
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
This manuscript describes a comprehensive association analysis of the LGxSM AIL mice. In particular, 
the authors performed GWAS on 50 traits in ~1000 mice and identified 126 genome-wide associations. 
They performed eQTL mapping analysis in three brain regions from ~200 mice and identified 
thousands of cis-eQTLs and trans-eQTLs. Importantly, the authors used a mutant mice line to further 
replicate one identified candidate gene. Overall, this is a well designed study with solid results that will 
have a long lasting impact in the field. The manuscript is also very well written. I only have a few 
comments which hopefully could improve the quality of the paper further:  
 
1. One thing that was a bit surprising to me was the relatively large number of trans-eQTLs detected 
(i.e. ~1500 trans-eQTLs vs ~7000 cis-eQTLs). I am used to seeing only a few trans-eQTLs from 
human eQTL mapping studies with similar sample sizes. It would be useful to examine whether the 
nearby genes for these trans-SNPs tend to be transcription factors or not. It would be helpful if the 
authors could provide some discussion on the potential reasons that may facilitate the detection of 
trans-eQTL (vs cis-eQTLs) in mice studies. From Figure S4, it also seems that trans-eQTLs are more 
tissue specific than cis-eQTLs. It would be also nice to mention this finding and briefly discuss this 
finding in the results or discussion.  
 
2. For heritability estimation, the authors have primarily focused on examining the proportion of 
phenotypic variance due to additive effects. Various previous studies have shown that epistasis may 
be an important contributor to phenotypic variegation in many model organisms. The large sample 
size and relatively large number of traits used in the present study may allow us to accurately 
estimate the epistatic contribution to the genetic architecture of different traits. I was wondering if it is 
possible to run a multiple variance component model to estimate the epistasis contribution for at least 
a few traits here. For example, the authors could follow the Supplementary Figure S3 in Crawford et 
al., 2018 (https://www.tandfonline.com/doi/full/10.1080/01621459.2017.13618 
30?scroll=top&needAccess=true) and use GEMMA to partition the phenotypic variance into multiple 
variance components that include an additive component and an epistasis component. If the analysis 
is too complicated, then providing some discussion on epistasis would be helpful.  
 
3. In addition to estimating the phenotypic covariance in Figure S13, it would be nice to decompose 
the phenotypic covariance into two parts: a genetic covariance part and an environmental covariance 
part. For example, for each pair of traits in turn, one could use the mvLMM option in GEMMA to 
estimate these values. Such decomposition would allow us to understand whether the phenotypic 
covariance between pairs of traits are mostly due to genetics or environments.  
 
 
Reviewer #2 (Remarks to the Author):  
 
Gonzales et al. submitted an interesting manuscript dealing with genome wide association analysis 
making use of the mouse advanced intercross line (AIL). The authors outline the advantages of the 
LG/J x SM/J AIL for the study of traits that could be relevant for metabolic and psychiatric disorders. 
They briefly describe the research strategy in the introduction section highlighting the history over 
15+ years after initiating AIL. Among other advantages compared to classical F2 crosses, the authors 
argue that AIL provides considerably higher mapping resolution. Using over 1000 mice from 
generations 50-56 of AIL, they identified 126 genome-wide associations for 50 traits. Among 
numerous others, these traits included locomotor activity, PPI, and body size but also metabolic 
parameters like glucose and morphometric parameters. Hippocampus, striatum, and prefrontal cortex 



of about 200 mice were then used for RNA-seq to identify eQTLs that could be used for the 
interpretation of the discovered associations. Several examples are then discussed in a bit random 
way to highlight the potentials of this approach. As a proof-of-principle, a top candidate for a highly 
significant association, Csmd1 was further verified by using a genetically engineered mouse model. 
The authors conclude, that Csmd1 mutant mice recapitulate the phenotype association detected by 
AIL GWAS. Finally, the authors state that all data and statistical tools are publicly available on a 
project respectively institute website.  
 
Overall, I believe the presented research is a creditable and valuable contribution to decipher 
mammalian gene functions. The paper is well written but to some degree the balance between rather 
methodological considerations and a genuine scientific question that was investigated was missed in 
my view. I wonder what was the major outcome of the study? 126 (new??) associations to the 
selected traits? – Or the confirmation of just one highly significant association between a candidate 
gene and locomotor activity that was verified in a mutant mouse? Or was it the seemingly successful 
implementation of (new?) statistical approaches.  
 
To me, the rational which traits were selected and why was not clear but confusing, especially as 
some traits even consisted of a behavioral response to drug treatment. I was impressed by the high 
number of associations found for morphometric traits which I assume are difficult to measure with 
sufficiently high precision (especially involving different people as experimenter). Here, I did not quite 
understand why muscle weight or bone length associations were pleiotropic with body weight 
associations (line 208) – a bigger mouse has higher muscle mass and maybe even longer bones?  
 
In general, it was planned to study traits that are relevant for human metabolic and psychiatric 
disorders. However, only little support is given that the findings really have translational potential.  
 
Finally, in line 298 the authors state that the primary goal was to identify the genes that are 
responsible for the loci implicated in behavioral and physiological traits, and “We were particularly 
interested in uncovering genetic factors that influence conditioned place preference…)” – this specific 
goal was not clear to me until it was stated in the middle of the discussion.  
 
 
 
 
 
Reviewer #3 (Remarks to the Author):  
 
The authors report analysis of an advanced intercross line of mice for mapping of a large number of 
behavioral and metabolic traits. The authors also examined gene expression in several brain regions of 
a subset of the mice to identify local and trans-acting expression quantitative trait loci (eQTL). 
Altogether 126 genome-wide significant loci for about 50 traits were identified. One candidate gene 
was examined using gene targeted mice in order to validate the approach.  
 
This is a thorough, well written manuscript that will be a valuable resource for understanding the 
genetic architecture of mammalian behavior. I identified some points that require clarification.  
 
1. The heritabilities of certain traits as shown in Fig 3B are surprisingly low, given that this is a mouse 
study. For example, in a similar mouse study our lab estimated that body weight had a heritability of 
about 70-80%. The authors might comment.  
 
2. I suspect that many of the trans eQTL are false positives, although those affecting multiple genes 



look promising. Can the authors perform some sort of replication analysis (for example, dividing the 
mouse population in two) to address the issue?  
 
3. A discussion of significance thresholds for mapping would be relevant. Since the authors examined 
50 traits was that incorporated into the threshold calculations?  



Reviewer #1 

One thing that was a bit surprising to me was the relatively large number of trans-eQTLs detected (i.e. 
~1500 trans-eQTLs vs ~7000 cis-eQTLs). I am used to seeing only a few trans-eQTLs from human eQTL 
mapping studies with similar sample sizes.  

We appreciate this insightful comment. There are several reasons why the power to detect trans-eQTLs in our 
population is greater than in a human study of similar size. First, LD is more extensive in this population (Fig. 1c), 
meaning that the effective number of tests per GWAS is lower. Second, the high MAFs maintained in the AIL 
(Fig. 1b) mean that the tests are better powered. Third, the ability to control environmental variables (e.g. diet and 
housing conditions) during the lifetime of these mice may have enhanced our power to detect genetic effects on 
gene expression, compared to human studies in which there are numerous sources of environmental 
heterogeneity. Finally, the quality and consistency of our tissue is better than could be expected in a human study 
because the tissues are collected immediately after sacrifice by the same technician. All of these factors 
contributed to the large number of genome-wide significant eQTL that we observed. We have now reworked our 
presentation of these issues in the discussion.  

However, we also should have been more explicit in acknowledging that a fraction of the “significant trans-
eQTLs” are likely to be false positives. These trans-eQTLs were genome-wide significant at α=0.05 after 
correction for the individual genome scan, but before attempting any correction for the number of genes tested. 
Given that α=0.05, we expected that 5% of genes for which the null hypothesis was correct would be declared 
“significant” by this standard. Note that we were able to correct for the number of genes tested in the cis-eQTL 
analysis; hence, our abstract could have incorrectly given the impression that we found more trans-eQTLs than 
cis-eQTLs. We have now revised our paper at several points throughout the text to clarify and emphasize this 
critical point: 

1. To avoid presenting trans-eQTL results that we acknowledge are a mixture of true and false positives, we
have removed the number of cis- and trans-eQTLs from the abstract. The relevant sentences now read:
“Here we use 1,063 AIL mice to identify 126 genome-wide significant associations for 50 traits relevant to
human health and disease. We also identify thousands of cis- and trans-eQTLs in the hippocampus,
striatum, and prefrontal cortex of ~200 mice.”

2. We moved the old Fig. 4 (the Circos plot) to the supplement (now Supplementary Fig. 9) in order to avoid
placing undue emphasis on our trans-eQTL results. We also added Supplementary Fig. 8; this QQ plot
shows the observed and expected p-values for all genes and all SNPs tested in the genome-wide scans
for each tissue. This figure clearly illustrates that there is true signal in our trans-eQTL analysis.

3. We included a statement clarifying the expected false positive rate of 5% in the results and added a
paragraph on the issues of power and false positives to the discussion.

4. In making Supplementary Fig. 8, we discovered that several trans-eQTL result files were incomplete due
to a computational error. We have since re-run the genome-wide scans for genes with incomplete results.
We now report an additional 161 trans-eQTLs in HIP, 218 trans-eQTLs in PFC and 147 trans-eQTLs in
STR.

It would be useful to examine whether the nearby genes for these trans-SNPs tend to be transcription 
factors or not.  

We tested this idea by using g:Profiler to obtain a list of all genes within each master trans-eQTL and using 
TFCheckpoint, a repository of mammalian transcription factors, to identify transcription factors. However, we 
found that transcription factors tended to cluster unevenly around the genome, confounding this approach. LD 



between SNPs within each master-eQTL also made it difficult to envision how to construct an enrichment query 
that would produce statistically meaningful results in this population. In the end, we felt this analysis did not 
improve the paper and so have not mentioned the issue.  
 
 
It would be helpful if the authors could provide some discussion on the potential reasons that may 
facilitate the detection of trans-eQTL (vs cis-eQTLs) in mice studies. From Figure S4, it also seems that 
trans-eQTLs are more tissue specific than cis-eQTLs. It would be also nice to mention this finding and 
briefly discuss this finding in the results or discussion. 
 
Figure S4 is now Supplementary Fig. 6.  
 
The differences in tissue specificity between cis- and trans-eQTLs likely reflect differences in both the number of 
false positives and the number of false negatives. False positives would not replicate across tissues. The 
apparently higher tissue specificity for trans-eQTLs likely reflects a greater proportion of false positive results in 
the trans-eQTLs, which, unlike the cis-eQTLs, were not corrected for the number of genes tested (see above). 
Reciprocally, in some cases we might have correctly identified a trans-eQTL in one tissue but failed to identify it in 
the other two due to a type 2 error. These two factors may be more important than true biological differences in 
the tissue specificity of cis- versus trans-eQTLs. We did not state this as a conclusion because it is difficult to 
know how many of the trans-eQTLs identified in this study are false positives. Likewise, it is difficult to know how 
many are false negatives. The tissues we examined had different sample sizes and contained different individuals 
(96 mice were sequenced in all three tissues); therefore, we expected the power to detect eQTLs to vary between 
tissues.  
 
In response to this reviewer’s question, we now mention the tissue specificity of the trans-eQTLs as being 
consistent with a higher rate of false positive results. We also added a note about detecting eQTLs in humans vs. 
mice to the discussion.  
 
 
For heritability estimation, the authors have primarily focused on examining the proportion of phenotypic 
variance due to additive effects. Various previous studies have shown that epistasis may be an important 
contributor to phenotypic variegation in many model organisms. The large sample size and relatively 
large number of traits used in the present study may allow us to accurately estimate the epistatic 
contribution to the genetic architecture of different traits. I was wondering if it is possible to run a 
multiple variance component model to estimate the epistasis contribution for at least a few traits here. 
For example, the authors could follow the Supplementary Figure S3 in Crawford et al., 2018 and use 
GEMMA to partition the phenotypic variance into multiple variance components that include an additive 
component and an epistasis component. If the analysis is too complicated, then providing some 
discussion on epistasis would be helpful. 
 
We appreciate the reviewer’s comment; we have explored various ways to use these data to gain insights into the 
role of epistasis. Indeed, we have an ongoing project with another group that, while distinct from the approach 
taken by Crawford et al., may provide some novel insights. We are also making the current data publically 
available and very much hope that this dataset will be useful for innovative analyses like the one suggested by 
this reviewer. After looking into this specific suggestion, we have decided not to persue such an analysis, but do 
now mention the potential importance of epistasis for heritability in a newly added section of the discussion that 
addresses a comment by Reviewer #3.  
 
 
In addition to estimating the phenotypic covariance in Figure S13, it would be nice to decompose the 
phenotypic covariance into two parts: a genetic covariance part and an environmental covariance part. 
For example, for each pair of traits in turn, one could use the mvLMM option in GEMMA to estimate these 
values. Such decomposition would allow us to understand whether the phenotypic covariance between 
pairs of traits are mostly due to genetics or environments. 
 



This was great idea. We have performed these analyses and added the results to Supplementary Table 3. Since 
there are many pairwise comparisons, we also summarized the results in Supplementary Fig. 5. Also, Figure S13 
is now Supplementary Fig. 4.    
 
 
 
Reviewer #2  
 
The paper is well written but to some degree the balance between rather methodological considerations 
and a genuine scientific question that was investigated was missed in my view. I wonder what was the 
major outcome of the study? 126 (new??) associations to the selected traits? – Or the confirmation of just 
one highly significant association between a candidate gene and locomotor activity that was verified in a 
mutant mouse? Or was it the seemingly successful implementation of (new?) statistical approaches. 
 
The reviewer has correctly highlighted many of the major outcomes of our paper. We have made revisions to 
clarify these multiple significant outcomes and to highlight them in the narrative structure. We also wish to 
highlight the surprising (to us anyway) failure of CPP to show heritability and the utility of AIL mice relative to other 
mapping populations (e.g. the collaborative cross and diversity outcross) that have received more attention in the 
last few years. The abstract, introduction and discussion have all be changed to more clearly communicate the 
multiple outcomes of this paper.  
 
To me, the rationale which traits were selected and why was not clear but confusing, especially as some 
traits even consisted of a behavioral response to drug treatment. 
 
We were primarily interested in behavior and have tried to make this clear in this revised version. We also tested 
a variety of traits that our lab was familiar with and that we knew to be heritable in this AIL. Body weight and 
glucose levels were selected for these reasons and because they are easy to measure. We established 
collaborations with researchers interested in physiological phenotypes in order to produce more data and to get a 
better overall impression of the suitability of this AIL for GWAS and the behavior of polygenic traits in a system 
with only two founders. Thus, it was our intention to measure a variety of traits. We have revised the introduction 
and first paragraph of the discussion to communicate these ideas.  
 
I was impressed by the high number of associations found for morphometric traits which I assume are 
difficult to measure with sufficiently high precision (especially involving different people as 
experimenter).  
 
Great point. The multiple associations for body weight, muscle weight and bone size may reflect the fact the 
founders of this AIL (SM/J and LG/J) were selectively bred for small (SM) and large (LG) body size prior to 
inbreeding. We also measured body weight at multiple time points, which further contributes to the large number 
of associations. We have clarified this in the introduction and results to highlight these issues (and the ones 
below).  
 
Because we were also concerned about involving different experimenters in our study, we included experimenter 
as a covariate in GWAS for muscle and bone phenotypes to account for experimenter-induced variability. 
  
Here, I did not quite understand why muscle weight or bone length associations were pleiotropic with 
body weight associations (line 208) – a bigger mouse has higher muscle mass and maybe even longer 
bones? 
 
Yes, body size is partially a function of muscle weight and bone size, and some of the loci that influence body 
weight do so via their ability to change parameters like muscle weight or bone size. This was not a forgone 
conclusion, since other measurements (fat pads, organ weight) could also change body weight. Since it is difficult 
to know whether or not the genetic factors influencing these different traits are acting independently, we use the 
term pleiotropy instead of claiming a causal relationship. We now explicitly state this when we introduce the 
concept of pleiotropy in the results section on physiological traits.  
 



In general, it was planned to study traits that are relevant for human metabolic and psychiatric disorders. 
However, only little support is given that the findings really have translational potential. 
 
In this paper we used established behavioral and physiological phenotypes, many of which have been developed 
and validated in terms of their clinical potential over the past several decades. We have provided more detailed 
descriptions of the phenotypes with additional citations in the Supplementary Note. That said, our paper is not 
primarily focused on explaining or defending the translational value of these traits and given the earlier comments 
by this reviewer, we did not want to further dilute the narrative by emphasizing these points in the main text.  
 
Finally, in line 298 the authors state that the primary goal was to identify the genes that are responsible 
for the loci implicated in behavioral and physiological traits, and “We were particularly interested in 
uncovering genetic factors that influence conditioned place preference…)” – this specific goal was not 
clear to me until it was stated in the middle of the discussion. 
 
We appreciate this important comment and have revised the introduction to make this clearer.  
 
 
 
Reviewer #3  
 
The heritabilities of certain traits as shown in Fig 3B are surprisingly low, given that this is a mouse 
study. For example, in a similar mouse study our lab estimated that body weight had a heritability of 
about 70-80%. The authors might comment. 
 
This is an important point that we failed to address in our initial submission. The discrepancy between heritability 
estimated from family studies and heritability estimated from unrelated individuals is well known in human 
genetics; family studies consistently report higher heritabilities across a variety of traits. The explanations for this 
include epistasis (see comments by Reviewer #1) and shared environmental factors in twin studies that result in 
higher phenotypic similarity among identical twins (and more generally among family members), making them 
difficult to disentangle from genetic effects. In mice and other model organisms, twin models are replaced by 
panels of inbred strains, which afford even greater control over the environment and can result in higher 
heritability estimates. We have added a paragraph in the discussion stating that these values are expected to be 
lower than those obtained using inbred strains.  
 
I suspect that many of the trans eQTL are false positives, although those affecting multiple genes look 
promising. Can the authors perform some sort of replication analysis (for example, dividing the mouse 
population in two) to address the issue? 
 
We agree that the trans-eQTL analysis is likely to include false positives, as described in our responses to 
Reviewer #1. We did not attempt to replicate by dividing the sample due to concerns about the loss of power in 
the smaller samples. The lack of replication across tissues for trans- compared to cis-eQTLs is now mentioned in 
the discussion as evidence of a higher false positive rate. We are making these data publically available; future 
work by our group or others might explore the trans-eQTLs further.  
 
A discussion of significance thresholds for mapping would be relevant. Since the authors examined 50 
traits was that incorporated into the threshold calculations? 
 
We now discuss the issue of false positives for the behavioral, physiological and gene expression traits (see our 
comments to Reviewer #1). It is clear that we see more positive results than expected under the null for the 
behavioral, physiological and cis- and trans-eQTL results. We did not use an approach like a Bonferroni 
correction because it would be overly stringent since many of the traits are highly correlated with one another and 
because we do not believe (philosophically) that the null hypothesis (i.e. that no SNPs influence these traits) is 
true for most of these traits.  
 
 
 



Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
My previous comments are well addressed and the paper is ready for publication.  
 
 
Reviewer #2 (Remarks to the Author):  
 
I carefully read the paper again. In my opinion all issues raised by the reviewers including my own 
comments were convincingly addressed.  
 
 
Reviewer #3 (Remarks to the Author):  
 
I am generally satisfied by the responses to my points as well as those of the other reviewers, but I 
feel that the discussion of trans eQTL is somewhat misleading. Based on previous studies I think the 
vast majority will be false positives.  
 
I had asked the authors to divide the data in half and see if the results are consistent. They responded 
that they did not want to do that because would result in loss of power, which of course is true. But it 
might at least reveal outlier effects. What about checking for outliers, or dividing the data and asking 
if the associations go in the same direction. This is not a major point but it would be a simple thing to 
do.  



We thank reviewers 1 and 2 for agreeing that all of their comments were addressed. 

Reviewer 3 expressed one remaining concern about the trans-eQTL analysis; in particular, in 
their most recent comments (9-28-18) they said “I feel that the discussion of trans eQTL is 
somewhat misleading. Based on previous studies I think the vast majority will be false 
positives.” We agree.  

In our responses to the first round of reviews, we indicated our agreement that many of the 
trans-eQTL results were false positives. Both Reviewer #1 and Review #3 commented on this 
topic, thus, much of our response was addressed to Reviewer #1, and may have been missed 
by Reviewer #3. In those responses, we stated: 

• “...These trans-eQTLs were genome-wide significant at a=0.05 after correction for the
individual genome scan, but before attempting any correction for the number of genes
tested. Given that a=0.05, we expected that 5% of genes for which the null
hypothesis was correct would be declared “significant” by this standard. Note that
we were able to correct for the number of genes tested in the cis-eQTL analysis; hence,
our abstract could have incorrectly given the impression that we found more
trans-eQTLs than cis-eQTLs. We have now revised our paper at several points
throughout the text to clarify and emphasize this critical point:

• “To avoid presenting trans-eQTL results that we acknowledge are a mixture of
true and false positives, we have removed the number of cis- and trans-
eQTLs from the abstract. The relevant sentences now read: “Here we use
1,063 AIL mice to identify 126 genome-wide significant associations for 50 traits
relevant to human health and disease. We also identify thousands of cis- and
trans-eQTLs in the hippocampus, striatum, and prefrontal cortex of ~200 mice.”

• “We moved the old Fig. 4 (the Circos plot) to the supplement (now
Supplementary Fig. 9) in order to avoid placing undue emphasis on our trans-
eQTL results. We also added Supplementary Fig. 8; this QQ plot shows the
observed and expected p-values for all genes and all SNPs tested in the
genome-wide scans for each tissue. This figure clearly illustrates that there is
true signal in our trans-eQTL analysis.”

• “We included a statement clarifying the expected false positive rate of 5%
in the results and added a paragraph on the issues of power and false
positives to the discussion.”

• “In response to this reviewer’s [Reviewer #1’s] question, we now mention [in the
discussion] the tissue specificity of the trans-eQTLs as being consistent with a
higher rate of false positive results. We also added a note about detecting eQTLs in
humans vs. mice to the discussion.”

Therefore, the revised version of our manuscript very openly stated that many of the trans-
eQTLs are false positives, as Reviewers #1 and #3 requested. However, we failed to reiterate 
these responses to Reviewer #3 directly.  

Reviewer #3 had also asked us to perform an additional analysis in which we split the sample 
into two halves, to assess replication: “I had asked the authors to divide the data in half and see 
if the results are consistent. They responded that they did not want to do that because would 
result in loss of power, which of course is true. But it might at least reveal outlier effects. What 



about checking for outliers, or dividing the data and asking if the associations go in the same 
direction. This is not a major point but it would be a simple thing to do.” 

First of all, we found the reviewer's comments about outliers to be confusing. We have quantile 
normalized all expression data; thus outliers should not be a concern.  

To address this reviewer’s comments, we have now divided the data to determine if the 
associations were in the same direction (see Supplementary Information section 4.3, 
which is copied below). We then examined the effect size of each SNP that was called 
significant in the original analysis and compared the sign of the effect across the two subsets for 
each tissue. For hippocampus, 95.2% of effect sizes at significant trans-eQTLs were concordant 
among the random subsets (Pearson’s r2=0.922). For prefrontal cortex, effect size concordance 
was 84.8% (Pearson’s r2=0.889). For striatum, effect size concordance was 99.7% (Pearson’s 
r2=0.923).  

We are happy to include Supplementary Information section 4.3 and a reference to it in the main 
text of our revised manuscript; however, we are concerned because the analysis does not 
resolve the question of how many trans-eQTL results are false positives. Indeed, it could be 
interpreted to indicate that most of them are true positives. This is because this approach does 
not estimate the study-wide false positive rate since the subsets are not independent from the 
discovery set. Thus, effect sizes are expected to be biased in a way that makes replication more 
likely. 

We also considered a different approach in which one half would be used for discovery and the 
second for replication, however, since the discovery sample would be smaller, it would produce 
an even higher proportion of false positives, which would not elucidate the key question of what 
fraction of our reported trans-eQTLs were false positives. Thus, we have not taken this 
approach.  

In summary, the manuscript is currently written to clearly indicate that many of the trans-eQTL 
results are false positives, which is the key concerns expressed by Reviewer #3. We are willing 
to include the additional analysis in Supplementary Information section 4.3, however, we 
concerned that it is misleading and will give the impression that the majority of our trans-eQTL 
results are true positives. Thus, we somewhat prefer not to include this new analysis, but will 
leave it to the editor and Reviewer #3 to decide.  

4.3. Significance of trans-eQTLs 

These trans-eQTLs called “significant” in this study were genome-wide significant at α=0.05 after 
correction for the individual genome scan, but before attempting any correction for the number of 
genes tested. Given that α=0.05, we expected that 5% of genes for which the null hypothesis was 
correct would be declared “significant” by this standard. We performed an internal replication 
analysis of trans-eQTLs in HIP, PFC and STR by randomly splitting each sample in half and 
separately mapping eQTLs in the two subsets. We used the Wald test (lmm -1 option in 

GEMMA), which yields effect size estimates (β) for each SNP. We then examined the effect size 
of each SNP that was called significant in the full sample, comparing the sign of the effect across 
the two subsets in each tissue. For HIP, 95.2% of effect sizes at significant trans-eQTLs were 
concordant among the random subsets (Pearson’s r2=0.922). For PFC, effect size concordance 
was 84.8% (Pearson’s r2=0.889). For STR, effect size concordance was 99.7% (Pearson’s 
r2=0.923).  We note that this test does not estimate the study-wide false positive rate because the 
subsets are not independent of the discovery set. Thus, beta estimates are expected to be biased 
in a way that makes replication more likely. 



REVIEWERS' COMMENTS:  
 
Reviewer #3 (Remarks to the Author):  
 
The authors have done a thorough job of addressing my final comments. 
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