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Supplementary Methods 

Definition of patient-ventilator asynchrony and different types 

Briefly, patient-ventilator asynchrony occurs when the phases of breath delivered by 

the ventilator do not match those of the patient. To meet the patient’s demands, the 

ventilator’s inspiratory time and gas delivery must match the patient’s neural inspiratory 

time1. There are different types of asynchronies. Among the most prevalent are 

ineffective efforts, double cycling, short cycling, and prolonged cycling (see 

Supplementary Fig. S1).  

Ineffective efforts are contractions of the inspiratory muscles, primarily the diaphragm, 

that are not followed by a ventilator breath. This asynchrony occurs when the pressure 

resulting from the patient’s attempt to initiate a breath does not reach the ventilator’s 

trigger threshold. In other words, the ventilator fails to detect the patient’s inspiratory 

efforts, which are reflected physiologically by an increase in transdiaphragmatic 

pressure (decrease in esophageal pressure, increase in gastric pressure) and/or 

electrical activity of the diaphragm2,3. Ineffective efforts result in the patient’s respiratory 

rate being higher than the ventilator’s rate. 

Double cycling consists of a sustained inspiratory effort that persists beyond the 

ventilator’s inspiratory time, cessation of inspiratory flow, or the beginning of 

mechanical expiration, triggering a second ventilator breath, which may or may not be 

followed by a short expiration, where all or part of the volume of the first breath is 

added to the second breath4. Double cycling can cause ventilator-induced lung injury5–

7. 

Short cycling occurs when the inspiratory time is less than one-half the mean 

inspiratory time, and prolonged cycling occurs when the inspiratory time is greater than 

twice the mean inspiratory time4. Inspiratory time is defined as the time during which 

gas flow is positive, and the mean inspiratory time is calculated over 20 cycles.  



Description of the hidden Markov model 

Next is a brief description of the hidden Markov model (HMM) used in our study. More 

general and specific details about this kind of statistical models can be found in Bishop 

(2007)8.  

Sequential data can be represented as a Markov chain of latent variables, with each 

observation conditioned on the state of the corresponding latent variable. An HMM 

assumes that observations are generated by different probability distributions 

corresponding to the discrete multinomial latent variable. In the setting of this study, the 

hidden states can be interpreted as proxies for patients' level of synchrony with the 

ventilator; each state can be associated with a different frequency of events and 

therefore results in a different level of risk. 

Thus, HMM can detect states with different frequencies of events, so it can predict the 

number of events that will occur in a period. HMM automatically detects whether a 

patient is at a 'low-risk state' (low frequency of events) or at a 'high-risk state' (high 

frequency of events). The number of states is a parameter that needs to be set by the 

user before training the model. Given any number of possible predefined states, the 

model finds the most probable distribution for each state, a posteriori, and also makes 

it possible to detect when the patient changes from one state to another. Then, the 

uncertainty of being in each state, represented by this posterior probability distribution, 

can be summarized in terms of credible intervals. 

The hidden Markov model 

In the context of an HMM, 𝑥𝑡  is defined as the number of events during the period 𝑡 and 

𝑧𝑡  is the state associated with that period. There are 𝑘 states, each of which has 

different characteristics. At period 𝑡, all states have a probability of occurring, but only 

one of them actually occurs.  

An HMM has two main components: transition probabilities and emission probabilities. 

Transition probabilities 

The relationship between period 𝑡 and period 𝑡 + 1 in the HMM is governed by the 

transition matrix, 𝐴, which represents the probability of switching from one state to 

another. If there are 𝑘 states, 𝐴 has dimension 𝑘 ×  𝑘 and its elements 𝐴 𝑖, 𝑗  represent 

the probability of switching from state 𝑖 to state 𝑗. Since the elements of the matrix are 

probabilities, their values must be between zero and one, and the sum of each row in 

the matrix must equal 1. 



If the diagonal elements in 𝐴 are much larger than the off-diagonal elements, then the 

data sequence will have long runs of points generated from a single state and 

infrequent transitions from one state to another; if the diagonal and off-diagonal 

elements are similar, the state of the sequence will change frequently. Thus, the values 

of 𝐴 determine how persistent the states are. 

Emission probabilities 

The distribution of the observation 𝑥𝑡  given the state is called the emission probability, 

denoted as 𝑃(𝑥𝑡 |𝑧𝑡 , 𝜙𝑘). The different 𝑘 hidden states are associated with different 

probability distributions with different parameters 𝜙𝑘 . At period t, the observation 𝑥𝑡  is 

generated by one of the k possible probability distributions, depending on the state of 

that period 𝑧𝑡  and the set of parameters 𝜙𝑘  that determine the chosen probability 

ditribution. In this study, the chosen probability distribution was the Poisson distribution, 

which is the most common choice for event counts9. Thus, 𝜙𝑘  is the parameter 𝜆 of the 

Poisson distribution, which represents the expected count of events at the state k. 

Therefore, if the model consists of 𝑘 different states, the emission probabilities of those 

states are Poisson distributions with different parameters λ. 

In HMM the data generating process works as follows: At period 𝑡, the hidden state has 

a certain probability of taking on any of the 𝑘 possible predefined states, and this 

probability depends on the state in period 𝑡 − 1. These probabilities come from the 

corresponding values in the transition matrix 𝐴. Once a state is achieved, the 

observation 𝑥𝑡  is sampled from that state’s probability distribution, which is the 

emission probability. Then, at period 𝑡 + 1, the probabilities of the possible states 

depend on the state that was achieved in period 𝑡. Once the state 𝑧𝑡+1 is achieved, the 

observation 𝑥𝑡+1 is sampled from the distribution associated with that state. This 

process continues indefinitely until the last period. The first state of the process, given 

that it is does not have any previous state, is usually sampled from a distribution where 

all states have equal probability. 

Estimation 

The expectation maximization algorithm iteratively computes the transition and 

emission probabilities10. We initialize this algorithm with random values for the 

transition and emission probabilities. Next, the Viterbi algorithm11 uses the emission 

and transition probabilities estimated earlier to find the most likely sequence of the 

latent states (i.e., the posterior probability distribution) that generated the data. 



In many applications of hidden Markov models, the latent variables have some 

meaningful interpretation, and so it is often of interest to find the most probable 

sequence of hidden states for a given observation sequence. However, finding the 

most probable sequence of latent states is not the same as finding the set of states that 

are individually the most probable. The set of states that are individually the most 

probable will not correspond to the most probable sequence of states, because the 

sequence also depends on the transition probabilities. In fact, if the two successive 

states that are the most probable individually are connected by a transition matrix 

element whose value is zero, the probability of the sequence will be zero. 

Prediction 

At any period 𝑡, once the state is achieved, it is possible to predict the expected value 

of 𝑥𝑡+1 from the estimates of the transition and emission probabilities. The prediction of 

𝑥𝑡+1 is a combination of all emission probability distributions weighted by the transition 

probabilities.  

The model and the predictions were built using time intervals of 5, 10, 15, 20, and 25 

minutes. The predictions are one-step ahead forecasts of the number of events. 

Therefore, a one-step ahead forecast with the model using time intervals of 15 minutes 

is the number of events predicted to occur in the next 15 minutes. 

From a clinical standpoint, it is more meaningful to model the rate of asynchrony events 

than it is to model the counts. This rate would represent the number of events divided 

by the total number of respiratory cycles per period of observation. Unfortunately, 

technical limitations meant that the current model estimated only the expected counts.  

To a certain extent, this shortcoming is overcome by using a generalised linear model 

(GLM) to make predictions. The GLM uses the parameters estimated by the hidden 

Markov model together with the number of respiratory cycles as an exposure variable 

to indicate the number of times the events could have happened. The exposure 

variable is set to the GLM in a logarithmic form, since time series events follow a 

Poisson distribution. This enables to make predictions in terms of the expected rate of 

the occurrence of events rather than merely the counts. See the Results in Table 1 

(main text) and  Supplementary Table S2. 

Validation 

To validate the model, we used a k-fold cross validation procedure. Five different 

training/validation subsets were randomly selected, so that all patients were used for 

both training and validation, and each patient was used just once for validation. Due to 



the amount of data and the complexity of the algorithm, the number of folds is limited 

by computational power. Following this limitation, the selected number of folds was set 

to five. The model’s predictive ability was assessed in terms of a root mean squared 

error.  



 

Characteristic Value 

Patients n = 51 

Age (years) 63 (54, 76) 

Sex (male), n (%) 34 (66.7%) 

Reason for MV, n (%)  

   Acute respiratory failure 36 (70.6%) 

      Sepsis 13 (25.5%) 

      Pneumonia 8 (15.7%) 

      Acute respiratory distress syndrome 4 (7.8%) 

      Chronic obstructive pulmonary disease 4 (7.8%) 

      Congestive heart failure 2 (3.9%) 

      Other 5 (9.8%) 

   Postsurgical 6 (11.8%) 

   Neurologic 4 (7.8%) 

   Multiple trauma 3 (5.9%) 

   Cardiac arrest 2 (3.9%) 

APACHE II 16.5 (11.3, 23) 

SOFA at admission 7.5 (6, 10) 

Length of MV (days) 6.5 (4, 10) 

ICU stay (days) 11 (7, 19) 

ICU mortality, n (%) 9 (17.7%) 

Number of breaths (x103) 167.8 (101.9, 225.0) 

Asynchrony count (x103) 5.56 (2.48, 9.97) 

Supplementary Table S1. Patients characteristics. Data expressed as 

medians (25th, 75th percentiles) or percentages. APACHE II, Acute Physiology 

And Chronic Health Evaluation II score; SOFA, Sequential Organ Failure 

Assessment score.  

  



 

Period 

T 
Variable 

Values for each state 

z1 z2 z3 z4 

5min 

λ 0 (0, 0) 4 (1, 8) 14 (7, 22) 42 (30, 55) 

rate (%) 0.16 (0.16, 0.16) 3.57 (3.54, 3.59) 12.8 (12.7, 12.8) 37.5 (37.3, 37.6) 

tspent 0.57 0.25 0.13 0.05 

10min 

λ 0 (0, 0) 7 (2, 13) 25 (16, 35) 79 (62, 97) 

rate (%) 0.17 (0.17, 0.18) 3.39 (3.37, 3.41) 11.6 (11.6, 11.7) 35.2 (35.1, 35.3) 

tspent 0.54 0.26 0.14 0.06 

20min 

λ 1 (0, 3) 13 (6, 21) 47 (34, 61) 152 (128, 177) 

rate (%) 0.2 (0.2, 0.21) 3.15 (3.13, 3.17) 11.0 (10.9, 11.0) 34.1 (33.9, 34.2) 

tspent 0.5 0.29 0.15 0.06 

25min 

λ 1 (0, 3) 14 (7, 22) 54 (40, 69) 180 (154, 207) 

rate (%) 0.23 (0.23, 0.24) 3.49 (3.47, 3.51) 11.7 (11.6, 11.7) 33.8 (33.6, 33.9) 

tspent 0.52 0.3 0.14 0.05 

 

Supplementary Table S2. Mean (95% CI) expected number λ of asynchrony events 

for time series defined each T = 5, 10, 20, and 25 minutes, approximate expected rate 

determined by a generalised linear model, and spent time in each state represented as 

a proportion of the total time. 

 

 

 

 

 

 

 

 



 

Supplementary Figure S1. Some common forms of patient-ventilator asynchronies. Airflow, airway pressure, and volume tracing where 

episodes of double cycling (red marks) and ineffective efforts (purple marks) were identified by Better Care™ software.  



 

Supplementary Figure S2. Transition probability matrices of the Poisson hidden 

Markov models from the time series indexed each (a) 5min, (b) 10min, (c) 20min, and 

(d) 25 min. Values in each cell represent mean probability computed on the total 

sample of patients. Diagonal of the matrix represents the probability of not changing 

states in the next period. Cells with zero probability represent a value < 0.005. 
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Supplementary Figure S3. Descriptive boxplots for the mean heart rate and the 

mean oxygen saturation each 15 minutes, by each state. Red dots represent means, 

and boxplots indicate medians and 25th-75th percentiles. Note that outliers have 

been omitted to facilitate visualization. 
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