Texas, USA		
		Canada, Greece, Hungary,	HPLC	[3]
		Cambodia		
Chlorogenic acid	Z. aquatica	Canada, Greece, Hungary,	HPLC	[3]
Caffeic acid	_	Cambodia		
Gallic acid	_			
Ellagic acid	_			
o-Coumaric acid	_			
Protocatechuic acid				
ethyl ester	_			
Cinnamic acid				
Trans-p-coumaric	Z. aquatica	North-Ontario and	HPLC	[1]
acid	_	Saskatchewan, Canada		
<i>Cis-p</i> -coumaric acid				
<i>p</i> -Coumaric acid	Z. aquatica	Dinorwic, Ontario,	HPLC-MS/MS	[2]
		Canada and Houston,		
		Texas, USA		
		Canada, Greece, Hungary, Cambodia	HPLC	[3]
Trans-sinapic acid	Z. aquatica	North-Ontario and	HPLC	[1]
	-	Saskatchewan, Canada		
Sinapic acid	Z. aquatica	Dinorwic, Ontario,	HPLC-MS/MS	[2]
		Canada and Houston,		
		Texas, USA		
		Canada, Greece, Hungary,	HPLC	[3]
		Cambodia		
<i>p</i> -Hydroxybenzoic	Z. aquatica	North-Ontario and	HPLC	[1]
acid		Saskatchewan, Canada		
		Dinorwic, Ontario,	HPLC-MS/MS	[2]
		Canada and Houston,		
		Iexas, USA		
		Canada, Greece, Hungary,	HPLC	[3]

Table S1.	Phenolic	acids and	l flavon	oids f	found	in v	wild	rice	in	previous	reports.

		Cambodia		
Protocatechuic acid	Z. aquatica	North-Ontario and	HPLC	[1]
		Saskatchewan, Canada		
		Canada, Greece, Hungary,	HPLC	[3]
		Cambodia		
Vanillic acid	Z. aquatica	North-Ontario and	HPLC	[1]
		Saskatchewan, Canada		
		Dinorwic, Ontario,	HPLC-MS/MS	[2]
		Canada and Houston,		
		Texas, USA		
		Canada, Greece, Hungary,	HPLC	[3]
		Cambodia		
Syringic acid	Z. aquatica	North-Ontario and	HPLC	[1]
		Saskatchewan, Canada		
		Dinorwic, Ontario,	HPLC-MS/MS	[2]
		Canada and Houston,		
		Texas, USA		
		Canada, Greece, Hungary,	HPLC	[3]
		Cambodia		
<i>p</i> -Hydroxybenzaldeh	Z. aquatica	North-Ontario and	HPLC	[1]
yde		Saskatchewan, Canada		
		Dinorwic, Ontario,	HPLC-MS/MS	[2]
		Canada and Houston,		
		Texas, USA		
Protocatechuic	Z. aquatica	North-Ontario and	HPLC	[1]
aldehyde		Saskatchewan, Canada		
Vanillin	Z. aquatica	North-Ontario and	HPLC	[1]
		Saskatchewan, Canada		
		Dinorwic, Ontario,	HPLC-MS/MS	[2]
		Canada and Houston,		
		Texas, USA		
<i>O</i> -β-D-xylopyranosyl	Z. aquatica	North-Ontario and	MS, NMR	[1]
-(1→4)- <i>O</i> -		Saskatchewan, Canada		
[5-O-(trans-feruloyl)-				
α -L-arabinofuranosyl				
-(1→				
3)]- <i>O</i> -β-D-xylopyran				
osyl-(1→				
4)-D-xylopyranose				
{[5-O-(transferuloyl)][
<i>O</i> -β-D-xylopyranosyl				

-(1→				
2)]- O - α -L-arabinofur				
anosyl-(1→				
3)}- $O-\beta$ -D-xylopyran				
osyl-(1→4)-D-xyl				
opyranose				
<i>O-</i> [5- <i>O-</i> (<i>trans-</i> feruloy				
l)- <i>α</i> -L-arabinofuranos				
vll-(1→3)-				
$O-\beta$ -D-xvlopvranosvl				
-(1→				
4)-D-xvlopvranose				
D-xylopyranosyl-(1				
→				
2)-[5-O-(<i>trans</i> -ferulov				
l)-L-arabinofuranose				
<i>5-O-(trans-</i> ferulovl)-L				
-arabinofuranose				
Cvclic form of	Z. aauatica	obtained from a local	GC-MS,	[4]
8–8-coupled		German supplier	GC-FID	
dehvdrodiferulic				
acid				
Noncyclic form of	Z. aquatica	obtained from a local	GC-MS.	[4]
8–8-coupled		German supplier	GC-FID	
dehvdrodiferulic		Dinorwic, Ontario,	HPLC-MS/MS	[2]
acid		Canada and Houston.		[-]
		Texas. USA		
Cyclic form of	Z aquatica	obtained from a local	GC-MS.	[4]
8–8-coupled		German supplier	GC-FID	[-]
dehvdrodisinapic		Dinorwic Ontario	HPLC-MS/MS	[2]
acid (thomasidioic		Canada and Houston		[4]
acid)		Texas USA		
Noncyclic form of	Z aquatica	obtained from a local	GC-MS	[4]
8–5-coupled	2 . uquutteu	German supplier	GC-FID	[+]
debydrodiferulic		German supplier	Gene	
acid				
Noncyclic form of				
8-8/7-0-7-coupled				
debydrodiferulic				
acid				
Noncyclic form of	7 aquatica	obtained from a local	C-C-MS	[4]
8-8-coupled	л . ичнинси	Cormon supplior	C-C-FID	[#]
o o-coupieu		German supplier	GC-FID	

dehydrodisinapic acid		Dinorwic, Ontario, Canada and Houston, Texas, USA	HPLC-MS/MS	[2]
8–O–4-coupled dehydrodiferulic	Z. aquatica	obtained from a local German supplier	GC-MS, GC-FID	[4]
acid		Dinorwic, Ontario, Canada and Houston, Texas, USA	HPLC-MS/MS	[2]
Cyclic form of 8–5-coupled	Z. aquatica	obtained from a local German supplier	GC-MS, GC-FID	[4]
dehydrodiferulic acid		Dinorwic, Ontario, Canada and Houston, Texas, USA	HPLC-MS/MS	[2]
5–5-Coupled dehydrodiferulic	Z. aquatica	obtained from a local German supplier	GC-MS, GC-FID	[4]
acid		Dinorwic, Ontario, Canada and Houston, Texas, USA	HPLC-MS/MS	[2]
Decarboxylated noncyclic form of 8–5-coupled dehydrodiferulic acid	Z. aquatica	obtained from a local German supplier	GC-MS, GC-FID	[4]
Flavonoids				
6,8-Di-C-glucosyl apigenin 6-C-Glucosyl-8-C-ar abinosyl apigenin 6,8-Di-C-arabinosyl apigenin Procyanidin dimer Procyanidin trimer Procyanidin tetramer	Z. palustris, Z. aquatica	Wabigoon Lake, northwestern Ontario, Canada	HPLC-MS/MS	[5]
pentamer				
Catechin	Z. palustris, Z. aquatica	Wabigoon Lake, northwestern Ontario, Canada	HPLC-MS/MS	[5]
	Z. aquatica	Canada, Greece, Hungary,	HPLC	[3]

		Cambodia		
Epicatechin	Z. palustris,	Wabigoon Lake,	HPLC-MS/MS	[5]
	Z. aquatica	northwestern Ontario,		
		Canada		
	Z. aquatica	Canada, Greece, Hungary,	HPLC	[3]
		Cambodia		
Epigallocatechin	Z. aquatica	Canada, Greece, Hungary,	HPLC	[3]
Rutin	-	Cambodia		
Quercetin				
Kaempferol	-			

Docin	Dolority	Particle Size	Surface Area	Average Pore
Kesin	rolanty	(mm)	(m²/g)	Diameter (Å)
HPD600	Polar	0.30 - 1.20	550 - 600	80
NKA-9	Polar	0.30 – 1.25	250 - 290	155 – 165
AB-8	Weak-polar	0.03 – 1.25	480 - 520	130 - 140
X-5	Non-polar	0.30 – 1.25	500 - 600	290 - 300
D101	Non-polar	0.30 – 1.25	550 - 600	90 - 100
HPD300	Non-polar	0.30 – 1.20	800 - 870	50 - 55

Table S2. Physical properties of six macroporous resins.

	Parent	Product	Collision	t -a	Calibration		LOD	IOOd
Compound	Ion	Ion	Energy	tR^{-}	Curvob	r ²	$(n\alpha/mI)$	LOQ^{*}
	(m/z)	(m/z)	(V)	(11111)	Curve		(IIg/IIIL)	(IIg/IIIL)
<i>p</i> -Hydroxyben	121.138	92.224	25	2.91	$y = 8.2754 \times 10^4 x$	0.9991	0.992	3.298
zaldehyde		120.306	20		+5.1399×104			
<i>p</i> -Hydroxyben	137.116	65.238	31	2.03	$y = 2.3214 \times 10^5 x$	0.9982	4.691	14.539
zoic acid		75.046	32		-3.1002×10^{5}			
		93.220	17					
Vanillin	151.120	51.600	50	4.05	$y = 6.5972 \times 10^5 x$	0.9981	6.936	20.013
		92.239	23		-5.8837×105			
		107.962	25	_				
		136.138	16	-				
Protocatechuic	153.095	91.099	27	1.01	$y = 7.4267 \times 10^4 x$	0.9995	0.770	2.566
acid		108.084	26	_	-9.8661×10^{3}			
		109.179	17	-				
<i>p</i> -Coumaric	163.080	93.221	37	3.18	$y = 4.4936 \times 10^5 x$	0.9999	3.393	10.643
acid		117.187	37	-	-6.9351×10 ⁵			
		119.199	18					
o-Coumaric	163.095	93.047	36	6.11	$y = 2.8759 \times 10^5 x$	0.9988	5.075	16.251
acid		117.171	25		+3.9233×10 ⁵			
		119.185	15					
Vanillic acid	167.042	91.078	22	2.84	$y = 2.0862 \times 10^5 x$	0.9993	6.294	19.648
		108.118	19	-	-3.1034×10 ⁵			
		123.106	13	-				
		152.027	16	-				
Gallic acid	169.081	79.288	24	0.61	$y = 7.3772 \times 10^4 x$	0.9994	2.589	8.630
		97.217	20	-	-3.4494×10^{4}			
		124.132	27	-				
		125.176	15	-				
Protocatechuic	181.038	108.487	23	7.39	$y = 5.9352 \times 10^4 x$	0.9992	0.147	0.491
acid ethyl ester		151.949	16	-	+2.5769×10 ⁶			
		153.005	16	-				
Ferulic acid	193.081	133.097	30	5.16	$y = 5.8092 \times 10^4 x$	0.9982	3.321	11.088
		134.166	18	-	-4.0636×10 ⁴			
		149.184	13	-				
		178.117	14	-				
Syringic acid	197.084	95.222	35	3.36	$y = 2.6176 \times 10^5 x$	0.9996	6.213	20.712
		123.166	25	• 	-4.1087×10^{5}			

Table S3. The ion transitions, optimized MS parameters, and linear relationships of standards in UPLC-QqQ-MS/MS analysis.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16.226 27.984 22.067 0.991
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16.226 27.984 22.067 0.991
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16.226 27.984 22.067 0.991
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27.984 22.067 0.991
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27.984 22.067 0.991
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27.984 22.067 0.991
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27.984 22.067 0.991
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.067 0.991
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.991
245.13718 -1.3420×10^4 Quercetin301.000107.184337.92 $y = 1.7855 \times 10^5 x$ 0.99970.297121.17630 -5.8558×10^4 151.07424-5.8558 \times 10^4-5.8558 \times 10^4-5.8558 \times 10^4179.06020179.06020-5.85510 \times 10^4 x0.99902.744n165.08220 -1.5239×10^4 0.99902.744	0.991
Quercetin301.000107.184337.92 $y = 1.7855 \times 10^5 x$ 0.99970.297121.17630-5.8558 \times 10^4-5.8558 \times 10^4-5.8558 \times 10^4-5.8558 \times 10^4-5.8558 \times 10^4151.07424179.06020-5.8558 \times 10^4-5.8558 \times 10^4-5.8558 \times 10^4Epigallocatechi305.033125.138272.35 $y = 3.9510 \times 10^4 x$ 0.99902.744n165.08220-1.5239 \times 10^4-1.5239 \times 10^4-1.5239 \times 10^4-1.5239 \times 10^4	0.991
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.140
151.074 24 179.060 20 Epigallocatechi 305.033 125.138 27 2.35 $y = 3.9510 \times 10^4 x$ 0.9990 2.744 n 165.082 20 -1.5239×10^4	0.140
179.06020Epigallocatechi305.033125.138272.35 $y = 3.9510 \times 10^4 x$ 0.99902.744n165.08220 -1.5239×10^4	0.1.40
Epigallocatechi305.033125.138272.35 $y = 3.9510 \times 10^4 x$ 0.99902.744n165.08220 -1.5239×10^4	0 1 4 0
n $165.082 20 -1.5239 \times 10^4$	9.148
179.110 18	
219.098 19	
Procyanidin B1 577.128 289.088 26 $2.60 \ y = 9.1478 \times 10^4 x \ 0.9997$ 2.720	9.068
407.009 23 -3.5465×10 ⁴	
425.148 18	
Procyanidin B2577.137289.01026 2.85 $y = 1.1698 \times 10^5 x$ 0.9989 1.894	6.332
407.002 24 -8.5724×10 ⁴	
425.159 19	
Procyanidin B3577.112289.01728 3.63 $y = 1.0529 \times 10^5 x$ 0.9998 2.215	7.365
407.021 24 -4.0134×10^4	
425.098 17	
Rutin609.122151.05152 6.79 $y = 2.5348 \times 10^6 x$ 0.9989 0.012	0.039
255.055 58 +2.4363×10 ⁶	
271.093 57	
300.142 40	
Procyanidin 865.147 386.970 38 7.87 $y = 8.0104 \times 10^4 x$ 0.9999 0.416	1.385
C1 524.985 29 +1.5888×10 ⁴	
695.291 26	
713.302 29	

^a*t*_R, retention time. ^bThe calibration curve was constructed by plotting the peak area versus the concentration of each standard. ^cLOD, limits of detection. ^dLOQ, limits of quantification. Precision of the data obtained from repeated experiments (RSD%) < 7%.

Figure S1. The radical scavenging activities of DPPH (A) and ABTS (B), reducing power (C), total flavonoid content (TFC) (D), and total phenolic content (TPC) (E) of different solvent extracts of wild rice collected from Jingzhou. Different letters within the same figure mean statistical difference (p < 0.05).

Figure S2. Dynamic breakthrough curve of antioxidants on D101 resin column.

Phenolic acids and their derivatives

A4: R_1 =H, R_2 =OMe, R_3 =OH **A5**: R_1 =H, R_2 =H, R_3 =H **A6**: R_1 =OMe, R_2 =OMe, R_3 =OH **A7**: R_1 =H, R_2 =OMe, R_3 =H **A8**: R_1 =H, R_2 =OH, R_3 =OEt

ł

 R_4

 R_3

0

 R_1

 \dot{R}_2

ОH

Procyanidins

OH

B13

Flavonoid glycosides

Figure S3. Structures of phenolic compounds identified in wild rice.

Figure S4. Base peak chromatograms of Fr. 1 (**A**) and Fr. 2 (**B**) in HPLC-LTQ-Orbitrap-MS^{*n*} analysis.

Figure S5. HPLC fingerprint chromatograms at 360 nm (**A**) and 280 nm (**B**) of the four fractions (Frs. 1–4) eluted from D101 resin column. The gradient solvent system consisting of A (methanol) and B (water containing 0.1% acetic acid, v/v) was as follows: 0–10 min, 5–10% A; 10–30 min, 10–15% A; 30–40 min, 15–20% A; 40–50 min, 20–25% A; 50–60 min, 25–35% A; 60–70 min, 35–90% A; 70–80 min, 90–60% A.

References

- 1. Bunzel, M.; Allerdings E.; Sinwell, V.; Ralph J.; Steinhart H. Cell wall hydroxycinnamates in wild rice (*Zizania aquatica* L.) insoluble dietary fibre. *Eur. Food. Res. Technol.* **2002**, *214*, 482–488.
- 2. Qiu, Y.; Liu Q.; Beta, T. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. *Food Chem.* **2010**, *121*, 140–147.
- 3. Sumczynski D.; Kotásková E.; Orsavová J.; Valášek P. Contribution of individual phenolics to antioxidant activity and *in vitro* digestibility of wild rices (*Zizania aquatica* L.). *Food Chem.* **2017**, *218*, 107–115.
- Bunzel, M.; Ralph, J.; Kim, H.; Lu, F.; Ralph, S. A.; Marita, J. M.; Hatfield, R. D.; Steinhart, H. Sinapate dehydrodimers and sinapate–ferulate heterodimers in cereal dietary fiber. *J. Agric. Food Chem.* 2003, *51*, 1427–1434.
- 5. Qiu, Y.; Liu Q.; Beta, T. Antioxidant activity of commercial wild rice and identification of flavonoid compounds in active fractions. *J. Agric. Food Chem.* **2009**, *57*, 7543–7551.