
Supplementary Information for 
O’Connell and Chun, Predicting eye movement patterns from fMRI responses to natural scenes  
 
 
SUPPLEMENTARY METHODS 
 
Training spatial attention models with eye movements. In the spatial attention modeling 
literature, most models are trained by fitting predicted spatial priority maps to actual eye 
movement patterns. Additionally, many models restrict spatial predictions using empirically-
derived baseline fixation distributions. While both of these steps improve prediction 
performance, both are dependent on signals derived from eye movement behavior. We excluded 
any analytic step in our model-based pipeline that is dependent on eye movement data to ensure 
that accurate predictions from model-based reconstructions were fully zero-shot. For the spatial 
attention model, we achieved this by averaging across CNN channels and preserving the channel 
weightings learned during goal-directed training for a given type of visual recognition, rather 
than learning to re-weight channels by explicitly linking CNN activity to eye movements. For the 
decoding models, we achieved this by not conditioning or modifying the reconstructions using 
any signal derived from eye movement data. 
 
Here, we present two analyses more consistent with the mainstream spatial attention modeling 
literature. The first analysis shows that explicitly re-weighting CNN activity to predict eye 
movements improves prediction performance for decoding models derived from face-
identification and random CNNs, but not scene- and object-categorization CNNs. The second 
analysis shows that model-based fMRI prediction performance can be improved using an 
empirically-defined baseline fixation distribution to correct for center-bias. 
 
Re-weighting CNN activity to explicitly predict fixation patterns. Here, we aim to re-weight 
CNN activity to improve prediction performance in the spatial attention models and model-based 
reconstructions. Such an approach tests whether features from a given CNN type map onto 
spatial representations in the brain that predict eye movements if an additional learning step 
explicitly linking CNN activity to eye movements is included. 
 
To learn weights across CNN channels that improve eye movement prediction, we predicted 
fixation map values from CNN unit activity drawn from the five pooling layers (1,472 channels 
total) using support-vector regression with a ridge penalty on data from the MIT Eye Movement 
Dataset 1. Activity maps for each CNN channel were linearly interpolated to the spatial 
resolution of pool1 (112 x 112 px) and all re-sized units within a layer were normalized to have 
zero-mean and unit standard deviation. For each of the 1000 training images, this produced a 
[1472 x 112 x 112] matrix of CNN activity. Fixation maps were calculated for each of the 
training images at the group-level (n = 15) and smoothed using a 2D Gaussian kernel (SD = 20 
px, matched to the cross-validated smoothing kernel from our validation datasets). For each 
training image, we randomly sampled 100 image locations to build the data matrix for the 
regression. For a given sampled location, the fixation map value becomes a new Y and the CNN 
activity values across all 1472 channels become a new row of X’s, leading to a final Y vector of 
[100,000 x 1] and an X matrix of [100,000 x 1472]. The regression outputs a [1 1472] vector of 
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beta weights that can be multiplied by a [1472 12544] matrix of CNN activity for a given image 
to re-weight the activity to better predict eye movements. 
 
Using the learned weighting to calculate computational spatial priority maps from CNN activity 
improved prediction performance for all CNN types (Supplementary Fig. 1a). Modest 
improvements were seen for the scene- and object-categorization CNNs, and markedly greater 
improvements were seen for the face-identification and random CNNs.  
 
Next, we show results for predicting eye movements using model-based reconstructions for each 
CNN type that average across channels or computed a weighted sum across channels. NSS scores 
can be seen for all analysis types and ROIs in (Supplementary Fig. 1b & 1d) and NSS 
difference scores (average model – weighted model) can be seen in (Supplementary Fig. 1b & 
1d). Significance markers for the difference scores in Supplementary Fig. 1 represent the main 
effect for model type (average vs weighted) in a 2-way repeated-measures ANOVA with model 
type and ROI as factors. We find that performance is equivalent for the average and weighted 
approaches for decoding models using scene CNNs (Supplementary Fig. 1c & 1e, first 
column) for within-individual and internal validations. For external validation, the average 
model outperformed the weighted model for base reconstructions and equivalent performance 
was seen for smoothed and center-bias corrected reconstructions. For base and smoothed/center-
bias corrected reconstructions from object CNNs (Supplementary Fig. 1c & 1e, second 
column), performance was equivalent for within-individual validation, and the average model 
outperformed the weighted model for internal and external validation. For base and 
smoothed/center-bias corrected reconstructions from face and random CNNs (Supplementary 
Fig. 1c & 1e, third and fourth columns), performance was equivalent for within individual 
validation, but the weighted model outperformed the average model for internal and external 
validation. 
 
Overall, these results show that features optimized for scene and object categorization best 
generalize off-the-shelf to characterize spatial representations in visual brain regions that predict 
eye movements. For scene and object categorization CNNs, re-weighting was not necessary to 
get respectable computational and brain-based predictions; the averaging model using the 
relative weighting of channels set through learning to complete the visual categorization task 
already well captures spatial contingencies in scenes that are consistent with eye movement 
patterns, both behaviorally and in the brain. The relative weighting amongst channels for the face 
and random CNNs does not capture spatial information relevant to predicting eye movements by 
default; an additional explicit learning step is necessary to achieve performance comparable to 
the scene and object CNNs off-the-shelf. 
 
Empirical center-bias correction. To correct for center-bias empirically, the center-model was 
defined as a baseline fixation distribution across all images except the target image in a separate 
set of participants. Calculation of these baseline distributions was cross-validated across data sets 
(internal and external validation). For example, the empirical baseline for Image A in the within-
individual or internal validation analyses was defined as the average fixation density map for all 
other images and all participants in the external validation dataset. The empirical baseline for the 
same image in the external validation analyses was the average fixation density map for all other 
images and all participants in the internal validation dataset. Each empirical baseline was re-
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scaled from 0 to 1. To correct for center-bias in the reconstructions using these empirically-
derived baselines, we pointwise multiply the baselines with a spatial priority map reconstruction 
after the reconstruction has been smoothed with a 2D Gaussian kernel. The procedure is the same 
as for the Gaussian center-bias correction used in our primary analyses. 
 
Empirical correction for center-bias improved reconstruction prediction performance across the 
within-individual, internal validation, and external validation analyses (Supplementary Fig. 2). 
As for the model-based reconstructions presented in the manuscript, empirically center-bias 
corrected reconstructions from V1, V2, V3, and hV4 significantly predicted eye movement 
patterns in the within-individual, internal validation, and external validation analyses (all 
P<0.001). Example reconstructions can be seen in (Supplementary Fig. 3). 
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SUPPLEMENTARY FIGURES 
 

Supplementary Fig. 
1. Prediction results 
for models that 
average across the 
CNN channel 
dimension relative to 
models that take a 
weighted sum across 
the CNN channel 
dimension. (a) 
Prediction 
performance for 
computational spatial 
attention models. 
Error bars represent 
standard error of the 
mean across 
participants in the 
internal (n = 11) and 
external (n = 22) 
validation sets. (b) 
Prediction 
performance for base 
model-based 
reconstructions. NSS 
scores are significant 
in V1-hV4 for all 
analyses. (c) 
Difference NSS 
scores between 
average and weighted 
models for base 
reconstructions. 
Markers indicate 
significance for a 
main effect of model 
type (average vs 
weighted) in a 2-way 
repeated-measures 
ANOVA with model 

type and ROI as factors. (d) Prediction performance for smoothed and center-bias corrected 
model-based reconstructions. NSS scores were significant in V1-hV4 for all analyses. (e) 
Difference NSS scores between average and weighted models for smoothed and center-bias 
corrected reconstructions. ***p<0.001, main effect of model type (average vs weighted). 
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Supplementary Fig. 2. Empirical center-bias correction (c) improves prediction performance. 
Results for base reconstructions (a) and reconstructions center-bias corrected with a 2D Gaussian 
(b) are included for comparison. Error bars represent standard error of the mean across 
participants in the fMRI dataset (n = 11, Within-Individual and Internal Validation) and external 
validation dataset (n = 22, External Validation). Significance is defined using permutation 
testing. * P < 1 x 10-2, ** P < 4.55 x 10-3 (Bonferroni-corrected threshold), *** P < 1 x 10-3. 
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Supplementary Fig. 3. Model-
based reconstructions empirically 
corrected for center-bias (c). Base 
reconstructions (a) and 
reconstructions corrected for 
center-bias with a 2D Gaussian 
(b) are included for comparison. 
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Supplementary Fig. 4. Computational spatial attention model results for all CNN types, and 
results for all CNN types and benchmark measures sorted by prediction accuracy. a. Internal 
validation. b. External validation. Error bars represent standard error of the mean across all 
participants in the internal (n = 11) and external (n = 22) validation sets). 
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Supplementary Fig 5. Prediction performance for fMRI reconstruction, computational spatial 
attention models, and benchmark models. Results are sorted by performance predicting eye 
movement patterns. 
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