
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
SUMMARY:  
 
The paper presents a novel content-adaptive representation (“Adaptive Particle Representation – 
APR) for 2D-3D fluorescence microscopy image manipulation, visualization, and processing. The 
potential of APR is demonstrated with theory and experiments on real image data. The paper is 
well written, and the results are interesting. The properties of APR are somewhat too technical in 
the first part of the paper. This part is only accessible to specialists in image analysis and image 
representation.  
 
 
COMMENTS:  
 
1.The state of the art is partially covered and the manuscript ignores prior relevant work on similar 
representations. The authors focus on super-pixels and wavelet-based image representation but 
do not explicitly mention recent work about sparsity-based image representation: many 
microscopy images are composed of fluorescent objects against a dark background as illustrated in 
the paper and videos. Another category of approaches in image representation focused on image 
level lines according to the Matheron’s theory. The Fast Levet Set Transform (Monasse and 
Guichard, 2000) is a typical algorithm used to decompose the image into a tree of shapes with no 
loss of information. Finally, I found that the APR concept can be seen as generalization of the 
popular halftoning (and dithering) method introduced several decades ago for image printing. The 
basic idea is to simulate shapes of gray values by varying the size of small black dots arranged on 
a regular grid. In summary, I recommend to better position the novelty of the approach with 
respect to the aforementioned works. By not considering and incorporating prior approaches, the 
potential capabilities and applicability of APR have been limited. It is especially important to 
compare its performance to existing approaches. These comparisons could include one similar 
method (e.g. super-pixels, wavelet), widely used in bioimaging. More generally, some discussion is 
needed of what, exactly, can and cannot be done with existing tools, to make the novelties and 
benefits of the proposed representation more explicit. The authors made several efforts in that 
direction but they did not give illustrations to support all the claims.  
 
2. Another important question to be addressed is related to the exploitation of APR images. The 
authors clearly demonstrate the theoretical optimality of APR, the robustness of APR to noise, and 
the capability of APR to save memory. All these items are well presented with many details (see 
Supplementary Material) in the paper. I’m convinced that APR is appropriate for image 
visualization, manipulation and image management. Moreover, a large family of image 
segmentation and classification algorithms can be applied to the adaptive subsampled images. 
Also, one can benefit from the APR representation to apply more dedicated and powerful Laplacian 
graph-based image processing approaches (this property could be more emphasized in the paper). 
While this is fine as such, noise statistics are probably modified when the non-linear APR approach 
is applied to the raw images. Formally, Gaussian-Poisson noise in raw images is not preserved in 
the APR images. This means that regularized image restoration and deconvolution methods cannot 
be applied since the characteristics of noise are not well defined. However, I guess that the novel 
characteristics of noise in APR images can be empirically analyzed with simulations. The possibility 
to compare noise statistics in raw and APR mages is important to avoid image processing problems 
and could be more illustrated in the paper. It is worth noting that the authors satisfyingly 
evaluated the gradient magnitude in raw and APR images (see Supplementary Material). The 
results tend to suggest that the noise is approximately Gaussian in APR images. Nevertheless, this 
issue should be addressed, and potential solutions should be included in the next version.  
 
3. In practical imaging, the potential user needs to be instructed about the parameters to compute 



APR. The authors should at least discuss this necessity and provide what the prerequisites are for 
the input.  
 
5. The claim that the proposed APR will overcome the memory bottleneck is true, but the acquired 
raw data cannot be removed once APR is applied. It is actually mandatory to store the original 
images in cell imaging (reproducible research) if published. APR appears to be more appropriate 
for visualization and manipulation.  
 
6. A number of specific comments on the text must be addressed:  
 
– Page 3, I found that the presentation of the “Implied Resolution Function” is not easy to 
understand in the second Section (APR). Figure 2 is not easy to follow for non-specialists. I 
recommend to make an effort to express the idea more intuitively. A simple sketch could be added 
since Figure 2 is quite dense”.  
 
– Pages 3-8 present the properties of APR with details but the related sections are accessible to a 
limited audience, for example, developers of image processing methods and algorithms.  
 
– Page 10. In Figure 4, the APR reconstruction images are less noisy than the original images. 
Does it mean that APR implicitly removes noise ? Which amount of noise is removed and what are 
the statistics of the residual noise in the APR images (see also comments above) ?  
 
– Page 11. The authors claim that the compression ratios are comparable to custom lossy 
compression methods designed specifically for storing of fluorescence microscopy images. I 
suggest to show such a compressed image to enlighten the difference between the images and 
methods.  
 
– Page 13. It is doubtful that the usual pixelwise Markov Random Fields (MRF) methods can be 
applied to APR images since the regular neighborhood of a given pixel (4 or 8 neighbors) are 
corrupted by the APR approach. An additional recommendation could be given here. Actually, the 
super-pixel representation embedded in a MRF framework requires the manipulation of graphs 
with a variable number of neighbors at each node (gravity center of super-pixels). In Figure 5C, 
the number of neighbors is not the same for all nodes with APR. Accordingly, the impact of the 
graph construction should be discussed if pixelwise algorithms (for instance for optical flow 
computation or non-parametric image registration) are applied to reconstructed APR images. 
Graph cuts (image segmentation) and Laplacian graph methods are probably more appropriate to 
APR in general, as demonstrated in page 16. 
 
 
 
REMARKS:  
 
The figures and captions are very dense in general.  
 
 
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors propose an adaptive representation of images -the APR- as a replacement to pixels. It 
aims at providing a more efficient storage and faster/more convenient analysis. The APR is lossy 
compared to pixels, but that loss is controlled per pixel thus adapted to microscopy and biology. 
Mathematical proofs and arguments are provided backing the authors claims and efficient 
algorithms and storage solutions are proposed and implemented. Thorough evaluation of 
computation of the APR and of its use in analysis is done, both on synthetic and real images.  



 
The problem tackled by the authors is important and urgent. Modern fluorescence microscopy is 
acquiring data at an ever increasing rate, leading to ever larger images/volumes, longer times and 
higher resolutions. Traditional file formats are reaching their usability limit and a number of 
alternative format have recently been proposed. The authors propose a thorough solution in the 
form of a new image representation. It is a well defined, fully developed solution designed from 
the ground up for modern biology uses. Importantly (and not so commonly), a full mathematical 
development is provided to strengthen their claims and analyse the properties of their construction 
and algorithms. Applications and validation include practical uses case and benchmarks, showing 
that the aim is a practical, truly usable solution.  
 
Comments:  
- Importantly, for that work to be actually used outside of the authors lab and become more that 
'yet another file format', it needs to be integrated into actual frameworks and pipelines used by 
the community. At the time of this review, only the C++ library is released, but for a wide 
adoption bindings in python/matlab/java/ImageJ are needed. They are promised by the authors 
but should, I think, be released concomitantly to the publication of the article to benefit from the 
community interest. Additionally bioformat is becoming the de-facto standard for microscopy file 
format interoperability. Are there plans for a bioformat integration?  
- Along the same line, and given that usual algorithms implementation, which would be the one 
used in practice, are not APR-aware, the authors should show how well would the APR be 
integrated with, say, a standard ImageJ/matlab/python pipeline: what's the performance of a 
standard implementation of a linear filter, for example? One interesting test case that could be for 
example to see the APR reused to recomputed a published analysis. If the authors could take one 
of their previous biological publication/collaboration, reuse the same pipeline of plugins to 
recompute some quantifications and redo one of its figure using the APR, and find similar results, 
it would show the compatibility and convince readers less impressed by mathematical arguments 
that the APR is, at least, just as good as pixels in practical applications  
- The APR is from the start developed with very large acquisitions in mind. In the text, the authors 
show benchmark on data up to 4Gb. That is still up to two order of magnitude smaller than the 
very large acquisition that will soon be commonplace. I would like to see some specific comments 
if not experiments on that in the text: does the APR scale all the way up (to Tb sized images), in 
term of computation, storage and uses? In particular is parallel access (read and/or write) 
possible? What is the speed of arbitrary patch extraction (i.e. reading a particulate rectangular 
volume from the data)?  
- The mathematical arguments are, overall, rigorously written and convincing. However, because 
of the constrains of the format, where all mathematical arguments are relegated to the 
supplementary material in an order which is not always natural, they can be frustratingly hard to 
follow. That is particularly obvious at the start, where the first equation of SuppMat 2 invovle \xi_i, 
which I am not sure are defined anywhere (SuppMat 10 maybe?). I am not sure what the best way 
would be. A proper, rigorous, in order, mathematical write up would lead to the supplementaries 
not being in sync with the main text part they are a supplementayry to, which would pose other 
issues...  
 
Overall, this article provide a potentially very useful and rigorously defined solution to a very 
current problem. However, I think that to fully support it's claim of being more that yet another 
format/image representation, integration into existing scientific workflow to work on the very large 
images it is claimed to be made for needs to be demonstrated.  
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We thank the reviewers for their thorough reading of the manuscript and the constructive 
comments that have helped improving the work. We have accounted for all of their comments 
in the revised version of the paper. For better overview, the revisions are marked in red in the 
manuscript. In addition, we provide point-by-point replies to the reviewer’s comments here 
below in green italics, quoting the reviews in black print. In cases where multiple points are 
answered with the same reply, the points have been grouped. 
 
REVIEWER 1: 
 
The paper presents a novel content-adaptive representation (“Adaptive Particle 
Representation – APR) for 2D-3D fluorescence microscopy image manipulation, visualization, 
and processing. The potential of APR is demonstrated with theory and experiments on real 
image data. The paper is well written, and the results are interesting. The properties of APR 
are somewhat too technical in the first part of the paper. This part is only accessible to 
specialists in image analysis and image representation.  
 
We thank the reviewer for this appreciation of our work. We have paid particular attention to 
the readability of the technical sections in the first section. We have endeavored to make the 
first paragraphs ‘self-contained’ such that a reader not interested in technical details can skip 
them without compromising understanding the fundamental concepts, but someone interested 
in reproducing the work finds all information necessary. We feel that further reduction or 
movement of these new ideas to the supplementary material would reduce the utility of the 
text as an introduction to, and reference for, the new methods and ideas presented for the 
first time in this paper. 
 
1.The state of the art is partially covered and the manuscript ignores prior relevant work on 
similar representations.  
 
We agree with the reviewer that there are many more related works, which we have not 
mentioned. However, a more in-depth comparison between conceptually related methods has 
been addressed to the Discussion section. 
 
We do agree that a broader discussion of context, including some details on limitations that 
do not allow the satisfaction of the representation criteria is required and would be useful in 
the introduction. In this direction, we have also added a more general overview of related 
image-based methods and included comments on their limitations, deferring the mentioning of 
adaptive representations from fields other than image processing to the discussion in order to 
keep the presentation concise. 
 
The authors focus on super-pixels and wavelet-based image representation but do not 
explicitly mention recent work about sparsity-based image representation: many microscopy 
images are composed of fluorescent objects against a dark background as illustrated in the 
paper and videos.  
 
We agree that with the above-mentioned change of focus on image representations in the 
introduction, sparsity-based image representations should also be mentioned. We have 
added the appropriate references and comments to include dictionary-based sparsity 
methods and discuss their limitations in this context. 
 
Another category of approaches in image representation focused on image level lines 
according to the Matheron’s theory. The Fast Level Set Transform (Monasse and Guichard, 
2000) is a typical algorithm used to decompose the image into a tree of shapes with no loss of 



information.  
 
We thank the reviewer for highlighting these works, of which we were not aware. Both are 
relevant, especially given that the contributions directly focus on accounting for local contrast 
variations in an image. We have added appropriate comments and references to the 
introduction and discussion.    
 
Finally, I found that the APR concept can be seen as generalization of the popular halftoning 
(and dithering) method introduced several decades ago for image printing. The basic idea is 
to simulate shapes of gray values by varying the size of small black dots arranged on a 
regular grid.  
 
We agree that the APR, when visualized by its set of underlying particles, bears strong visual 
similarity with Half-toning or Floyd–Steinberg error-diffusion results. Indeed, the adaptive 
mesh-based methods of Yang et al. 2013 (ref. 24) uses such a half-toning approach to help 
accelerate performance. We have addressed this similarity by addition of a sentence in the 
discussion. However, the exploration of deeper theoretical comparisons between the two 
methods is beyond the scope of this work and we believe that their mathematical foundations 
are fundamentally different. 
 
In summary, I recommend to better position the novelty of the approach with respect to the 
aforementioned works. By not considering and incorporating prior approaches, the potential 
capabilities and applicability of APR have been limited. It is especially important to compare 
its performance to existing approaches. These comparisons could include one similar method 
(e.g. super-pixels, wavelet), widely used in bioimaging.  
 
We agree with the reviewer's comment and have modified the introduction and the 
conclusions to better review previous image-based adaptive representations and highlight 
their limitations, as detailed above. 
 
We also agree that comparison with existing techniques, where applicable, is valuable.  
However, we note that none of the previous techniques simultaneously satisfy the 
requirements set out in the Representation Criteria, rendering a complete comparison 
infeasible. For example, although techniques exist for accelerating specific tasks, such as 
segmentation using super-pixels, or lossy compression methods using wavelets, they do not 
provide general solutions across processing tasks, nor provide similar theoretical frameworks 
making the comparisons meaningful. Further, in most circumstances any previous techniques 
can be used in conjunction with the APR (that is the techniques can also be applied to the 
APR, just as to a pixel image). This renders direct comparisons, in aid of choosing one 
solution over another, not appropriate. 
 
Notwithstanding these methodological issues, we have supplemented the text to provide two 
direct comparisons with existing methods for particular tasks. First, we provide additional 2D 
benchmarking results in comparison with wavelet thresholding (See SuppMat 12), in addition 
to the existing theoretical arguments given in the text. Wavelet thresholding has been chosen, 
due to its known optimality properties (See ref. 31 (DeVore et al. 1992) and 42 (Donoho and 
ohnstone 1994)), and the established implementations in 2D available through, e.g., Matlab. 
We note that these results, including the theoretical arguments, show that the error adaptation 
of the APR, is sub-optimal regarding the number of non-zero coefficients (sparsity) required to 
obtain a specific error norm. However, this tradeoff comes at the benefit of having direct 
pointwise error control, the accounting of local contrast changes through the local intensity 
scale, and the APR providing a representation that is 'closer' to typical pixel representation 
allowing more direct extension of existing algorithms to the APR. Further, if desired, the 
wavelet transform can also be performed on an APR. We have slightly adjusted the 
comments in the discussion to better highlight this.  
 
The second direct comparison we provide is for image compression. Here we apply a recently 
proposed lossy compression algorithm for large fluorescence images (ref. 31) to both a pixel 
image and its APR. Here we have re-implemented the technique to allow direct comparison 
for both pixels and the APR (See SuppMat 20.1), and updated the "Storage Requirement" 



section. While we find similar performance in terms of image quality loss for given 
parameters, the memory compression ratio is significantly better on the APR. These results 
highlight how, rather than a replacement for existing techniques, in most cases, the APR can 
instead be used to accelerate them, concerning computational and memory costs, and also 
potentially improve the results. Therefore, the APR nicely plays with many existing methods 
and does not aim to replace them, nor to provide a mutually exclusive alternative.  
 
Another direct comparison that would seem to be relevant would be with the super-pixel 
approaches for segmentation presented in ref. 14. However, as in the above cases, the 
super-pixel and optical-flow approaches could also take an APR as input. Hence, providing a 
performance comparison is in line with that already provided for the graph cuts (ref. 35, 
Boykov et al. 2014) benchmark in the text. 
 
More generally, some discussion is needed of what, exactly, can and cannot be done with 
existing tools, to make the novelties and benefits of the proposed representation more 
explicit. The authors made several efforts in that direction but they did not give illustrations to 
support all the claims.  
 
We believe that the revised manuscript, in particular including the points mentioned above, 
provides a complete illustration of the claims and better highlights novelty and limitations, also 
in comparison to many other approaches.  
 
2. Another important question to be addressed is related to the exploitation of APR images. 
The authors clearly demonstrate the theoretical optimality of APR, the robustness of APR to 
noise, and the capability of APR to save memory. All these items are well presented with 
many details (see Supplementary Material) in the paper. I’m convinced that APR is 
appropriate for image visualization, manipulation and image management. Moreover, a large 
family of image segmentation and classification algorithms can be applied to the adaptive 
subsampled images. Also, one can benefit from the APR representation to apply more 
dedicated and powerful Laplacian graph-based image processing approaches (this property 
could be more emphasized in the paper).  
 
We thank the reviewer for this suggestion. We now explicitly point this out in the Image 
Processing Summary section. 
 
While this is fine as such, noise statistics are probably modified when the non-linear APR 
approach is applied to the raw images. Formally, Gaussian-Poisson noise in raw images is 
not preserved in the APR images. This means that regularized image restoration and 
deconvolution methods cannot be applied since the characteristics of noise are not well 
defined. However, I guess that the novel characteristics of noise in APR images can be 
empirically analyzed with simulations. The possibility to compare noise statistics in raw and 
APR mages is important to avoid image processing problems and could be more illustrated in 
the paper. It is worth noting that the authors satisfyingly evaluated the gradient magnitude in 
raw and APR images (see Supplementary Material). The results tend to suggest that the 
noise is approximately Gaussian in APR images. Nevertheless, this issue should be 
addressed, and potential solutions should be included in the next version. 
 
– Page 10. In Figure 4, the APR reconstruction images are less noisy than the original 
images. Does it mean that APR implicitly removes noise? Which amount of noise is removed 
and what are the statistics of the residual noise in the APR images (see also comments 
above)?   
 
We agree with the reviewer that the noise statistics of an image is an important piece of prior 
knowledge that is typically exploited when designing image-analysis methods. Using an 
inappropriate noise model has also repeatedly shown to lead to sub-par results, particularly in 
variational models. We have therefore added two direct studies of how the noise of the pixel 
image maps into the APR. 
 
First, we have provided additional synthetic image results in SuppMat 7.6, showing the impact 
of the APR adaptation on the noise distribution of pixels vs. particles. Secondly, we have 



highlighted the link with the existing theoretical arguments in SuppMat 7.5, regarding the 
noise distribution of particles and given explicit theoretical results for the cases of both 
Gaussian and Poisson noise distributions on the pixels. We note that these results depend on 
the method chosen to estimate the particle intensity values from the original image, more than 
on the APR itself. Further, we find that this results in a natural decomposition of the noise 
distribution by Particle Cell level, which could be another interesting property of the APR to be 
studied in future work. 
 
Second, we highlight that this level-wise change of the noise distribution requires adaptive 
regularization terms and noise models in model-based image analysis approaches. We note 
however that, given the original noise distribution, following analysis as in SuppMat 7.5, a 
partitioned noise energy term could be formulated level-by-level. This is especially true under 
the assumption of Gaussian noise. Further, the noise distribution in content-rich areas, 
notably around edges in the images, is unchanged. For image-analysis methods that focus on 
these areas, such as segmentation methods, the same noise model/term as on pixels may 
thus be used. We now briefly highlight this point in the discussion subsection of the 
processing benchmarks in the main text. 
 
3. In practical imaging, the potential user needs to be instructed about the parameters to 
compute APR. The authors should at least discuss this necessity and provide what the 
prerequisites are for the input.  
 
We note that in SuppMat 14, we provide a detailed discussion of the parameters required to 
be set when using the APR, and we provide suggestions on how to set the values and what 
they mean. The parameters are also mentioned and referenced in the main text in the "3D 
Fluorescence APR Implementation" section. 
 
5. The claim that the proposed APR will overcome the memory bottleneck is true, but the 
acquired raw data cannot be removed once APR is applied. It is actually mandatory to store 
the original images in cell imaging (reproducible research) if published. APR appears to be 
more appropriate for visualization and manipulation. 
 
We agree with the reviewer that these regulatory requirements can prevent the discarding of 
the original pixel images. However, we note that this can be circumnavigated if the APR is 
formed directly on the fly during acquisition on the microscope, as it would then arguably 
qualify as the “raw data”. A notable precedence for this was provided by the projection-based 
techniques presented in Schmid et al. 2013 (ref. 25). However, when this is not the case or 
not desired, the difference image between the original image and the APR can be stored in 
long-term storage for archival, providing lossless access to the original data at any time while 
still using significantly less storage. All image analysis and processing could then be carried 
out on the APR, benefitting from computational savings and leaving the raw data untouched 
for archiving. We have added a comment to the conclusions on this issue. 
 
6. A number of specific comments on the text must be addressed: 
 
– Page 3, I found that the presentation of the “Implied Resolution Function” is not easy to 
understand in the second Section (APR). Figure 2 is not easy to follow for non-specialists. I 
recommend to make an effort to express the idea more intuitively. A simple sketch could be 
added since Figure 2 is quite dense”. 
 
We have adapted the first two introductory paragraphs of "The Adaptive Particle 
Representation" section to make the introduction of these concepts simpler in hope of making 
them accessible to a broader audience. We have given explicit attention to the first 
introduction of the Implied Resolution Function and now believe with the existing figures the 
explanation should be clearer. We have also removed two sub-figures from Figure 2 to 
reduce the over-all complexity of the figure and focusing on novel concepts. 
 
 
From discussions with colleagues regarding this figure, they have found the technical details 
to be of great utility for the understanding of the APR and for helping them program or 



implement the APR in their codes. Hence, we believe further reduction will limit the usability of 
the paper as a reference for future users.  
 
– Pages 3-8 present the properties of APR with details but the related sections are accessible 
to a limited audience, for example, developers of image processing methods and algorithms. 
 
We agree that this section does provide technical details regarding the APR, and we have 
modified the first two paragraphs of this section to provide a clearer and more straightforward 
overview of the APR. Further, we included a sentence at the beginning of the section to guide 
the reader for whom these details may not be of relevance.  
 
Indeed, these sections require a certain degree of technical aptitude and background to be 
engaged with correctly. However, we believe further reduction and simplification would result 
in misrepresentation of our ideas and concepts in upcoming software codes. Also, this would 
reduce the potential impact of the ideas being able to be extended outside the context of 
fluorescence imaging. We do agree that the degree of technicality makes this section un-
accessible for some readers, though. However, using the APR does not require 
understanding the technical details of it, nor does it preclude appreciation of the underlying 
concepts. We therefore wish to keep the section at its present, revised level of detail.  
 
– Page 11. The authors claim that the compression ratios are comparable to custom lossy 
compression methods designed specifically for storing of fluorescence microscopy images. I 
suggest to show such a compressed image to enlighten the difference between the images 
and methods.  
 
We agree with the reviewer and we apologize for this omission. We have extended the direct 
analysis and comparison of the APR by also including the recent “within noise level” 
compression method (Balazs et al. 2017 ref. 30) in SuppMat 20.1, which is the state of the art 
in the field of lossy microscopy image compression. We show a comparison between an 
original image, the APR, the lossy compressed APR, and the lossy compressed pixel image 
in SFigure 38. We have also changed the main-text comments to reflect the complementary 
nature of the APR and existing lossy techniques. The results from the equivalent pixel 
algorithm have also been added for all exemplar datasets in Table 4. 
 
– Page 13. It is doubtful that the usual pixelwise Markov Random Fields (MRF) methods can 
be applied to APR images since the regular neighborhood of a given pixel (4 or 8 neighbors) 
are corrupted by the APR approach. An additional recommendation could be given here. 
Actually, the super-pixel representation embedded in a MRF framework requires the 
manipulation of graphs with a variable number of neighbors at each node (gravity center of 
super-pixels). In Figure 5C, the number of neighbors is not the same for all nodes with APR. 
Accordingly, the impact of the graph construction should be discussed if pixelwise algorithms 
(for instance for optical flow computation or non-parametric image registration) are applied to 
reconstructed APR images. Graph cuts (image segmentation) and Laplacian graph methods 
are probably more appropriate to APR in general, as demonstrated in page 16.  
 
The reviewer is correct regarding the APR Particle graph’s anisotropic and locally varying 
neighborhood. This indeed renders the APR Particle graph inappropriate for techniques that 
require a regular isotropic neighborhood. However, in such cases, a locally isotropic 
neighborhood patch can always be constructed on the fly around each particle. This local 
patch reconstruction is similar to the approaches used for the pixel-based filtering on the 
APR. We thank the reviewer for highlighting this additional possibility, and we now explicitly 
mention this in the segmentation section, where we added an additional remark about how to 
use regular-neighborhood methods on the APR.  
 
REMARKS: 
 
The figures and captions are very dense in general. 
 
We made an extra effort to simplify the captions without losing information. We have also 
simplified Figure 2, and the central Figure 3, moving panel A to the supplement. From 



feedback, we have found pipeline flowchart to be effective, however, the schematic of the 
separability property, although useful, is likely too technical to justify such real-estate in the 
main text.  



REVIEWER 2: 
 
The authors propose an adaptive representation of images -the APR- as a replacement to 
pixels. It aims at providing a more efficient storage and faster/more convenient analysis. The 
APR is lossy compared to pixels, but that loss is controlled per pixel thus adapted to 
microscopy and biology. Mathematical proofs and arguments are provided backing the 
authors claims and efficient algorithms and storage solutions are proposed and implemented. 
Thorough evaluation of computation of the APR and of its use in analysis is done, both on 
synthetic and real images. 
 
The problem tackled by the authors is important and urgent. Modern fluorescence microscopy 
is acquiring data at an ever increasing rate, leading to ever larger images/volumes, longer 
times and higher resolutions. Traditional file formats are reaching their usability limit and a 
number of alternative format have recently been proposed. The authors propose a thorough 
solution in the form of a new image representation. It is a well defined, fully developed 
solution designed from the ground up for modern biology uses. Importantly (and not so 
commonly), a full mathematical development is provided to strengthen their claims and 
analyse the properties of their construction and algorithms. Applications and validation include 
practical uses case and benchmarks, showing that the aim is a practical, truly usable solution. 
 
We thank the reviewer for this appreciation of our work. We hope the revisions have further 
improved it. 
 
Comments: 
 
- Importantly, for that work to be actually used outside of the authors lab and become more 
that 'yet another file format', it needs to be integrated into actual frameworks and pipelines 
used by the community. At the time of this review, only the C++ library is released, but for a 
wide adoption, bindings in python/matlab/java/ImageJ are needed. They are promised by the 
authors but should, I think, be released concomitantly to the publication of the article to 
benefit from the community interest. Additionally, bioformat is becoming the de-facto standard 
for microscopy file format interoperability. Are there plans for a bioformat integration?  
 
We entirely agree with the reviewer, and a concerted effort is now underway to provide 
integration that can make the APR more widely available and useful. 
 
Importantly, a uniform-resolution pixel image can always be reconstructed from the APR on 
the fly at the expense of the additional memory (but not storage), and the C++ library already 
allows this. This already enables direct use of non-APR-aware algorithms without 
modification. However, the computational cost of these algorithms will remain unchanged 
from the pixel case. The ideal case, however, is when algorithms can be adapted to fully 
benefit from the APR and the additional information it provides. This will be future work. 
 
- Along the same line, and given that usual algorithms implementation, which would be the 
one used in practice, are not APR-aware, the authors should show how well would the APR 
be integrated with, say, a standard ImageJ/matlab/python pipeline: what's the performance of 
a standard implementation of a linear filter, for example? 
 
We are currently developing an interface between the APR C++ Library and Fiji/ImageJ that 
will allow interoperability between existing pixel algorithms and algorithms directly on the 
APR. This is planned to include the integration into existing tools such as BigDataViewer for 
by-slice visualization without reconstructing the original image. The interface will also allow 
any image that can be read by Fiji (through BioFormats) to then be used with LibAPR without 
intermediate conversion to TIFF, as currently is required. Such interface will enable hybrid 
pipelines where some steps could use the pixel image, and some the APR. The C++ Library 
can also already be used, via wrappers, from both Java and Python. Java wrappers also 
allow the potential calling of functions from within Matlab.  
 
 
 



One interesting test case that could be for example to see the APR reused to recomputed a 
published analysis. If the authors could take one of their previous biological 
publication/collaboration, reuse the same pipeline of plugins to recompute some 
quantifications and redo one of its figure using the APR, and find similar results, it would show 
the compatibility and convince readers less impressed by mathematical arguments that the 
APR is, at least, just as good as pixels in practical applications 
 
We agree with the reviewer that such a comparison would make a convincing use case for 
adopting the APR in a particular task or workflow. However, we believe such an example 
would be too specific, and prone to overfitting. We therefore believe that such specific 
comparisons are better left to future work, pipelines, and presentations. Instead, we here wish 
to focus on the general concepts and benchmark of the APR that are independent of a 
specific biological application.  
 
In a more general context, the Reconstruction Condition provides direct control over the point-
wise representation accuracy. Hence the accuracy of the pipeline is implementation and 
algorithm dependent. We have attempted to highlight these potential benefits and pitfalls with 
the processing examples given in the last section of the paper. 
 
- The APR is from the start developed with very large acquisitions in mind. In the text, the 
authors show benchmark on data up to 4Gb. That is still up to two orders of magnitude 
smaller than the very large acquisition that will soon be commonplace. I would like to see 
some specific comments if not experiments on that in the text: does the APR scale all the way 
up (to Tb sized images), in term of computation, storage and uses? In particular is parallel 
access (read and/or write) possible? What is the speed of arbitrary patch extraction (i.e. 
reading a particulate rectangular volume from the data)? 
 
It appears that we mistakenly omitted a reference to the supplementary material that provides 
exactly these details in SFigure 35. We apologize for this. In this benchmark, we show scaling 
on images up to 100GB. We have updated the main text to now highlight this. Given enough 
computer memory, one can go to arbitrarily large images. We have also highlighted this using 
a test case image of size 320 GB and provide the comparative results. 
 
In addition, the separability property of the APR allows a block-wise computation strategy, 
which will allow processing of very large images, beyond the size of available memory on the 
machine. However, this method development and associated software is still underway and 
will be subject of future work and publications. 
 
- The mathematical arguments are, overall, rigorously written and convincing. However, 
because of the constrains of the format, where all mathematical arguments are relegated to 
the supplementary material in an order which is not always natural, they can be frustratingly 
hard to follow. That is particularly obvious at the start, where the first equation of SuppMat 2 
invovle \xi_i, which I am not sure are defined anywhere (SuppMat 10 maybe?). I am not sure 
what the best way would be. A proper, rigorous, in order, mathematical write up would lead to 
the supplementaries not being in sync with the main text part they are a supplementayry to, 
which would pose other issues...  
 
We apologize for this omission. The undefined symbols were a mistake, as a subsection was 
shortened during editing. This has been remedied, and we thank the reviewer for noting this. 
We have also streamlined the supplement, by inclusion of a table of contents. We believe, 
this aids in readability and access and serves as an index to the large volume of material we 
provide.  
 
Overall, this article provide a potentially very useful and rigorously defined solution to a very 
current problem. However, I think that to fully support it's claim of being more that yet another 
format/image representation, integration into existing scientific workflow to work on the very 
large images it is claimed to be made for needs to be demonstrated. 
 
We agree that realizing the full potential of the APR requires continued development and 
integration with existing tools and pipelines. Such efforts do take time and resources but are 



currently under-way as the APR is becoming adopted by the open-source community. 



REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors satisfyingly answered to all my concerns.  
 
They paid attention to all items and accurately provided mathematics, figures and experiments to 
support several claims.  
 
They made a large effort in general to improve the manuscript and to justify the positionning.  
 
For all these reasons, I consider that the paper can be accepted.  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
Concerning specifically the answers of the authors to my comments:  
- As of this writing, a python API does not seem to appear in the github repository, where it is still 
noted as coming soon. Since the authors say in their answer that it is available, maybe it is just 
not publicly available yet?  
- The revised paper indeed show example up to 320Gb, but the stated limitation of having 2.7 
time the image size in RAM means that doing so need more than 800Gb of RAM, which is not 
common place and that going significantly higher than that will be problematic.  
 
I will admit that those comments are partly selfish, as I work with large images in python, and 
thus may not be able to test/use the APR yet... The size limitation though is really problematic for 
an algorithm which, from the start, is aimed at large datasets; are there ways to circumvent it, or 
improvements being developed that would alleviate it?  
 
Apart from those comments, the revised manuscript is significantly improved and the work is 
overall of high relevance and quality. Thus I would recommend publication, provided the release of 
the python API.  



Response to Reviewers for Manuscript  
NCOMMS-18-07550-T - “Adaptive Particle Representation of 

Fluorescence Microscopy Images” 
By B. L. Cheeseman, U. Günther, K. Gonciarz, M. Susik, and I. F. Sbalzarini 

 
We thank the reviewers again for their thorough reading of the manuscript and the constructive 
comments that have helped improving the work. We are pleased they find the work suitable for 
acceptance. We provide point-by-point replies to the reviewer’s comments here below in green italics, 
quoting the reviews in black print.  
 
Response to reviewer 2: 
 
- As of this writing, a python API does not seem to appear in the github repository, where it is still noted as coming 
soon. Since the authors say in their answer that it is available, maybe it is just not publicly available yet? 
 
We are pleased regarding the reviewer's interest in the Python wrappers. We apologize for the confusion, the 
basic python wrappers where available through the developPython branch of the GitHub repository at 
https://github.com/cheesema/LibAPR/tree/developPython. However, we have now included these in the main 
master branch, which makes it easier to find them. We note that the functionality allows generation of the APR 
and reconstruction of images.  
 
If the reviewer requires further assistance or is interested in additional functionality, we would be happy to help in 
any way. By contacting either the first or last authors directly following the acceptance of the manuscript. 
 
- The revised paper indeed show example up to 320Gb, but the stated limitation of having 2.7 time the image size 
in RAM means that doing so need more than 800Gb of RAM, which is not common place and that going 
significantly higher than that will be problematic.  
 
Yes, the reviewer is correct that the current pipelines requirement for 2.7 times memory, although not a large 
requirement in usual contexts, when used for extremely large (>20GB) images this results in large amounts of 
RAM being required, making the formation of the APR not possible without dedicated hardware for these 
datasets. We are aware that not all researchers have access to servers with 1TB of RAM as used for the 
presented benchmarks. For this use-case, we agree this is a limitation, and that as the reviewer points out, such 
large datasets present an ideal use-case for the APR. 
 
Addressing this issue is the subject of on-going research. For these use-cases the APR can be formed using a 
block-wise decomposition, requiring significant adjustments to the algorithms, and additional software 
development. We are now explicitly mentioning this in the Conclusions section. These changes, allow then the 
formation of the same APR, with memory requirements only restricted to 2.7 times the local block used. We feel 
that these changes are outside the scope of the research paper presented here. However, we note that 
preliminary work has been done, and we will make this available as soon as possible.  




