Supporting Materials

Curvulin and Phaeosphaeride A from *Paraphoma* sp. VIZR 1.46 Isolated from *Cirsium arvense* as Potential Herbicides

Ekaterina Poluektova^a, Yuriy Tokarev^a, Sofia Sokornova^a, Leonid Chisty^b, Antonio Evidente^c, Alexander Berestetskiy^a*

^a All-Russian Institute of Plant Protection, Pushkin, Saint-Petersburg, 196608 Russian Federation ^b Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency, p/o Kuz'molovsky, Saint-Petersburg, 188663 Russian Federation ^c Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy

LIST of Contents

Figure S1 - A Bayesian 50 % majority rule consensus tree based on dataset of LSU alignment. Bootstrap support values for maximum likelihood equal to or greater than 50 % are given above the nodes. The tree is rooted to *Stagonospora trichophoricola*

Figure S2 - A Bayesian 50 % majority rule consensus tree based on dataset of LSU alignment of cf *Paraphoma* sp. VIZR 1.46 and related species. Bootstrap support values for maximum likelihood equal to or greater than 40 % are given above the nodes. The tree is rooted to *Stagonospora trichophoricola*

Figure S3 - Point differences in nucleotide sequences of LSU for strains *Paraphoma* sp. 1.46, *P. chrysanthemicola* CBS 522.66, *P. radicina* CBS 102875 and *P. vinacea* UMPV 003

Figure S4 – UV spectrum of curvulin, dissolved in MeCN

Figure S5 – ESI Mass spectrum of curvulin, recorded in positive mode

Figure S6 - ¹H NMR spectrum of curvulin (CDCl₃, at 400 MHz)

Figure S7 – ¹³C NMR spectrum of curvulin (CDCl₃, at 100 MHz)

Figure S8 - UV spectrum of phaeosphaeride A, dissolved in acetonitrile

Figure S9 - ESI Mass spectrum of phaeosphaeride A, recorded in positive mode

Figure S10 - ¹H -NMR spectrum of phaeosphaeride A (DMSO d-6, at 400MHz)

Figure S11 - ¹³C -NMR spectrum of phaeosphaeride A (DMSO d-6, at 100 MHz)

Figure S12 - ¹³C-DEPT spectrum of phaeosphaeride A (DMSO d-6, at 100 MHz)

Figure S13- ¹H, ¹H COSY spectrum of phaeosphaeride A (DMSO d-6, 100,6 MHz)

Figure S14 - ¹H, ¹³C HMQC spectrum of phaeosphaeride A (DMSO d-6)

Figure S15 - ¹H,¹³C HMBC spectrum of phaeosphaeride A (DMSO d-6)

Figure S16- ¹H, ¹H ROESY spectrum of phaeosphaeride A (DMSO d-6, 400 MHz)

Figure S17 - a) Structure of for phaeosphaeride A (numbering of atoms is given according to to

those given by Maloney et al. 2006 b) Selected ROESY (¹H to ¹H) NMR correlations

Table S1. -¹H and ¹³C NMR data of phaeosphaeride A (in DMSOd-6)^{a,b}

Table S2. Summary of three-way ANOVA analysis of the effect of adjuvants, solvents and wounding on phytotoxicity of phaeosphaeride A against *Cirsium arvense*

Figure S 18 – Effect of adjuvants on herbicidal activity of 0.5% semi-purified extract (ca. 0.25% phaeosphaeride A) from solid state culture of *Paraphoma* sp. VIZR 1.46 on *Cirsium arvense* plants (48 hours after treatment)

Figure S1 - A Bayesian 50 % majority rule consensus tree based on dataset of LSU alignment. Bootstrap support values for maximum likelihood equal to or greater than 50 % are given above the nodes. The tree is rooted to *Stagonospora trichophoricola*

Figure S2 - A Bayesian 50 % majority rule consensus tree based on dataset of LSU alignment of cf *Paraphoma* sp. VIZR 1.46 and related species. Bootstrap support values for maximum likelihood equal to or greater than 40 % are given above the nodes. The tree is rooted to *Stagonospora trichophoricola*

cf Paraphoma sp. VIZR 1.46	GTTGCTTATCTAGACTTTTGTCTAGTGCI
Paraphoma chrysanthemicola CBS 52266	CGCG
Paraphoma radicina CBS 102875	CGCG
Paraphoma vinacea UMPV003	CGCG

Figure S3 - Point differences in nucleotide sequences of LSU for strains *Paraphoma* sp. 1.46, *P. chrysanthemicola* CBS 522.66, *P. radicina* CBS 102875 and *P. vinacea* UMPV 003

Figure S4 – UV spectrum of curvulin, recorded in MeCN

Figure S5 - ESI Mass spectrum of curvulin, recorded in positive mode

Figure S6 - ¹H-NMR spectrum of curvulin (CDCl₃, 400 MHz)

Figure S7 – ¹³C-NMR spectrum of curvulin (CDCl₃, 100 MHz)

Figure S8 - UV spectrum of phaeosphaeride A, dissolved in MeCN

Figure S9 – ESI Mass spectrum of phaeosphaeride A, recorded in positive mode

Figure S10 - ¹H-NMR spectrum of phaeosphaeride A (DMSO d-6, at 400 MHz)

Figure S11 - ¹³C -NMR spectrum of phaeosphaeride A (DMSO d-6, at 100 MHz)

Figure S12 - ¹³C DEPT spectrum of phaeosphaeride A (DMSO d-6, at 100 MHz)

Figure S13 - ¹H, ¹H COSY spectrum of phaeosphaeride A (DMSO d-6, at 100 MHz)

Figure S14 - ¹H,¹³C HMQC spectrum of phaeosphaeride A (DMSO d-6)

Figure S15 - ¹H,¹³C HMBC spectrum of phaeosphaeride A (DMSO d-6)

Figure S16 - ¹H, ¹H ROESY spectrum of phaeosphaeride A (DMSO d-6, 400 MHz)

Figure S 17 - a) Structure of phaeosphaeride A (2) (numbering of atoms is given according to those given by Maloney et al. 2006; b) Selected ROESY (1 H to 1 H) NMR correlations

Position	δC^{c}	δH (J in Hz)	HMBC		
1	166.5 s	-			
3	137.1 s	-	H2-14		
4	155.3 s	-	H-6, H2-14		
5	104.8 s	-	H-6		
6	64.4 d	3.87 (d, 4.0)			
7	71.0 s	-	НО-6		
8	86.3 d	4.08 (d, 12 Hz,)	HO-6, HO-7, H-6, H ₂₋₁₁		
9	27.6 t	1.82 (m)1.52 (m)			
10	26.1 t	1.49 (m, 2H)			
11	30.9 t	1.27 (m, 2H)			
12	22.0 t	1.28 (m, 2H)			
13	13.9 q	0.86 (t, 6.4 Hz, 3H)			
14	90.8 t	4.98 (s, 2H)			
15	20.4 q	1.19 (s, 3H)	НО-7		
16	63.8 q	3.80 (s, 3H)			
НО-6		5.42 (d, 4.0)			
HO - 7		4.92 (s, 1H)			

Table S1. -¹H and ¹³C NMR data of phaeosphaeride A (in DMSOd-6)^{a,b}

^aThe chemical shifts are in δ values (ppm) from TMS. ^b2D ¹H,1H (COSY) ¹³C,¹H (HMQC) NMR experiments delineated the correlations of all the protons and the corresponding carbons. ^cMultiplicities were assigned by DEPT spectrum.

E (00	DE	MC	Г	
Factors		DF	MS	F	р
adiuvant	17 0727	5	3 4145	7 509	0.000001
uajuvunt	17,0727	5	5,1115	1,005	0,000001
solvent	1,4592	1	1,4592	3,209	0,074387
wounding	132,7092	1	132,7092	291,833	0,000000
adjuvant x solvent	8,6860	5	1,7372	3,820	0,002335
adjuvant x wounding	3,5335	5	0,7067	1,554	0,173474
solvent x wounding	8,9253	1	8,9253	19,627	0,000014
adjuvant x solvent x wounding	4,7507	5	0,9501	2,089	0,067078
Error	120,0525	264	0,4547		

Table S2. – Summary of three-way ANOVA analysis of the effect of adjuvants, solvents and wounding on phytotoxicity of phaeosphaeride A against *Cirsium arvense*

Control

Phaeosphaeride A (ca. 0.25%) + Hasten (0.1%)

Phaeosphaeride A (ca. 0.25%) + water

Phaeosphaeride A (ca. 0.25%) + Biopower (0.1%)

Figure S 18 – Effect of adjuvants on herbicidal activity of 0.5% semi-purified extract (ca. 0.25% phaeosphaeride A) from solid state culture of *Paraphoma* sp. VIZR 1.46 on *Cirsium arvense* plants (48 hours after treatment)