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Fronto-striatal Dysfunction During Decision-making in Attention-
Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder 

Supplemental Information 

 

Supplementary Methods 

 

 

 

Supplementary Figure S1. Schematic representation of the Iowa gambling task (IGT). On 
each trial of the IGT, participants chose from one of four decks by pressing the spatially 
corresponding button on an MR-compatible button box. The decision phase was followed by 
an anticipation phase (6 s) before the outcome evaluation phase (3 s) displayed the outcome 
of the decision (win/loss and magnitude). Each trial culminates with a blank screen that took 
the total trial duration to 15 s. The loan (red bar) and the current running total (green bar) 
were presented at the bottom of the task display (1-3). 
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Computational Modelling 

Prospect Valence Learning Models 

For all three models, outcome evaluation is assessed according to the non-linear prospect 

utility function which takes into account a diminishing sensitivity to increasing levels of 

magnitude, as well as a different sensitivity to loss and gain outcomes (4, 5). The utility u(t) 

on trial t of each outcome x(t) is expressed as: 

𝑢𝑢(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥(𝑡𝑡) ≥ 0
−𝜆𝜆|𝑥𝑥(𝑡𝑡)|𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥(𝑡𝑡) < 0          (1) 

The α (0<α<2) parameter determines the shape of the utility function and represents 

feedback sensitivity.  A higher value represents higher sensitivity to the relative magnitudes 

of outcomes. The λ (0<λ<10) parameter represents loss-aversion, which determines the 

participant’s sensitivity to losses compared to gains. As λ approaches 0, losses are 

experienced as neutral events.  For λ=1, losses and gains have the same impact. When λ>1, 

losses have greater impact than gains on the subjective utility of an outcome, i.e. the 

participant prefers to select the alternative with a decreased probability of losses despite 

lower expected gains.  

The parameter A (0<A<1) represents the learning rate and determines how much past 

expectancy is discounted. A high learning rate indicates that the recent outcome has a large 

influence on the expectancy of the chosen deck, while a low learning rate indicates the 

opposite. The prospect valence models are identical except that they use different learning 

rules (4). In the delta model, expectancies are recency-weighted averages of the rewards 

received thus far for each deck. A Rescorla-Wagner (6) updating equation updates the 
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expected value of the chosen deck on each trial. Expectancies of the other decks are 

unchanged until chosen on a different trial.  

𝐸𝐸𝑗𝑗(𝑡𝑡 + 1) = 𝐸𝐸𝑗𝑗(𝑡𝑡) + 𝐴𝐴 ⋅ 𝛿𝛿𝑗𝑗(𝑡𝑡) ⋅ �𝑢𝑢(𝑡𝑡) − 𝐸𝐸𝑗𝑗(𝑡𝑡)�          (2) 

Ej(t) refers to the expectancy for deck j on trial t. In this model, A is a recency parameter that 

indicates the weight given to recent outcomes when updating expectancies for the chosen 

deck. The variable δj(t) is a dummy variable, which is 1 if deck j is chosen or else is equal to 0. 

In the decay model, a decay learning rule (7) is used in which expectancies of all unchosen 

decks are discounted on each trial, and the expectancy of the chosen deck is updated by the 

current outcome utility. In this model, A is a decay parameter, which indicates the degree to 

which expectancy is discounted: 

 𝐸𝐸𝑗𝑗(𝑡𝑡 + 1) = 𝐴𝐴 ⋅ 𝐸𝐸𝑗𝑗(𝑡𝑡) + 𝛿𝛿𝑗𝑗(𝑡𝑡) ⋅ 𝑢𝑢(𝑡𝑡)          (3) 

Next, the PVL models assume that the participants' choices on the trial t+1 are guided by the 

expectancies of each deck. This is formalized using a softmax function with an inverse-

temperature parameter:  

 𝑃𝑃𝑃𝑃[𝐷𝐷(𝑡𝑡 + 1) = 𝑗𝑗] = 𝑒𝑒𝜃𝜃⋅𝐸𝐸𝑗𝑗(𝑡𝑡+1)

∑ 𝑒𝑒𝜃𝜃⋅𝐸𝐸𝑘𝑘(𝑡𝑡+1)4
𝑘𝑘=1

          (4) 

This function contains a trial-independent sensitivity parameter θ that indexes the extent to 

which trial-by-trial choices match the expected deck utilities, and which is set by the fourth 

model parameter, which is c (0≤c ≤ 5) or response consistency. Large values of c indicate a 

tendency to select decks with the highest learned expectancies (exploitation), whereas small 

values indicate a tendency explore decks with lower expected utilities (exploration). 
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Value Plus Perseverance Model 

Evidence suggests that participants often use a WSLS strategy during IGT (8).  In other words, 

participants sometimes adopt a perseverative strategy that uses information only about the 

most recent outcome for the most recently chosen deck. A hybrid Value Plus Perseverance 

(VPP) model was developed combining the PVL-Delta learning rule and WSLS heuristic (8). 

This model assumes that individuals track both expectancies (Ej(t)) and perseverance 

strengths (Pj(t)); expectancies are computed using the learning rule of the PVL-Delta model, 

and three additional perseverance parameters are included:  

𝑃𝑃𝑗𝑗(𝑡𝑡 + 1) =
𝑘𝑘 ⋅ 𝑃𝑃𝑗𝑗(𝑡𝑡) + 𝜀𝜀𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥(𝑡𝑡) ≥ 0
𝑘𝑘 ⋅ 𝑃𝑃𝑗𝑗(𝑡𝑡) + 𝜀𝜀𝑛𝑛𝑖𝑖𝑖𝑖𝑥𝑥(𝑡𝑡) < 0          (5) 

k (0<k<1) determines how much perseverance strengths of all (including unselected) decks 

decay on each trial, and εp and εn indicate loss/gain impact, respectively, on choice 

behaviour. Positive values reflect a tendency to persevere on the same deck, while negative 

values indicate a tendency to switch decks on the next trial. Overall value, Vj(t+1) is the 

weighted sum of Ej(t+1) and Pj(t+1): 

𝑉𝑉𝑗𝑗(𝑡𝑡 + 1) = 𝜔𝜔 ⋅ 𝐸𝐸𝑗𝑗(𝑡𝑡 + 1) + (1 − 𝜔𝜔) ⋅ 𝑃𝑃𝑗𝑗(𝑡𝑡 + 1)          (6) 

ω is the reinforcement learning (RL) weight (0<ω<1); a low ω indicates the subject relies less 

on RL/more on perseverance. Choice probability was again computed using the softmax 

function, but with Vj(t+1): 

𝑃𝑃𝑃𝑃[𝐷𝐷(𝑡𝑡 + 1) = 𝑗𝑗] = 𝑒𝑒𝜃𝜃⋅𝑉𝑉𝑗𝑗(𝑡𝑡+1)

∑ 𝑒𝑒𝜃𝜃⋅𝑉𝑉𝑘𝑘(𝑡𝑡+1)4
𝑘𝑘=1

          (7) 
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Model Comparison 

Posterior inference for all models was performed via Markov Chain Monte Carlo (MCMC) 

sampling implemented in RStan (v2.1.063) (9) (http://mc-stan.org/interfaces/rstan). RStan 

uses a specific probabilistic sampler called Hamiltonian Monte Carlo (HMC) to sample from 

the posterior distribution. A total of 3000 samples per chain were drawn after 1000 burn-in 

samples with 4 chains (10, 11). All model parameters of all models had R^ values around 1.00, 

indicating that chains converged to the target distributions (10). Post-hoc model comparison 

was conducted using Wanatabe-Akaike Information Criterion (WAIC) (12). This index is 

obtained by computing the summed point-wise log-likelihood per participant, accounting for 

the fact that in the IGT, choices on a given trial are dependent on previous choices (13). 

Smaller WAIC scores denote better model-fit, and overall fit was assessed by adding WAIC 

scores from each group for each model (12). 

In line with previous work, across all participants the VPP model (WAICtotal=11337.88) 

provided the best model-fit relative to the other two models (PVL-Decay 

WAICtotal=11589.93; PVL-Delta WAICtotal=11925.39). This model was also the best fit within 

control (VPP WAIC=3670.54; PVL-Decay WAIC=4076.48; PVL-Delta WAIC=4135.61), ADHD 

(VPP WAIC=3107.35; PVL-Decay WAIC=3355.58; PVL-Delta WAIC=3392.5) and OCD (VPP 

WAIC=3851.94; PVL-Decay WAIC=4202.03; PVL-Delta WAIC=4270.9) groups separately. 

Consequently, the model parameters from the winning VPP model were used to compare 

groups. 

fMRI Image Acquisition 

The fMRI images were acquired at King’s College London, Institute of Psychiatry’s Centre for 

Neuroimaging Sciences on a 3T General Electric Signa Horizon HDx MRI scanner (GE 
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Healthcare, UK) using the body coil for radio frequency transmission and a quadrature 

birdcage headcoil for reception. In each of 22 non-contiguous planes parallel to the anterior–

posterior commissure, 480 T2*-weighted MR images depicting BOLD contrast covering the 

whole brain were acquired with echo time TE=30 ms, TR=1.5 s, flip angle=60°, in-plane voxel 

size=3.75 mm, slice thickness=5.0 mm, slice skip=0.5 mm). A whole-brain high resolution 

structural scan (inversion recovery gradient echo planar image) used for standard space 

normalisation was also acquired in the inter-commissural plane with TE=40 ms, TR=3 s, flip 

angle=90°, number of slices: 43, slice thickness=3.0 mm, slice skip=0.3 mm, in-plane voxel 

size=1.875 mm, providing complete brain coverage. As collected data in patients with OCD 

included only adolescents aged 12-18 years old, data from control and ADHD groups for older 

(adults) and younger (pre-adolescents) age ranges were excluded so that groups could be 

matched on age. One patient with OCD was excluded due to poor quality fMRI data. 

Participants completed other tasks during the same session, which have been published 

elsewhere (1-3, 14-23). 

XBAM Analysis 

In contrast to theory-based inference, XBAM (24-26) minimizes assumptions and uses median 

based statistics which controls for outliers. The test statistic is computed by standardizing for 

individual differences in residual noise before performing second-level analysis using 

permutation tests. XBAM employs a mixed-effects method that has been recommended 

following analysis of the validity and impact of theory-based inference in fMRI (27). 

Following motion correction, global detrending, spin-excitation history correction and 

smoothing (full-width at half-maximum (FWHM) 7.2 mm), the residual effects of motion were 

regressed out from the time series (using the estimated motion parameters) before a 
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standard general linear modelling approach was used to obtain estimates of the response size 

(beta) to each of the events of interest (advantageous choices, disadvantageous choices, 

anticipation period, win outcomes, loss outcomes). The anticipation and outcome phases are 

likely not entirely separable, due to the lack of jitter between the two conditions in the task 

design. Moreover, it is important to note that on all trials the probability of winning was 

50/50, which means that there is no equivalent to a “wins” versus “loss” anticipation contrast 

in our version of the IGT, as has been examined in tasks such as the monetary incentive delay 

task (28). Therefore we did not examine the anticipation phase in the current study, and must 

note as a limitation that brain activation during the outcome phase may be contaminated by 

brain activation from the anticipation phase due to the haemodynamic delay. 

Time series analysis for each subject was conducted using wavelet-based resampling (29). We 

convolved the main experimental conditions with 2 Poisson model functions (peaking at 4 

and 8 s). We then calculated the weighted sum of these 2 convolutions that gave the best fit 

(least-squares) to the time series at each voxel. A goodness-of-fit statistic (SSQ ratio) was 

computed at each voxel consisting of the ratio of the sum of squares of deviations from the 

mean intensity value due to the model (fitted time series) divided by that of the squares due 

to the residuals (original time series minus model time series) (29).  

The appropriate null distribution for assessing significance of any given SSQ ratio was 

established using a wavelet-based re-sampling method and applying the model-fitting 

process to the resampled data. The aim was to achieve a global (image-wide) permutation 

based threshold for forming clusters at p<0.05 at the first stage of cluster analysis. We did this 

by permuting 20 times per voxel and combining permutations over the whole brain, resulting 

in 20 null parametric maps of SSQ ratios for each subject, which were combined to give the 
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overall null distribution of SSQ ratio (26, 29). As there are approximately 50,000 intra-cerebral 

voxels in our analysis, this means that we used around 1,000,000 combined permutations to 

form a global threshold for the first stage of our cluster analysis (18, 29). This same 

permutation strategy was applied at each voxel to preserve spatial correlation structure in 

the data. Individual SSQ ratio maps were then affine transformed into standard space by 

normalising onto a Talairach template (30). 

For the group-level comparisons, group activation maps were produced for each contrast by 

calculating the median observed SSQ-ratio over all subjects at each voxel in standard space 

and testing them against the null distribution of median SSQ-ratios computed from the 

identically transformed wavelet re-sampled data (24). ANCOVA analyses with group as factor 

and head displacement in Euclidian 3-D space and age as covariates were performed to 

compare groups. The necessary combination of voxel and cluster level thresholds was not 

assumed from theory but rather was determined by direct permutation for each dataset (26). 

The voxel-level threshold was first set to p<0.05 to give maximum sensitivity and to avoid 

Type II errors, as in order to maximize detection power we used the highest threshold that 

we have shown empirically to give good type I error control at cluster level under the null 

hypothesis using our permutation-based method (24, 26, 29). A cluster-level threshold was 

computed from the data for the resulting three-dimensional voxel clusters such that the final 

expected number of type I error clusters was <1. Cluster mass rather than a cluster extent 

threshold was used to minimize discrimination against possible small, strongly responding foci 

of activation (26).   
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Supplementary Results 

Effects of Age and Motion on Brain Activation 

 

Supplementary Figure S2. Bilateral MPFC/dACC/SMA/caudate (Peak Talairach Coordinates: 
-4,52,31, voxels=233, p=0.01) regions showing a significant positive correlation between 
head displacement in Euclidian 3-D space and brain activation during outcome processing 
(wins>losses) across all participants.  Thresholded at p<0.05 for voxel and expected number 
of type I error clusters was <1. 

 

 

Supplementary Figure S3. Regions in left insula/STG/postcentral gyrus (Peak Talairach 
Coordinates: -40,-7,-2, voxels=175, p=0.005) and dACC/SMA/MPFC/PCC/SPL (Peak 
Talairach Coordinates: 4,-4,31, voxels=329, p=0.003)  showing a significant negative 
correlation between age and brain activation during decision making 
(advantageous>disadvantageous choices) across all participants. Thresholded at p<0.05 for 
voxel and expected number of type I error clusters was <1. 
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Supplementary Figure S4. Bilateral cerebellum/thalamus/right occipital lobe/ITL (Peak 
Talairach Coordinates: 11,-74,-29, voxels=495, p=0.003) and right vmOFC/MPFC/IFG (Peak 
Talairach Coordinates: 29,52,-2, voxels=256, p=0.004) regions showing a significant negative 
correlation between age and brain activation during outcome processing (wins>losses) 
across all participants.  Thresholded at p<0.05 for voxel and expected number of type I error 
clusters was <1. 

 

 

Exploratory Brain-Behaviour and Brain-Performance Correlations 

Statistical BOLD response from regions that showed significant group differences were 

extracted, and correlated with task performance (net score, and VPP parameters shown to 

differ between groups: c, ω, α) and symptoms scores (ADHD: Conner’s T; OCD: CY-BOCS). 

Within controls, net score was correlated with activation in vmOFC (BF10=11.7, r(20)=0.61, 

p=0.005) during the choice phase, such that greater activation during advantageous relative 

to disadvantageous choices was associated with a greater proportion of advantageous 

choices. 

In addition, using NHST, in controls VS activation was correlated with net score (r(20)=0.49, 

p=0.03). Moreover, VS (r(20)=0.45, p<0.05) and vmOFC (r(20)=0.53, p=0.02) activation was 

correlated with c, such that greater activation was associated with greater choice consistency. 
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In ADHD and OCD patients, there were significant correlations between SMA/PCC/precuneus 

activation and net score.  In patients with ADHD, greater activation to disadvantageous 

choices was associated with a higher net score (r(16)=-0.57, p=0.02), while in OCD patient 

greater activation to advantageous choices was associated with a higher net score 

(r(20)=0.58, p=0.01). However, crucially, for all these findings BF10<10, suggesting weak 

evidence for the tested model over the null hypothesis. Therefore these results should be 

interpreted with caution. 

There were no credible or significant correlations between symptoms and brain activation 

within either ADHD or OCD patient groups (all BF10<10, p>0.05). 

 

Supplementary Table S1. Parameter estimates from the VPP model 

Parameter HC (N=20) 
mean 

ADHD (N=16) 
mean 

OCD (N=20) 
mean 

Learning rate (A) 0.01 0.05 0.14 
Feedback sensitivity (α) 0.14 1.29 0.94 
Choice sensitivity (c) 3.22 0.66 0.39 
Loss aversion (λ) 0.18 2.34 4.79 
Loss impact (εp) -6.43 -7.04 -6.51 
Gain impact (εn) -3.87 -4.94 -3.3 
Perseverance decay rate (k) 0.41 0.47 0.42 
Reinforcement learning weight (ω) 0.99 0.75 0.51 

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; HC, healthy controls; OCD, 
Obsessive-Compulsive Disorder; VPP, value-plus-perseverance.  
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Supplementary Table S2. Highest density intervals for two-way comparisons  

 
Parameter                      95% HDI of MCMC 

                              HC vs. ADHD 
A -0.124329631   0.009118273 
α -1.98504670 -0.02234436 
c 1.403504  4.304253 
λ -8.2034198  0.5380411 
εp -10.40527   11.64826 
εn -7.115025  10.562547 
k -0.22995921   0.08383159 
ω 0.01793361  0.57137645 

                                 HC vs. OCD  
A -0.4283741   0.0170836 
α -1.96324296   0.09953476 
c 1.702021  4.499517 
λ -9.39909698   0.02869173 
εp -11.18040   10.95115 
εn -9.012880   7.633389 
k -0.2080696   0.2080198 
ω 0.1466798  0.8833930 

                            ADHD vs. OCD 
A -0.4164726   0.1212036 
α -1.224132 1.719832 
c -0.1712017 0.7308317 
λ -9.786166   4.741136 
εp -11.02590 10.76896 
εn -10.580384    6.735364 
k -0.1216061   0.2647576 
ω -0.2311466   0.7312512 
Abbreviations: α, outcome sensitivity; A, learning rate; ADHD, Attention-Deficit/Hyperactivity 
Disorder; c, consistency/choice sensitivity; εp /εn, impact of gain/loss, respectively, on 
perseverance behaviour; HC, Healthy Control; HDI, highest density interval; k, perseverance 
decay rate; λ, loss aversion; MCMC, Markov Chain Monte Carlo sampling; OCD, Obsessive-
Compulsive Disorder; ω, reinforcement learning weight.  
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(A) Healthy control boys 

 

(B) ADHD boys 

 

(C) OCD boys 

 

Supplementary Figure S5. Within-group maps for choice phase (disadvantageous versus 
advantageous). Group activation maps. Axial slices showing within-group brain activation for 
the contrasts of advantageous-disadvantageous choices (red) and disadvantageous-
advantageous choices (blue). (A) healthy controls, (B) ADHD boys (C) OCD boys. Talairach z-
coordinates are indicated for slice distance (in mm) from the intercommissural line.  The right 
side of the brain corresponds to the right side of the image. Data presented at voxel threshold 
p<.05 and cluster threshold p<0.05. 
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(A) Healthy control boys 

 

(B) ADHD boys 

 

(C) OCD boys 

 

Supplementary Figure S6. Within-group maps for outcome phase (wins versus losses). 
Group activation maps. Axial slices showing within-group brain activation for the contrasts of 
win-loss outcomes (red) and losses-wins choices (blue). (A) healthy controls, (B) ADHD boys 
(C) OCD boys. Talairach z-coordinates are indicated for slice distance (in mm) from the 
intercommissural line.  The right side of the brain corresponds to the right side of the image. 
Data presented at voxel threshold p<.05 and cluster threshold p<.05. 
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Supplementary Table S3. ANCOVA differences in brain activation between adolescents with 
ADHD and OCD and healthy comparison adolescents at a liberal whole-brain cluster 
threshold (p<.05). 

Brain regions of activation BA Peak Talairach 
Coordinates 

Voxels Cluster 
p-value 

Advantageous>disadvantageous choices 

Controls > ADHD, OCD     

L VS/thalamus  -11,4,4 43 .014 

R occipital lobe 18 36,-81,-7 21 .045 

L occipital lobe 19 -29,-70,4 25 .033 

R occipital lobe 19 25,-59,4 27 .036 

L cerebellum  -22,-78,-24 20 .029 

L cerebellum  -51,-70,-29 30 .021 

R cerebellum  25,-70,-24 16 .044 

Controls, ADHD > OCD      

vmOFC 11 4,41,-13 28 .02 

L DLPFC/IFG 10,46,45 -36,44,15 22 .022 

Disadvantageous > advantageous choices 

Controls > ADHD, OCD 

aPFC 10 4,70,9 24 .03 

R STG/insula 38,21 47,7,-13 22 .026 

R  pallidum/thalamus  18,-11,-2 33 .03 

R STG/SMG 42,40 65,-30,20 18 .03 

L & R precentral gyrus/postcentral 
gyrus/PCC/precuneus 

4,5,6 2,-26,48 138 .029 

Wins>losses 

Controls >ADHD, OCD 

R DLPFC/IFG 9,46,44,45 36, 52, 26 46 .022 

L dACC/SMA/precentral 
gyrus/postcentral gyrus 

6,4 -18-19,59 20 .03 

L putamen  -22,0,9 44 .013 

L precentral gyrus 6,4 -40,0,26 17 .043 

L superior parietal/inferior parietal, 
SMG 

7,40 -20, -61, 61 71 .009 

R precuneus/superior 
parietal/occipital lobe 

7,18,19 36, -74, 37 185 .002 
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Brain regions of activation BA Peak Talairach 
Coordinates 

Voxels Cluster 
p-value 

L occipital lobe/angular gyrus 19,18,37,39 -37, -77, -3 45 .033 

Controls, OCD >ADHD     

R putamen/caudate  22,-4,9 50 .016 

Losses>wins 

Controls > ADHD, OCD 

L OFC 11 -25,33,-40 17 .032 

MPFC 32,24,25,9 -4,48,9 121 .005 

dACC 32,6,8 -14,19,42 9 .05 

L STG/MTG 22,21 -47,-26,-7 19 .049 

Controls, ADHD > OCD 

R caudate tail/hippocampus, 
parahippocampus/MTG/occipital lobe 

37,41,19 33,-30,4 74 .02 

ADHD> Controls, OCD 

R dACC/SMA/precentral 
gyrus/postcentral gyrus 

6,4 11,-15,59 21 .032 

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; aPFC, anterior prefrontal 
cortex; BA, Brodmann area; dACC, dorsal anterior cingulate cortex; DLPFC, dorsolateral 
prefrontal cortex; IFG, inferior frontal gyrus; MTG, middle temporal gyrus; PCC, posterior 
cingulate cortex; OCD, Obsessive-Compulsive Disorder; OFC, orbitofrontal cortex; SMA, 
supplementary motor area; SMG, supramarginal gyrus; STG, superior temporal gyrus; vmOFC, 
ventromedial orbitofrontal cortex; VS, ventral striatum. 
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Supplementary Figure S4. Exploratory ANCOVA results for the between-group differences 
in brain activation for contrast comparing advantageous and disadvantageous choices at a 
liberal whole-brain cluster threshold (p<.05). Red indicates significant between-group 
differences in activation between adolescents with ADHD, adolescents with OCD, and healthy 
comparison adolescents. Talairach z-coordinates are indicated for slice distance (in mm) from 
the intercommissural line. The right side of the brain corresponds to the right side of the 
image. 

 

 

Supplementary Figure S5. Exploratory ANCOVA results for the between-group differences 
in brain activation for contrast comparing wins and losses at a liberal whole-brain cluster 
threshold (p<.05). Red indicates significant between-group differences in activation between 
adolescents with ADHD, adolescents with OCD, and healthy comparison adolescents. 
Talairach z-coordinates are indicated for slice distance (in mm) from the intercommissural 
line. The right side of the brain corresponds to the right side of the image. 
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