Supplementary Material

Repeat interruptions modify age at onset in myotonic dystrophy type 1 by stabilizing DMPK expansions in somatic cells

Jovan Pešović^{1*}, Stojan Perić^{2,3}, Miloš Brkušanin¹, Goran Brajušković¹, Vidosava Rakočević-Stojanović^{2,3} & Dušanka Savić-Pavićević^{1*}

¹Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
 ²School of Medicine, University of Belgrade, Belgrade, Serbia
 ³Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia

Correspondence:

Prof. Dušanka Savić-Pavićević, E-mail address: duska@bio.bg.ac.rs; ORCID ID: 0000-0002-2079-4077 Jovan Pešović, E-mail address: jovan.pesovic@bio.bg.ac.rs; ORCID ID: 0000-0002-8304-2067 Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia Supplementary Table 1. Linear regression models of correlation between level of somatic instability (SI), the 10th percentile allele length (10thp) and age at sampling (AS) in DM1 patients including the reference group of 136 patients with pure *DMPK* expansions (Morales et al., 2012) and our patients observed at the first time point (six with interrupted and four with pure *DMPK* expansions) and the second time point (seven with interrupted and four with pure *DMPK* expansions).

Model	Term	Coefficient	Standard error	t-statistics	Pr(> t)	R ² (adjusted)	P value						
	The first time point												
Model 4*: $\log(SI) = \beta_0 +$	Intercept	β ₀ = -1.0027	0.1916	-5.234	5.75e ⁻⁰⁷	0.00	< 2.2 e ⁻¹⁶						
$\beta_1 \log_{10}(10^{th}p)$	log ₁₀ (10 th p)	β_1 = 1.3500	0.0754	17.905	<2e ⁻¹⁶	0.69	<2.2e						
Model 6*: $\log(SI) = \beta_0 +$	Intercept	β ₀ = -2.16990	0.24612	-8.817	3.67e ⁻¹⁵								
$\beta_1 \log_{10}(10^{th}p) +$	log ₁₀ (10 th p)	β ₁ = 1.46048	0.06857	21.300	<2e ⁻¹⁶	0.76	<2.2e ⁻¹⁶						
$\beta_2 \log_{10}(AS)$	log ₁₀ (AS)	β ₂ = 0.59450	0.09123	6.517	1.15e ⁻⁰⁹	(adjusted) 0.69							
Model 7* $\log(SI) = 0$	Intercept	β ₀ = 0.2295	0.7644	0.300	0.76								
Model 7*: $log(SI) = \beta_0 + \beta_1 log_{10}(10^{th}p) +$	$\log_{10}(10^{th}p)$	$\beta_1 = 0.5147$	0.2939	1.751	0.08	(adjusted) 0.69 0.76 0.77 0.77	<2.2e ⁻¹⁶						
$\beta_2 \log_{10}(AS) + \beta_3 \log_{10}(10^{th} p) \times \log_{10}(AS)$	log ₁₀ (AS)	β ₂ = -0.9658	0.4806	-2.010	0.05		~ 2.2e						
$p_{310}g_{10}(10) p_{10}(A3)$	log ₁₀ (10 th p)xlog ₁₀ (AS)	β ₃ = 0.6181	0.1871	3.303	0.001								
	Intercept	β ₀ = -9.2774	0.9226	-10.056	<2e ⁻¹⁶								
Model 8*: $log(SI) = \beta_0 + \beta_1 log_{10}(10^{th}p) +$	$\log_{10}(10^{th}p)$	β ₁ = 8.7331	0.6442	13.556	<2e ⁻¹⁶								
$\beta_2 \log_{10}(AS) +$	log ₁₀ (AS)	β ₂ = -1.3453	0.5828	-2.308	0.02	0.00	<2.2e ⁻¹⁶						
$\beta_3 \log_{10}(10^{th}p) \times \log_{10}(AS) + \beta_4 \log_{10}(10^{th}p)^2 +$	log ₁₀ (10 th p)xlog ₁₀ (AS)	β ₃ = 0.3962	0.1393	2.844	0.005	0.90	<2.2e						
$\beta_{10}g_{10}(10 \ p) + \beta_{5}\log_{10}(AS)^{2}$	$\log_{10}(10^{th}p)^2$	β ₄ = -1.6443	0.1242	-13.237	<2e ⁻¹⁶								
	$\log_{10}(AS)^2$	β ₅ = 0.3522	0.1343	2.622	0.01								

Model	Term	Coefficient	Standard error	t-statistics	Pr(> t)	R ² (adjusted)	P value						
	The second time point												
Model 4*: $\log(SI) = \beta_0 +$	Intercept	β ₀ = -1.01328	0.19178	-5.284	4.55e ⁻⁰⁷	0.60	<2.2e ⁻¹⁶						
$\beta_1 \log_{10}(10^{th}p)$	$\log_{10}(10^{th}p)$	$\beta_1 = 1.35478$	0.07543	17.961	<2e ⁻¹⁶	0.69	<2.2e						
Model 6*: $\log(SI) = \beta_0 +$	Intercept	β ₀ = -2.21356	0.24576	-9.007	1.16e ⁻¹⁵								
$\beta_1 \log_{10}(10^{th}p) +$	$\log_{10}(10^{th}p)$	β_1 = 1.46867	0.06826	21.517	<2e ⁻¹⁶	0.76	<2.2e ⁻¹⁶						
β ₂ log ₁₀ (AS)	log ₁₀ (AS)	β ₂ = 0.60874	0.09094	6.694	$4.51e^{-10}$	(adjusted) 0.69							
Model $7*1 \log(SI) = 0$	Intercept	β ₀ = 0.1829	0.7600	0.241	0.81								
Model 7*: $log(SI) = \beta_0 + \beta_1 log_{10}(10^{th}p) +$	$\log_{10}(10^{th}p)$	$\beta_1 = 0.5245$	0.2920	1.796	0.07	0.79	<2.2e ⁻¹⁶						
$\beta_2 \log_{10}(AS) + \beta_3 \log_{10}(10^{th}p) \times \log_{10}(AS)$	log ₁₀ (AS)	β ₂ = -0.9499	0.4777	-1.989	0.05	0.78	<2.2e						
$p_{3}log_{10}(10 p)xlog_{10}(AS)$	log ₁₀ (10 th p)xlog ₁₀ (AS)	β ₃ = 0.6171	0.1859	3.320	0.001								
	Intercept	β ₀ = -9.2521	0.9103	-10.164	<2e ⁻¹⁶								
Model 8*: log(SI) = β_0 +	$\log_{10}(10^{th}p)$	β ₁ = 8.7348	0.6340	13.776	<2e ⁻¹⁶								
$\beta_1 \log_{10}(10^{th}p) + \beta_2 \log_{10}(AS) +$	log ₁₀ (AS)	β ₂ = -1.4005	0.5725	-2.446	0.02	0.00	<2.2e ⁻¹⁶						
$\beta_3 \log_{10}(10^{th}p) \times \log_{10}(AS) +$	log ₁₀ (10 th p)xlog ₁₀ (AS)	β ₃ = 0.4069	0.1374	2.962	0.004	0.90	<2.2e						
$\beta_4 \log_{10}(10^{th}p)^2 + \beta_5 \log_{10}(AS)^2$	$\log_{10}(10^{th}p)^2$	The second time point(adjusted by the second time point $\beta_0 = -1.01328$ 0.19178 -5.284 $4.55e^{-07}$ -0.69 $\beta_1 = 1.35478$ 0.0754317.961 $<2e^{-16}$ -0.69 $\beta_0 = -2.21356$ 0.24576 -9.007 $1.16e^{-15}$ -0.69 $\beta_1 = 1.46867$ 0.06826 21.517 $<2e^{-16}$ -0.76 $\beta_1 = 1.46867$ 0.00826 21.517 $<2e^{-16}$ -0.76 $\beta_2 = 0.60874$ 0.09094 6.694 $4.51e^{-10}$ -0.76 $\beta_0 = 0.1829$ 0.7600 0.241 0.81 -0.78 $\beta_1 = 0.5245$ 0.2920 1.796 0.07 -0.78 $\beta_1 = 0.5245$ 0.2920 1.796 0.07 -0.78 $\beta_3 = 0.6171$ 0.1859 3.320 0.001 -0.78 $\beta_0 = -9.2521$ 0.9103 -10.164 $<2e^{-16}$ -0.90 $\beta_1 = 8.7348$ 0.6340 13.776 $<2e^{-16}$ -0.90 $\beta_2 = -1.4005$ 0.5725 -2.446 0.02 0.90											
	$\log_{10}(AS)^2$	β ₅ = 0.3616	0.1312	2.757	0.007	(adjusted) 0.69 0.76 0.78							

The published linear regression models explaining the variability of somatic instability (Morales et al., 2012) were retested using the 10^{th} percentile allele length (as an estimation of the progenitor allele length (Higham, 2013)) and age at sampling as independent variables. All models were slightly improved since values of the adjusted squared coefficient of correlation (adjusted R²) were higher than the original ones (Morales et al., 2012). P value – statistical significance for each model; Coefficient – an indication of the strength of the effect of each independent variable to the model and its associated standard error; t-statistic and Pr(>|t|) – indications of the statistical significance that an independent variable is contributing to the explanatory power of the model.

Supplementary Table 2. Linear regression models of correlation between the level of somatic instability (SI) of *DMPK* expansions, the 10th percentile allele length (10thp) and age at sampling (AS) in DM1 patients including the reference group of 136 patients with pure *DMPK* expansions (Morales et al., 2012) and our patients analyzed at both time points (six/seven with interrupted and four with pure *DMPK* expansions). The size of the 5' ends was considered for the patients with interrupted *DMPK* expansions.

Model	Term	Coefficient	Standard error	t-statistics	Pr(> t)	R ² (adjusted)	P value
		-	The first time point				
	Intercept	β ₀ = -9.3401	0.9048	-10.323	<2e ⁻¹⁶		
Model 8 ^{**} : log(SI) = β_0	$\begin{tabular}{ c c c c c c } \hline Term & Coefficient & Standard error & t-statistics & Pr(> t) & (adjusted) \\ \hline (adjusted) & \hline (adjusted) \\ \hline (adjusted) & \hline (adjusted) &$						
+ $\beta_1 \log_{10}(10^{th} p) + \beta_2 \log_{10}(AS) +$	log ₁₀ (AS)	β ₂ = -1.4058	0.5733	-2.452	0.02) (adjusted) 	-2 2 -16
$\beta_3 \log_{10}(10^{th}p) \times \log_{10}(AS)$	$\log_{10}(10^{th}p)x\log_{10}(AS)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.90	<2.2e ⁻¹⁶			
$+\beta_4 \log_{10}(10^{10} p)^2 +$	β ₄ = -1.6636	0.1216	-13.683	<2e ⁻¹⁶			
	$\log_{10}(AS)^2$	β ₅ = 0.3684	0.1320	2.790	0.006		
		Tł	ne second time poin	t			
	Intercept	β ₀ = -9.3412	0.8887	-10.511	<2e ⁻¹⁶		
Model 8 ^{**} : log(SI) = β_0	log ₁₀ (10 th p)	β ₁ = 8.8493	0.6180	14.319	<2e ⁻¹⁶		
+ $\beta_1 \log_{10}(10 \text{ p}) + \beta_2 \log_{10}(AS) +$	log ₁₀ (AS)	β ₂ = -1.4704	0.5607	-2.622	0.009	0.00	<2.2e ⁻¹⁶
$\beta_{3}\log_{10}(10^{\text{th}}\text{p}) \times \log_{10}(\text{AS})$	$\log_{10}(10^{th}p)x\log_{10}(AS)$	β ₃ = 0.4197	0.1345	3.120	0.002	0.90	<2.2e
$+\beta_4 \log_{10}(10 \text{ p}) + \beta_5 \log_{10}(\text{AS})^2$	$ \begin{split} & \begin{array}{c} \log_{10}(AS) + \\ \log_{10}(10^{th}p) x \log_{10}(AS) \\ \log_{10}(10^{th}p) x \log_{10}(AS) \\ \log_{10}(10^{th}p) x \log_{10}(AS) \\ \end{array} \\ & \begin{array}{c} \beta_2 = -1.4058 \\ \log_{10}(10^{th}p) x \log_{10}(AS) \\ \beta_3 = 0.4063 \\ 0.1370 \\ 2.966 \\ 0.004 \\ \end{array} \\ & \begin{array}{c} 2.966 \\ 0.004 \\ 0.006 \\ \end{array} \\ & \begin{array}{c} 0.004 \\ 0.006 \\ \end{array} \\ & \begin{array}{c} 0.006 \\ \end{array} \\ & \begin{array}{c} 0.006 \\ 0.006 \\ \end{array} \\ & \begin{array}{c} 0.006 \\ \end{array} \\ \\ & \begin{array}{c} 0.006 \\ \end{array} \\ \\ & \begin{array}{c} 0.006 \\ \end{array} \\ \\ & \begin{array}{0$						
	$\log_{10}(AS)^2$	β ₅ = 0.3789	0.1283	2.953	0.003	Pr(> t) (adjusted) $<2e^{-16}$ $_{-2e^{-16}}$ 0.02 0.90 0.004 0.90 $22e^{-16}$ 0.90 0.006 0.90 $<2e^{-16}$ 0.006 $<2e^{-16}$ 0.90 0.009 0.90 0.002 0.90 $<2e^{-16}$ 0.90	

The published linear regression model 8 explaining the variability of somatic instability (Morales et al., 2012) was retested using the 10^{th} percentile allele length (as an estimation of the progenitor allele length (Higham, 2013)) and age at sampling as independent variables. The size of the 5' ends of interrupted *DMPK* expansions were obtained by subtracting the corresponding interrupted parts at the 3' end from all detected expanded alleles. P value – statistical significance for each model; Coefficient – an indication of the strength of the effect of each independent variable to the model and its associated standard error; t-statistic and Pr(>|t|) – indications of the statistical significance that an independent variable is contributing to the explanatory power of the model.

Supplementary Table 3. Linear regression models of correlation between the age at onset (AO), the 10th percentile allele length (10thp) and standardized residuals of somatic instability (SI) in DM1 patients including the reference sample of 121 symptomatic patients with uninterrupted *DMPK* expansions (Morales et al., 2012) and our patients observed at the first time point (six with interrupted and four with pure *DMPK* expansions) and at the second time point (seven with interrupted and four with pure *DMPK* expansions).

Model	Term	Coefficient	Standard error	t-statistics	Pr(> t)	R ² (adjusted)	P value	
		Tł	ne first time point					
Model 9*: AO = β_0 +	Intercept	β ₀ = 105.354	8.552	12.320	<2e ⁻¹⁶	0.42	· 2 2 - ⁻¹⁶	
$\beta_1 \log_{10}(10^{th}p)$	log ₁₀ (10 th p)	β ₁ = -32.939	3.321	-9.918	<2e ⁻¹⁶	0.43	<2.2e	
Model 10*: AO = β_0 +	Intercept	$\beta_0 = 304.963$	50.612	6.026	1.67e ⁻⁰⁸			
$\beta_1 \log_{10}(10^{th}p) +$	log ₁₀ (10 th p)	β ₁ = -197.944	41.419	-4.779	4.75e ⁻⁰⁶	0.49	<2.2e ⁻¹⁶	
$\beta_2 \log_{10}(10^{th}p)^2$	$\log_{10}(10^{\text{th}}\text{p})^2$	β ₂ = 33.605	8.411	3.995	1.08e ⁻⁰⁴	(adjusted) 0.43		
	Intercept	β ₀ = 304.294	47.696	6.380	3.02e ⁻⁰⁹			
Model 11*: AO = β_0 + $\beta_1 \log_{10}(10^{th}p)$ +	log ₁₀ (10 th p)	β ₁ = -197.576	39.032	-5.062	1.42e ⁻⁰⁶		46	
β_2 standardized residual of SI + $\beta_3 \log_{10}(10^{th}p)^2$	standardized residual(SI)	β ₂ = 33.565	0.813	-4.139	6.31e ⁻⁰⁵	0.55	<2.2e ⁻¹⁶	
	$\log_{10}(10^{\text{th}}\text{p})^2$	B ₃ = -3.365	7.926	4.235	4.36e ⁻⁰⁵			
		The	e second time point					
Model 9*: AO = β_0 +	Intercept	$\beta_0 = 106.435$	8.528	12.48	<2e ⁻¹⁶	0.42	-2.216	
$\beta_1 \log_{10}(10^{th}p)$	log ₁₀ (10 th p)	β ₁ = -33.304	3.310	-10.06	<2e ⁻¹⁶	0.43	<2.2e	
Model 10*: AO = β_0 +	Intercept	$\beta_0 = 304.107$	50.777	5.989	1.96e ⁻⁰⁸			
$\beta_1 \log_{10}(10^{th}p) +$	log ₁₀ (10 th p)	β ₁ = -196.532	41.512	-4.734	5.70e ⁻⁰⁶	0.49	<2.2e ⁻¹⁶	
$\beta_2 \log_{10}(10^{th} p)^2$	$\log_{10}(10^{th}p)^2$	β ₂ = 33.214	8.423	3.943	1.31e ⁻⁰⁴	(adjusted) 0.43 0.49 0.55 0.55		
	Intercept	β ₀ = 303.1017	47.8211	6.338	3.64e ⁻⁰⁹			
Model 11*: AO = β_0 + $\beta_1 \log_{10}(10^{th}p)$ +	log ₁₀ (10 th p)	β ₁ = -195.853	39.0958	-5.010	1.77e ⁻⁰⁶			
$\beta_1 \log_{10}(10^{-}p)^+$ $\beta_2 \text{standardized residual}$ of SI + $\beta_3 \log_{10}(10^{\text{th}}p)^2$	standardized residual(SI)	β ₂ = -3.3680	0.8064	-4.177 5.44e ⁻⁰⁵ 0.55		<2.2e ⁻¹⁶		
F3 - 010(- F7	$\log_{10}(10^{th}p)^2$	B ₃ = 33.1042	7.9325	4.173	5.51e ⁻⁰⁵	0.49 <2.2 0.55 <2.2 0.43 <2.2 0.49 <2.2		

The published linear regression models explaining the variability in age at onset (Morales et al., 2012) were retested using the 10^{th} percentile allele length and standardized residuals of somatic instability according to model 8* (not accounted for by the 10^{th}

percentile allele length and age at sampling) as independent variables. P value – statistical significance for each model; Coefficient – an indication of the strength of the effect of each independent variable to the model and its associated standard error; t-statistic and Pr(>|t|) – indications of the statistical significance that the independent variable is contributing to the explanatory power of the model.

Supplementary Table 4. Dataset of expanded *DMPK* alleles sized in blood cells at the first (t1) and the second (t2) time point and in buccal cells (B) at the second time point in seven patients with interruptions and four patients without interruptions. (This table has been submitted as a separate .xlsx file named Table 4.)

At least 200 individual alleles were sized per sample. The age at sampling (AS) and the age at onset (AO) are indicated for each patient. A value of 0.5 has been added to all AS and AO to allow log transformation of the data. * – analyzed patients with uninterrupted *DMPK* expansions

Patient	Blood t1						Blood t2					Buccal swab t2					
ID	AS	М	10 th	90 th	SI	E*	AS	М	10 th	90 th	SI	E*	AS	М	10 th	90 th	SI
DF1-1	61.5	670	459	920	461	842	65.5	701	443	979	536	873	65.5	732	581	975	394
DF1-2	34.5	454	348	608	260	407	38.5	527	384	670	286	483	38.5	543	433	678	245
DF1-3	35.5	684	441	840	399	505	39.5	745	469	941	472	571	39.5	786	609	950	341
DF2-1	45.5	492	371	697	326	539	48	472	350	688	338	530	48	NA	NA	NA	NA
DF3-1	50	384	266.5	562.5	296	394	52.5	394	289	560	271	455	52.5	NA	NA	NA	NA
DF3-2	NA	NA	NA	NA	NA	NA	31.5	222	187	285	98	157	31.5	NA	NA	NA	NA
DF5-2	26.5	283	235	337	102	209	30.5	330	262	420	158	265	30.5	326	269	401	132
DF5-3*	23.5	454	314	587	273	282	27.5	568	422	758	336	403	27.5	560	420	701	281
MD70*	50.5	168	106	259	153	58	61.5	219	146	421	275	148	61.5	NA	NA	NA	NA
MD179*	14.5	427	326	522	196	226	23	546	415	688	273	353	23	NA	NA	NA	NA
MD180*	22.5	611	400	785	385	341	30.5	785	462	1062	600	460	30.5	NA	NA	NA	NA

Supplementary Table 5. The observed and expected level of somatic instability of interrupted and uninterrupted *DMPK* expansions in blood samples at two time points and the observed level of somatic instability in buccal swab samples.

t1 and t2 – the first and the second time point, respectively; AS – age at sampling in years; M, 10th and 90th – median, the 10th percentile and the 90th percentile allele length inferred from more than 200 alleles sized in each sample; SI – observed level of somatic instability assumed as the difference in the number of repeats at the 10th and at the 90th percentile allele length; E* – the expected level of somatic instability according to the linear regression model 8* (Supp. Table 1) which shows a correlation of the level of somatic instability, the 10th percentile allele length and age at sampling; * – analyzed patients with uninterrupted *DMPK* expansions; NA – not available.

Detient ID	Blood t1						Blood t2						
Patient ID	AS	М	10 th	90 th	SI	E*	AS	М	10 th	90 th	SI	Е*	
DF1-1	61.5	635	424	885	461	812	65.5	666	408	944	536	838	
DF1-2	34.5	419	313	573	260	368	38.5	492	349	635	286	449	
DF1-3	35.5	649	406	805	399	482	39.5	710	434	906	472	551	
DF2-1	45.5	407	286	612	326	408	48	387	265	603	338	383	
DF3-1	50	345	227.5	523.5	296	314	52.5	355	250	521	271	378	
DF3-2	NA	NA	NA	NA	NA	NA	31.5	NA	148	246	98	98	
DF5-2	26.5	254	206	308	102	171	30.5	302	233	391	158	227	

Supplementary Table 6. The observed and expected level of somatic instability of the 5' ends of interrupted *DMPK* expansions at two time points.

The size of the 5' ends were obtained by subtracting the corresponding interrupted parts at the 3' end from all detected expanded alleles in a sample. t1 and t2 – the first and the second time point, respectively; AS – age at sampling in years; M, 10^{th} and $90^{th} –$ median, the 10^{th} percentile and the 90^{th} percentile allele length inferred from more than 200 sized alleles in each sample; SI – observed level of somatic instability assumed as the difference in the number of repeats at the 10^{th} and at the 90^{th} percentile allele length; $E^* –$ the expected level of somatic instability according to the linear regression model 8^{**} (Supp. Table 2) which shows a correlation of the level of somatic instability, the 10^{th} percentile allele length and age at sampling; NA – not available.

Patient	AO		Bloc	od t1		Blood t2					
ID		E(10*)	WSRT	E(11*)	WSRT	E(10*)	WSRT	E(11*)	WSRT		
DF1-1	39.5	16.2		21.9		16.6		21.3			
DF1-2	30.5	18.9		23.5		18.0		23.3			
DF1-3	15.5	16.5	V=18	18.9	V=17	16.1	V=25	18.0	V=22		
DF2-1	40.5	18.2		23.2		19.1		23.7			
DF3-1	45.5	22.5	P=0.16	25.8	P=0.22	21.6	P=0.08	27.1	P=0.2		
DF3-2	31.5	NA		NA		29.0		34.0			
DF5-2	22.5	24.6		31.7		23.1		28.4			
DF5-3*	21.5	20.2		20.6		17.1		19.0			
MD70*	35.5	41.9	V=1	34.0	V=3	34.3	V=5	29.5	V=6		
MD179*	13.5	19.7	P=0.25	20.9	P=0.63	17.2	P=1	19.8	P=0.88		
MD180*	14.5	17.4		16.3		16.2		13.8			

Supplementary Table 7. Comparisons of observed and expected age at onset in patients with interrupted and uninterrupted *DMPK* expansions according to the analyses at two time points.

AO – observed age at onset in years as self-reported by patients; t1 and t2 – the first and the second time point, respectively; $E(10^*)$ – the expected age at onset according to the linear regression model 10* showing correlation between age at onset and the 10th percentile allele length (Supp. Table 3); $E(11^*)$ – the expected age at onset according to the linear regression model 11* showing correlation between age at onset, the 10th percentile of allele length and residual variation in somatic instability according to model 8* (not accounted for by the 10th percentile allele length and age at sampling) (Supp. Table 3); WSRT- Wilcoxon signed-rank test; V – statistics of the Wilcoxon signed-rank test used for comparison of the observed and expected age at onset in each group of patients. * – analyzed patients with uninterrupted *DMPK* expansions.

References

- 1. Higham, C.F. (2013). Dynamic DNA and human disease: mathematical modelling and statistical inference for myotonic dystrophy type 1 and Huntington disease. [dissertation thesis]. [Glasgow, UK]: University of Glasgow.
- 2. Morales, F., Couto, J.M., Higham, C.F., Hogg, G., Cuenca, P., Braida, C., et al. (2012). Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. *Human Molecular Genetics*, *21*(16), 3558-3567. doi:10.1093/hmg/dds185