Supplemental Information

The SIK1 kinase ensures a robust extracellular ROS burst and anti-bacterial immunity by regulating BIK1 stability and RBOHD activation

Meixiang Zhang, Yi-Hsuan Chiang, Tania Y. Toruño, DongHyuk Lee, Miaomiao Ma, Xiangxiu Liang, Neeraj K. Lal, Mark Lemos, Yi-Ju Lu, Shisong Ma, Jun Liu, Brad Day, Savithramma P. Dinesh-Kumar, Katayoon Dehesh, Daolong Dou, Jian-Min Zhou, Gitta Coaker

Supplemental Figures

Homozygous T-DNA insertion lines

Figure S1. Related to Figure 1. RT-PCR verified the absence of full-length CDS transcripts in each map4k T-DNA line. (A) Gene structure of the *Arabidopsis MAP4K* family members and T-DNA insertion sites. (B) The absence of full-length transcripts in each map4k T-DNA line by RT-PCR. Top: transcript accumulation in wild-type Col-0. Bottom: transcript accumulation in individual T-DNA insertion lines.

Figure S2. Related to Figure 1. ROS burst in the *MAP4K* T-DNA mutants. The ROS burst in the indicated lines after treatment with 100 nM flg22 or water. Values are means \pm SEM of RLU (n=12). Asterisks indicate significant differences (Fisher's LSD, p < 0.01). Similar results were obtained in three independent experiments.

Figure S3. Related to Figure 2. Conservation of the SIK1 kinase domain. Amino acid alignment of the kinase domain of SIK1 homologs from different land plants. Important motifs required for kinase activity are highlighted.

Figure S4. Related to Figure 3. Autoimmune responses in sik1 mutants.

(A) The translocation of the AvrRpm1 effector is not compromised in *sik1-1*. The adenylate cyclase (CyaA) delivery assay was performed by infiltrating Col-0 and sik1-1 with *P. syringae* carrying *avrRpm1-CyaA* at a concentration of 3×10^7 CFU ml⁻¹. CyaA activity depends on calmodulin in eukaryotic cells. Only fusion proteins injected into eukaryotic cells produce cAMP. Effector translocation levels were determined by guantifying cAMP after 8 h. The data are shown as means ± SD. Similar results were obtained in three independent experiments. (B) The lesion mimic phenotype of sixweek-old sik1-1. Flowers were removed for a clearer image. The transgenic sik1-1 line expressing NahG-HA was able to rescue the lesion mimic phenotype. (C) Total SA levels in Col-0 and sik1 mutants. (D) Relative expression of the PR1 gene in Col-0 and sik1 mutants using gPCR. In panels (C and D) the data are shown as means ± SD (n=3). (E) Anti-PR1 immunoblot demonstrating PR1 protein accumulation in wild-type Col-0 and sik1 mutant lines at a resting state. CBB = Coomassie brilliant blue. (F) Other phytohormone levels in sik1 mutant lines. Total jasmonic acid (JA), cis-(+)-12-oxophytodienoic acid (OPDA), and abscisic acid (ABA) levels in Col-0 and sik1 mutant lines. Hormones were extracted from five-week-old plants. The data are shown as means \pm SD (n=3). Asterisks indicate significant differences (Dunnett's test, p < 0.01). Similar results were obtained in three independent experiments.

Figure S5. Related to Figure 4. Compromised PAMP-induced ROS burst in *sik1* mutants.

(A and B) The ROS burst in the indicated lines after treatment with 100 nM flg22 or water. Total relative luminescent units (RLU) were detected over a 40-min period. Values are means \pm SEM of RLU (A, n=12; B, n=14). (C) The ROS in the indicated lines after treatment with 100 nM flg22 or water. Total relative luminescent units (RLU) were detected over a 40-min period. Values are means \pm SEM of RLU (n=14). Asterisks indicate significant differences (Dunnett's test, p < 0.01). (D) The ROS burst in the indicated lines after treatment with 100 nM flg22 or water. Values are means \pm SEM of RLU (n=18). (E) The ROS burst in the indicated lines after treatment with 100 nM flg22 or water. Values are means \pm SEM of RLU (n=18). (E) The ROS burst in the indicated lines after treatment with 100 nM elf18 or water. Values are means \pm SEM of RLU (n=12). (F) The ROS burst in the indicated lines after treatment with 10 μ M chitin or water. Values are means \pm SEM of RLU (n=18). These experiments were repeated at least twice with similar results.

Figure S6. Related to Figure 6. SIK1 specifically affects BIK1 protein accumulation and can associate with the FLS2 immune receptor.(A) FLS2 abundance is not altered in *sik1-1*. Total proteins from Col-0, *fls2*, and *sik1-1* plants were extracted and FLS2 protein was detected by anti-FLS2 immunoblot analyses. CBB = Coomassie brilliant blue. (B) Relative expression of *BIK1* in indicated lines using qPCR. Data are shown as means \pm SD (n=3). (C) Relative transcript expression of *BIK1-HA* in independent transgenic lines using RT-PCR. *EF1* α was used as a reference. (D) The ROS burst in the indicated lines after treatment with 100 nM flg22 or water. Values are means \pm SEM of RLU (n=14). (E) PBL1 accumulation is not affected in *sik1-1*. *PBL1-FLAG*, *BAK1-FLAG*, and *T7-SIK1* plasmids were expressed in Col-0 and *sik1-1* protoplasts. Protein levels were determined by immunoblot analyses. (F) Coimmunoprecipitation of T7-SIK1 Δ N and FLS2-GFP-his after co-expression in *Nicotiana benthamiana*.

Figure S7. Related to Figure 7. MS/MS spectra of phosphopeptides in RBOHD's N-terminus. MS2 mass spectra after *in vitro* kinase assay with MBP-SIK1 Δ N but not the kinase dead variant MBP-SIK1 Δ N^{KD}.

Supplemental Tables

Table S1. Related to Figure 5. Phosphorylated BIK1 residues identified by LC/MS/MS.

Phosphorylation sites	Peptide modified sequence	Probability	Site ambiguity	Previously identified	Description	Reference				
S26	SSDLYGLS[+80]LSSR	98%	No	Yes	by autocatalysis and BAK1.	Lin et al., 2014				
S32	KS[+80]SSTVAAAQKTEGEILSSTPVK	99%	Yes	Yes	by autocatalysis.	Lin et al., 2014				
S33	KSS[+80]STVAAAQKTEGEILSSTPVK	99%	Yes	Yes	by autocatalysis.	Laluk et al., 2011;	Lin et al., 20 [.]	14; Xu et al.,	2013	
S34	KSSS[+80]TVAAAQKTEGEILSSTPVK	99%	Yes	No						
Т35	KSSST[+80]VAAAQKTEGEILSSTPVK	99%	No	Yes	by autocatalysis.	Laluk et al., 2011;	Lin et al., 20 [.]	14		
T42	KSSSTVAAAQKT[+80]EGEILSSTPVK	99%	No	Yes	by autocatalysis.	Laluk et al., 2011;	Lin et al., 20 [.]	14		
T50	KSSSTVAAAQKTEGEILSST[+80]PVK	99%	No	No						
S54	TEGEILSSTPVKS[+80]FTFNELK	91%	No	Yes	by autocatalysis.	Lin et al., 2014; Xu	ı et al., 2013			
T56	TEGEILSSTPVKSFT[+80]FNELK	91%	Yes	Yes	by autocatalysis.	Lin et al., 2014; Xu	ı et al., 2013			
T64	LAT[+80]RNFRPDSVIGEGGFGCVFK	99%	Yes	Yes		Laluk et al., 2011				
S71	NFRPDS[+80]VIGEGGFGCVFK	99%	No	Yes	by autocatalysis and BAK1.	Xu et al., 2013				
T120	EWLT[+80]EINYLGQLSHPNLVK	99%	No	No						
Y168	GAY[+80]FKPLPWFLR	98%	No	Yes	by autocatalysis and BAK1.	Xu et al., 2013				
S193	GLAFLHS[+80]DPVKVIYR	98%	No	No						
S206	DIKAS[+80]NILLDADYNAK	99%	No	Yes	by autocatalysis and BAK1.	Laluk et al., 2011;	Lin et al., 20′	14; Xu et al.,	2013	
S219	ASNILLDADYNAKLS[+80]DFGLAR	95%	No	No						
S233	DGPMGDLS[+80]YVSTR	99%	No	Yes	by autocatalysis and BAK1.	Laluk et al., 2011;	Lin et al., 20 ⁻	14; Xu et al.,	2013	
S236	DGPMGDLSYVS[+80]TR	99%	No	Yes	by autocatalysis, BAK1 and PEPR1.	Laluk et al., 2011;	Lin et al., 20 ²	14; Xu et al.,	2013; Zhang	et al., 2010
T314	VLLIVDNRLDT[+80]QYLPEEAVR	99%	No	Yes	by autocatalysis.	Xu et al., 2013				
T341	SRPT[+341]MDQVVR	97%	No	No						
S360	ALQQLQDNLGKPS[+80]QTNPVKDTKK	98%	Yes	Yes	by autocatalysis.	Xu et al., 2013				
T362	ALQQLQDNLGKPSQT[+80]NPVKDTKK	98%	Yes	Yes	by autocatalysis and BAK1.	Lin et al., 2014; Xu	i et al., 2013			
T368	ALQQLQDNLGKPSQTNPVKDT[+80]KK	99%	No	Yes	by autocatalysis and BAK1.	Lin et al., 2014; Xu	ı et al., 2013			
T375	LGFKT[+80]GTTKSSEKR	93%	No	Yes	by autocatalysis.	Lin et al., 2014				
T377	LGFKTGT[+80]TKSSEKR	93%	No	No						

Table S2. Related to STAR Methods. T-DNA insertion lines and accession numbers.

Gene	Locus	Allele	Stock number
MAP4K1	AT1G53165	m4k1-1	SALK_060372
MAP4K2	AT3G15220	m4k2-2	CS925354
MAP4K3	AT1G69220	sik1-1	SALK_046158
(SIK1)		sik1-4	SALK_051369
MAP4K4	AT5G14720	m4k4-1	SALK_065417
MAP4K5	AT4G24100	m4k5-1	SALK_208908
MAP4K6	AT4G10730	m4k6-2	SALK_127267
MAP4K7	AT1G70430	m4k7-1	SALK_108286
MAP4K8	AT1G79640	m4k8-1	SALK_067866
MAP4K9	AT1G23700	m4k9-2	SALK_152867
MAP4K10	AT4G14480	m4k10-1	SALK_202941
FLS2	AT5G46330	fls2	SALK_062054
BIK1	AT2G39660	bik1	SALK_005291

Name	Sequence 5' to 3'	Purpose
LBb1.3	ATTTTGCCGATTTCGGAAC	T-DNA left border
		primer
M4K1-LP	AGGTTCTCCTTTTGCCATCTC	m4k1-1 T-DNA line
M4K1-RP	CATGGAATATATGGCTGGTGG	genotyping
M4K2-LP	TCCATCATCACAAGGGATCTC	m4k2-2 T-DNA line
M4K2-RP	GGGAACTTGGTTAAGTTTCACG	genotyping
M4K3-LP1	TGTCCAAATCATCCACATGTG	sik1-1 T-DNA line
M4K3-RP1	ATGGTTCGAAAATGCAGATTG	genotyping
M4K3-LP2	ATTTGGTATCTGGATTGGCAG	sik1-4 T-DNA line
M4K3-RP2	TGTGGAGTCCCAATGAACTTC	genotyping
M4K3-LP3	CAGCTATTGAGATGGCAGAGG	sik1-5 T-DNA line
M4K3-RP3	TCAGAGCGCTTAAAGGTCAAC	genotyping
M4K4-LP	TTGCATTATCCTCGTCCTCAC	m4k4-1 T-DNA line
M4K4-RP	CAAAAGATTCTCGAAAGTGCG	genotyping
M4K5-LP	TCAAACAGTTTGTCTGCTCCC	m4k5-1 T-DNA line
M4K5-RP	CTCTGAAGCCACAGGTTCAAC	genotyping
M4K6-LP	ACTAGAAGATGTCCAGCTGCG	m4k6-2 T-DNA line
M4K6-RP	ATGATTTCAGTTGCCGTTCAC	genotyping
M4K7-LP	GGTCACAGACTATGCCTTTGG	m4k7-1 T-DNA line
M4K7-RP	TAACCTGATTACTTGCGCCTG	genotyping
M4K8-LP	ACACCTGAATCTCCGATTGTG	m4k8-1 T-DNA line
M4K8-RP	TTCTTCTTGTCACAGGATGGC	genotyping
M4K9-LP	TTTCATGATTGTTTTCAGGTGC	m4k9-2 T-DNA line
M4K9-RP	ACCAGCAGTTGGATCACAGAG	genotyping
M4K10-LP	CGTGGACTGGACTCAGAAGAG	<i>m4k10-1</i> T-DNA line
M4K10-RP	CTTGATGCTGAAGCCTACGAG	genotyping
M4K1-RT-F	ATGGATGATGTTGCTGGTTTAC	Full length MAP4K1
M4K1-RT-R	TCAACTTTGGTTAAGATCACGC	CDS
M4K2-RT-F	ATGGACGATGTTGCGGGTTTAC	Full length MAP4K2
M4K2-RT-R	TTAAAGATCACGTGATGATTGGC	CDS
SIK1-RT-F	ATGGATCATAACTCGCCGAAATC	Full length SIK1 CDS
SIK1-RT-R	TTAGAGGCGGAGAATAGTGCG	
M4K4-RT-F	ATGGAATCGGGTTCAGAGAAAAAG	Full length MAP4K4
M4K4-RT-R	TCAATCATTTCTGTGTGTTAATGC	CDS
M4K5-RT-F	ATGGTGGGAGGAGGAGGAGG	Full length MAP4K5
M4K5-RT-R	TTAGTGTTCGCGACCCGTGAATG	CDS
M4K6-RT-F	ATGGTGTCTCGGTTTCGTCTTG	Full length MAP4K6
M4K6-RT-R	TTACAATTGCTCGCGACCGGT	CDS
M4K7-RT-F	ATGGCTGGTTCATCAACGAAAC	Full length MAP4K7
M4K7-RT-R	TTAAGAGATGTTGTTGCTGCTAATC	CDS
M4K8-RT-F	ATGGGTACAATGGAGAAGAAGAAG	Full length MAP4K8
M4K8-RT-R	TTAGTTACTCATACTTACTTGGGC	CDS

Table S3. Related to STAR Methods. Primers used in this study.

M4K9-RT-F	ATGACGAGTTCACCGGAAACG	Full length MAP4K9	
M4K9-RT-R	TTAAAGCTTGTGGAATTTATCATTAC	CDS	
	С		
M4K10-RT-F	ATGGCTCGGAACAAGCTCGAG	Full length MAP4K10	
M4K10-RT-R	TTAACCCAAAACACTATCTTTATCA	CDS	
	GC		
PR1-F	CGGAGCTACGCAGAACAACT	qPCR	
PR1-R	CTCGCTAACCCACATGTTCA		
EF-1α-F	CTGGATTCGAGGGAGACAACA	qPCR	
EF-1α-R	GCACCGTTCCAATACCACCAA		
BIK1-RT-F	TGGGCTCGACCGTACCTCACA	qPCR	
BIK1-RT-R	CGGGCGCGACTTGGGTTCAA		
BIK1-HA-RT-F	CAGGACAACTTGGGAAAACCG	T-PCR	
BIK1-HA-RT-R	TAGGATCCTGCATAGTCCGGG		
NahG-F	CACCATGAAAAACAATAAACTTGGC	Clone NahG gene	
	TTGCGC		
NahG-R	CCCTTGACGTAGCGCACCC		
SIK1-F	CACCATGGATCATAACTCGCCGAA	Clone SIK1 gene	
	ATC		
SIK1-R	TTAGAGGCGGAGAATAGTGCGAAG		
SIK1ΔN -F	CACCATGTACGAATTCCTCAATGAA	Clone SIK1∆N	
	CTTG		
SIK1-K278E-F	CAGAGATTGTTGCTGTGGAAGTCA	Generate SIK1	
	TATCACTTAC	mutant (K278E)	
SIK1-K278E-R	GTAAGTGATATGACTTCCACAGCAA		
	CAATCTCTG		
BAK1-F	CCGCTCGAGATGGAACGAAGATTA	Clone BAK1 gene	
	ATGAT	into pUC19-35S-	
BAK1-R	TTTATATTCGAATCTTGGACCCGAG	FLAG	
	GGGTATT		
PBL1-KpnI-F	CGGGTACCATGGGTTCTTGTCTCA	Clone PBL1 into	
	GTTC	pUC19-35S-FLAG	
PBL1-BstBI-R	AGGTTCGAACAATCCAACGGTTTT		
	TTTGTTTAAACC		
RBOHD-F	CACCATGAAAATGAGACGAGGCAA	Clone RBOHD-N into	
		MBP tag vector	
RBOHD-N-R	CTATCTCTGCCAATTGTCAAGTAT		
HA/His-MBP-	AAAACCTGTACTTCCAATCCAATAT	Clone BSK1 gene	
BSK1-F	GGGTTGTTGTCAATCCTTGTTTTCC	into MBP tag vector	
	GGC		
HA/His-MBP-	GGATCCGTTATCCACTTCCAATTCA		
BSK1-R	AGATCCTCTGCCGCCTCGTTGTCT		
	СТТ		
GST-RbohD-N-	GAAAACCTGTACTTCCAATCCAATA	Clone RBOHD-N into	
F	TGAAAATGAGACGAGGCAATTCA	GST tag vector	

GST-RbohD-N-	CGGATCCGTTATCCACTTCCAATTC	Clone RBOHD-N into
R	ATCTCTGCCAATTGTCAAGTA	GST tag vector
GST/MBP-	CCTGTACTTCCAATCCAATGAATTC	Clone SIK1∆N into
SIK1∆N-F	CTCAATGAACTTGGG	GST or MBP tag
GST/MBP-	CCGTTATCCACTTCCAATTTAGAGG	vector
SIK1∆N-R	CGGAGAATAGTGCGA	
His-MBP-BIK1-	CTGTACTTCCAATCCAATATGGGTT	Clone BIK1 into MBP
F	CTTGCTTCAGT	tag vector
His-MBP-BIK1-	CCGTTATCCACTTCCAATTTACACA	
R	AGGTGCCTGCCAAA	

Table S4. Related to Figure 7. Isolation list for PRM. Modified and unmodifiedpeptide sequences used to quantify phosphorylation by PRM are noted. CID = collisioninduced dissociation, m/z = mass to charge, z = charge state.

Peptide sequence	Peptide modified sequence	m/z	Z	CID Collision Energy (%)
GNSSNDHELGILR	GNSSNDHELGILR	706.35	2	27
	GNS[+80]SNDHELGILR	746.333	2	27
	GNSS[+80]NDHELGILR	746.333	2	27
	GNS[+80]S[+80]NDHELGILR	786.316	2	27
ILSQMLSQK	ILSQMLSQK	524.297	2	27
	ILS[+80]QMLSQK	564.28	2	27
	ILSQM[+16]LSQK	532.294	2	27
	ILSQMLS[+80]QK	564.28	2	27
	ILS[+80]QM[+16]LSQK	572.278	2	27
	ILS[+80]QMLS[+80]QK	604.263	2	27
	ILSQM[+16]LS[+80]QK	572.278	2	27
	ILS[+80]QM[+16]LS[+80]QK	612.261	2	27