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1 Modification of the action potential model

In the process of adjusting the Paci et al. [1] model to the data obtained from an
MPS (microphysiological system, [2]), we have to run the model many thousand
times with varying choices of parameters. One difficulty encountered in this pro-
cess is drift of ion concentrations. This is a well-known problem of mathematical
models of electrophysiology; see e.g. [3, 4, 5]. In Figure S1, we illustrate this
problem for the original Paci et al. model. One approach to solve this problem is
to decompose stimulus currents into ion concentrations and thereby retain conser-
vation of the ion concentrations, see e.g. [3]. A problem with this approach is that
drift is observed also when no stimulus is applied (see Figure S1). Another ap-
proach relies on the fact that some ion concentrations vary little and can therefore
be kept constant. Here, we follow this latter approach and freeze the intracellu-
lar sodium concentration and the SR calcium concentration at their initial value.
In Figure S2, we show the properties of this approximation. In the right panel,
we note that the cytosolic calcium concentration no longer drifts even for very
long simulations. In the left panel, we show that the effect of this approximation
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Figure S1: Example of drift of ionic concentrations in the Paci et al. model [1]
with no stimulus current applied. First, we compute the steady state solution of the
original Paci et al. model. Then, we reduce the [k, current by 50% and run a sim-
ulation of this adjusted model for 200 seconds (corresponding to approximately
120 AP cycles). The plots show how the cytosolic calcium concentration (left
panel), the SR calcium concentration (center panel), and the intracellular sodium
concentration (right panel) change with time during this long simulation.
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Figure S2: Effect of freezing the intracellular sodium concentration and the SR
calcium concentration in the Paci et al. model [1]. Left panel: Comparison of the
transmembrane potential and the cytosolic calcium concentration in the original
Paci et al. model and the modified model with constant intracellular sodium and
SR calcium concentrations. Right panel: Long-term effect on the cytosolic cal-
cium concentration of reducing the /i, current by 50%. The corresponding effect
in the original Paci et al. model is given in the left panel of Figure S1.
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Figure S3: Convergence to steady state after scaling the Ik, current down by
50%. We first run a single cycle of the original Paci et al. model, before running
a simulation of the model with a reduced [, for 5000 seconds (corresponding to
approximately 3000 AP cycles). The cytosolic calcium concentration is plotted
against the transmembrane potential of each cycle in light blue. The dotted line
shows the cycle with the parameter values of the original Paci et al. model and
the dashed line shows the new steady state solution obtained for a reduced /.
Left panel: For the original Paci et al. model [1], a new steady state solution is
not reached until after approximately 1000 AP cycles. Right panel: In the modi-
fied model with constant intracellular sodium and SR calcium concentrations, the
solution does not change much after the first cycle with a reduced Ik, current.
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Figure S4: Illustration of the intracellular volume consisting of the cytosolic space
(c) and the SR (s). The SR is equipped with specialized proteins for uptake and
release of calcium.

on the transmembrane potential and the cytosolic calcium concentration is very
small. With this approximation, convergence towards the steady state solution (a
steady periodic solution) is rapid and the solutions appears to be stable. This is
demonstrated in Figure S3 where convergence to steady state is illustrated. First,
we compute the steady state solution of the modified model using the original pa-
rameters of the Paci et al. model. Then, we reduce [k, by 50% and note that the
solution rapidly reaches equilibrium.

2 The maturation map of the Calcium dynamics

We consider how the Ca-dynamics change under maturation. As for the mem-
brane ion channel case, we do this by illustrating the maturation process for a
very simple model.

We consider an intracellular volume consisting of the cytosol (c) surrounding
the sarcoplasmic reticulum (SR (s)); see Figure S4.

We let N, denote the number of Ca?"-ions in the cytosol and N, denote the
number of Ca*"-ions in the sarcoplasmic reticulum; both given in mmol. The
associated volumes are given by V. and V;, both given in L. Let J,. and J, .
denote the flux (in mmol/ms) of Ca?*-ions from the cytosol to the SR, and from
the SR to the cytosol, - respectively. Conservation of Ca®"-ions yields the model

dN.,.

= Jsc - JCS7 1
dt ’ ’ M
dN,

= Joo— Jse. 2
dt ’ ’ @

The fluxes are models of proteins carrying ions from one volume to the other. Let
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gg’s (in mmol/ms) be the flux representing one single protein transporting Ca?*-
ions from the cytosol to the SR. Similarly, ggc (in mmol/ms) is the flux represent-
ing one single protein releasing Ca?*-ions from the SR to the cytosol. The number
of such proteins are given by N, ; and N, .. Then, the system (1) and (2) takes the
form

dN.

= Nsc 0 - Ncs 0 3
dt ) gs,c ) gc,s? ( )
dN.
2 = Ncs 0 _Nsc 0 . 4
dt ) gc,s , gs,c ( )
By defining the fluxes (in mM/ms)
NC Sgo NS Cgo
'cs:’_c»é” 'sc:7—M7 5
Je, V. Js, V. &)
the system takes the form
dcC,
= Jse— 'CS7 6
7t Js.e = Je, (6)
dC’s Ve . ,
= 17 \Ues 7 Js,c)s 7

where C, and C, are the concentrations (in mM) of Ca**-ions in the cytosol and

SR, respectively;
N, N,
C.===, Cg==2, 8
AR T (8)
For maturation, we can now follow the same steps as for the membrane pro-
teins. During maturation, the properties of the single proteins will remain con-
stant, but the number of proteins and the volumes will increase. Therefore, we

introduce constants gy, qv,, g, , and gy, , such that

VM = g VIM oYM g yIM 9)
New = ave Ned's  Nog=an, N2 (10)
With
M _ Nc{:]s\/[g(c),s IM _ Nsl,ﬁ/lgg,c (1
Je,s —VCIM v Jse —VCIM )
we get
M N%Qgs o QNC,SNCI,Q/I!JS,S _ 4Nes .1m 12
Jes = VM - qv. VIM - av. Jeys (12)
M _ Niﬁggc . QNC,SNSI,Q/IQS,C AN gy 13
Jse = VCM - qVCVC]M = v Js,c (13)
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Consequently, we have the IM model

c, , ,
dt = .]i]y - J(ff, (14)
dc, vIM

o =y~ (15)

and the associated M model

dCC qNs,c IM _ ch,s IM

- ]sc ]cs ) (16)
dt qv, " qv, "
dCy _ (]VCVCIM (QNL-,S IM QNS,Cj]M) (17
dt e, VIM " qu, "% qy, TP

Again, we observe that the M model is obtained simply by multiplication by a set
of maturation factors.

3 Technical specifications of the model formulation
and inversion procedure

In this section, technical specifications regarding the model formulation used in
the simulations and the inversion procedure will be provided.

3.1 Intracellular concentrations

In almost all of our computations, we use the modified version of the Paci et al.
model described above with fixed intracellular sodium and SR calcium concen-
trations. The only exception is that we also run some simulations of ten Tusscher
et al. model [6] in Figure 9 of the paper. In these simulations, the intracellular
potassium, sodium and SR calcium concentrations are also fixed at constant val-
ues. The intracellular concentrations used in the IM and M formulations of the
modified Paci et al. model and the similarly modified ten Tusscher et al. model
are given in Table S1.

3.2 Numerical stimulation protocol

In all simulations, the cells are stimulated every 1000 ms by a 5 ms long stimulus
current of 8 pA/uF. The simulations are run for five AP cycles before recording
the action potential and calcium transient for each new parameter combination.



[Na*], (mM) | [K*]; (mM) | [Ca®"]gg (mM)
Paci IM 10.45 150.00 0.12
Paci M 10.45 150.00 0.55
ten Tusscher IM 11.37 138.20 0.12
ten Tusscher M 11.37 138.20 0.53

Table S1: Intracellular concentrations used in the IM and M versions of the mod-
ified Paci et al. [1] and ten Tusscher et al. [6] models with fixed intracellular
sodium, intracellular potassium and SR calcium concentrations.

3.3 Technical specifications for the drug inversions

When the inversion procedure is used to fit simulated or measured drug and con-
trol data, we only consider adjustments of the gn., gcaL, ¢k and gk factors, unless
otherwise specified. Note, however, that for the inversion of the Verapamil data in
Figures 6 and 7 of the paper, the Iy, current was reduced by 50%, the Iy.k cur-
rent was reduced by 60%), the /.1, current was increased by 60%, and the I, and
I, fluxes were increased by 30% before running the inversion of the gna., ¢car,
gkr and qg; factors, in order to make the base model used in the inversion more
similar to the control data.

3.4 Technical specifications for the construction of the matura-
tion map

In the construction of the maturation maps demonstrated in Figure 9 of the paper,
we use the inversion procedure to fit an immature model (Paci et al. [1]) to a
mature model (ten Tusscher et al. [6]) and to fit the mature model to the immature
model. In these inversions, we consider adjustments of the qna, gcaL; Gtos IKss GKrs
qK1; (NaCas NaK» @pCas Gf> @bNa,> @bCa, Jleaks ups and gyel factors (in addition to the
gpk-factor for the ten Tusscher et al. model). Note that the /¢ current is added to
the ten Tusscher et al. model in these simulations using the same formulation as
in the default Paci et al. model, but with a conductance reduced by a factor of 10
for the mature ten Tusscher model, i.e. g = 0.003 mS/uF.

Because of the large number of free parameters, we conducted a more detailed
inversion procedure in this case with twelve iterations and 15000 randomly chosen
adjustment factors in each iteration. In addition, we included some additional
terms in the cost function containing information that is not available from the
optical measurements, but may be obtained from the mathematical models. More



specifically, we used a cost function of the form

20 1/2
H()) = (Z HM)) 7 (18)

where H; — Hg are the same as in the remaining applications of the inversion
procedure, that is

tl()\) (2. %
]fttol v*dt| |APDY 5 7
_ |APDy;50(A) — APDy 5 I |APDyg0(A) — APDy g
3 — * ) 4 — * ’
|APDV,5O’ ’APDV,80|
) — (), L |APDGus() = APDG,
5 — 9 6 — * 9
‘(%)?nax |APDCa,3O|
- |APDCa,50()\) - APD*Ca,50| He. — |APDCa,80(/\) - APD*Ca,SO‘
7= * ) 8 — * )
|APDCa,5O| |APDCa,80|

where the star x is used to denote the simulated data to which we are trying to
adjust the model. Furthermore, APDy 3 is defined as the length (in ms) of the
time from the value of the membrane potential, in the upstroke, is 30% below its
maximum value () until it again is repolarized to 30% of its maximum value
(t1). In Hy, we compute the integral of the membrane potential with respect to
time ¢t from ¢ = ¢, to ¢ = ¢;. The values APDy 5, and APDy g, are defined
similarly to APDy 39, and the terms APDc, 30, APDc, 50 and APDc, gy represent
the corresponding transient durations for the calcium concentration. Moreover, in
Hs, (%)maX is the maximal upstroke velocity of the calcium concentration.
The additional terms for the construction of the maturation map are given by

V(N max — V| [0(A)rest = Vgt

H9:|

* ) HlO = * )
|/Umax‘ |vrest
Hy = |C(/\)ma: - C:naxl’ Hyy = |C(/\)res: - C;kest|’
|Cmax| |Crest|
Ina (M) — I Ina(N) — I, || oo
1y = 1) = Tl oy = 150 = Tl
[1%all2 1%l
g o) “Talle o ew() ~ T
[ &L ll2 [ &l
I (M) — I3 Ie(N) — I || oo
1y = M)~ Tl e = M) =~ Tl
1152 15 [l
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Here, vyax and ¢, denote the maximum value of the membrane potential and
the calcium concentration, respectively. Similarly, v,es; and c,es; denote the resting
membrane potential and calcium concentration, respectively, defined as the values
obtained 10 ms before stimulation. Moreover, || || and ||/||« are defined as

ll2 = /> 1(tn)2,

[[]oe = max [I(£n)],

n

ng H20

where n runs over all the time steps of an action potential. The currents Ixs,
Icarn, Iy, and Ik are chosen to be included in the cost function because we are
especially interested in obtaining realistic behaviors for these currents since these
are the currents considered in the drug inversions.

4 Identification of simulated single-channel block us-
ing Hy andH¢,

In Figure 5 of the paper we showed the value of Hy ¢, for pairwise perturbations
of the maximum conductance of four major currents for simulated single channel
block of each of the currents. Figures S5 and S6 show corresponding plots for
the cost functions Hy and Hc,, respectively. In these figures, we observe that the
terms of Hy seem to contain the main part of Hy ¢, observed in Figure 5 of the

paper.
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Figure S5: The cost function Hy with e = 0.2 evaluated for pairwise perturbations
of the maximum conductances of four major currents for simulated single-channel
block of each of the currents. In the upper panel, Iy, is blocked by 50%, and in
the next panels, /c,r,, [k, and [k; are similarly blocked by 50%.
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Figure S6: Like Figure S5, except that we cosnider the cost function H¢, instead
of H V.
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