Cell Reports, Volume 25

Supplemental Information

Recruitment of Cytosolic J-Proteins

by TOM Receptors Promotes

Mitochondrial Protein Biogenesis

Łukasz Opaliński, Jiyao Song, Chantal Priesnitz, Lena-Sophie Wenz, Silke Oeljeklaus, Bettina Warscheid, Nikolaus Pfanner, and Thomas Becker

Figure S1. Growth of $xdj1\Delta$ Cells and Localization of Xdj1, Related to Figure 1 (A) Serial dilutions of wild-type (WT) and $xdj1\Delta$ cells were spotted on full medium containing a fermentable (glucose, YPD) or non-fermentable (glycerol, YPG) carbon source. Growth was analyzed at 37°C.

(B) Intact Xdj1_{HA} mitochondria or osmotically swollen mitochondria (swelling) were treated with proteinase K (Prot. K) where indicated. Proteins were separated by SDS-PAGE and analyzed by immunodetection with the indicated antisera. Xdj1_{HA} was detected with anti-HA antibodies.

Figure S2. Analysis of Xdj1 Binding to Tom22 and Characterization of TOM Receptor Mutant Mitochondria, Related to Figure 1

(A) Left panel, the indicated recombinantly expressed and purified proteins were analyzed by SDS-PAGE and Coomassie blue staining. Right panel, the recombinantly expressed His-tagged cytosolic domain of Tom22 (Tom22_{CD}) was incubated with glutathione columns coated with GST, $_{GST}Xdj1$, $_{GST}Djp1$ or $_{GST}Ydj1$. Load and elution fractions were analyzed by SDS-PAGE and immunodetection with anti-His antibodies. Input for Tom22_{CD} 2%; elution 100%.

(B) 35 S-labeled Xdj1 was incubated with isolated wild-type mitochondria. Where indicated, mitochondria were treated with proteinase K (Prot. K) before binding of [35 S]Xdj1.

(C) The indicated protein amounts of wild-type (WT), $tom20\Delta$, $tom22\Delta$ and $tom70\Delta$ mitochondria were analyzed by SDS-PAGE and immunodetection with the indicated antisera. The lack of Tom20 leads to decreased levels of Tom22; the $tom20\Delta$ yeast strain used thus additionally contains a plasmid for expression of *TOM22*, leading to a moderate increase of Tom22 levels.

Figure S3. Characterization of *xdj1* Δ Strain and Mitochondria, Related to Figure 2

(A) Mitochondria from wild-type (WT), $xdj1\Delta$ and an $xdj1\Delta$ strain expressing plasmidencoded *XDJ1* ($xdj1\Delta+Xdj1$) were analyzed by SDS-PAGE and immunodetection. Quantification of Tom22 levels, depicted are mean values with standard error of the mean (n = 3). The amount of Tom22 in WT mitochondria was set to 100% (control). (B) ³⁵S-labeled precursors of Su9-DHFR or Oxa1 were imported into WT and $xdj1\Delta$ mitochondria for the indicated periods. After import, non-imported precursor proteins were removed by treatment with proteinase K. The import reactions were analyzed by SDS-PAGE and autoradiography. Quantification of three independent import reactions with standard error of the mean. As control, the import of precursors into WT mitochondria after 6 min was set to 100%. $\Delta\psi$, membrane potential.

Figure S4. Analysis of Xdj1 Variants, Related to Figure 4

(A) ³⁵S-labeled Xdj1 constructs were incubated with isolated yeast wild-type (WT) mitochondria for the indicated periods. Mitochondria-bound proteins were analyzed by SDS-PAGE and autoradiography.

(B) ³⁵S-labeled Xdj1 variants were incubated with isolated WT mitochondria for the indicated periods. Mitochondria-bound proteins were analyzed by SDS-PAGE and autoradiography. TL, translation product, 14% of input.

(C) The precursors [35 S]Su9-DHFR and [35 S]b₂-DHFR were incubated with recombinantly expressed and purified GST, _{GST}Xdj1 or _{GST}Xdj1H37Q prior to import into isolated WT mitochondria. The import reaction was analyzed by SDS-PAGE and autoradiography. p, precursor; i, intermediate; m, mature. Quantification of mature-sized [35 S]b₂-DHFR, mean values with range (n = 2); the import after 12 min in the presence of GST was set to 100% (control).

TableS1. List of Proteins Identified in Tom22_{His} Affinity PurificationExperiments, Related to Figure 1

Identification of proteins purified with $\text{Tom22}_{\text{His}}$ and SILAC-based relative quantification were performed using MaxQuant/Andromeda (version 1.2.0.18). Potential Tom22 interaction partners were defined as proteins with an enrichment factor of > 10, an overall sequence coverage of \geq 4%, and a p-value of < 0.05. See Excel file for results.

Name	Sequence (5'->3')	Source	Identifier
pGEX- XDJ1for	CGGGATCCCGATGAGTGGCAGTGATAGAGG	This paper	1996
pGEX-	TCCCCCCGGGGGGGGATCATTGGATACAGCAGT	This	1997
XDJ1rev	ACGAAC	paper	
pGEX-	CGGGATCCCGATGGTTAAAGAAACTAAGTTTT	This	1998
YDJ1for	ACGATATTC	paper	
pGEX-	TCCCCCCGGGGGGGGATCATTGAGATGCACATT	This	1999
YDJ1rev	GAACAC	paper	
pGEX-	CGGGATCCCGATGGTTGTTGATACTGAGTATT	This	2000
DJP1for	ACG	paper	
pGEX-	TCCCCCCGGGGGGGATCATGTATGTCTCTTCT	This	2001
DJP1rev	TTTTTGTAGC	paper	
XDJ1H37	GCTTACAGAAAGCTTGCCCTGAAACATCAACC	This	2002
Qfor	GGACAAGTATGTGGATCAAGACTCA	paper	
XDJ1H37	TGAGTCTTGATCCACATACTTGTCCGGTTGAT	This	2003
Qrev	GTTTCAGGGCAAGCTTTCTGTAAGC	paper	
XDJ1-	AGCGCATCAGAAAGCAAGAAGTTCGTACTGC	This	2004
HAfor	TGTATCCAACGGATCCCCGGGTTAATTAA	paper	
Xdj1- HArev	GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	This paper	2005
SP6-	TCGATTTAGGTGACACTATAGAATACGCCGCC	This	1326
XDJ1for	GCCATGAGTGGCAGTGATAGAGGAG	paper	
SP6- XDJ1Rev	GATCTCATTGGATACAGCAGTACGAAC	This paper	1327
SP6-	TCGATTTAGGTGACACTATAGAATACGCCGCC	This	1334
OXA1for	GCCATGTTCAAACTCACCTCTCGAC	paper	
SP6- OXA1rev	GATCTCATTTTTGTTATTAATGAAGTTTG	This paper	1335
SP6-	TCGATTTAGGTGACACTATAGAATACGCCGCC	This	1322
TOM22for	GCCATGGTCGAATTAACTGAAATTAAAGACG	paper	
SP6- TOM22rev	GATCTTAATTGGCTGTTGCTGCAG	This paper	1323
CCXDJ1- GFPfor	ATATCTAGAATGAGTGGCAGTGATAGAGGAG	This paper	2006
CCXDJ1- gfprev	TTGTCGACTTGGATACAGCAGTACGAACTTC	This paper	2007
SP6- XDJ177- 458for	TCGATTTAGGTGACACTATAGAATACGCCGCC GCCATGGGTGATGATAATGGTGCCGCT	This paper	2008

Table S2. Oligonucleotides Used in This Study, Related to STAR Methods

SP6-XDJ	TCGATTTAGGTGACACTATAGAATACGCCGCC	This	2009
116-458for	GCCATGGGCGAGTATGATGCGTACGAA	paper	
SP6-XDJ	TCGATTTAGGTGACACTATAGAATACGCCGCC	This	2010
284-458for	GCCATGGAAAACTTGGAGCAGAAGCAA	paper	
SP6-XDJ	TCGATTTAGGTGACACTATAGAATACGCCGCC	This	2011
377-458for	GCCATGCCACCAGATAACTGGTTCAAT	paper	
SP6-XDJ 1-377rev	GATCTCATGGAAATTCAATATGAACGAA	This paper	2012
SP6-XDJ 1-284rev	GATCTCATTCTTGTTTTTCAGTGAGATG	This paper	2013
SP6-XDJ 1-116rev	GATCTCAGCCAGGGAAATTATTTCCATC	This paper	2014
XDJ1WG	CTTTAAGAAGGAGATATACCATGAGTGGCAGT	This	2015
for	GATAGA	paper	
XDJ1WG	TGATGATGAGAACCCCCCCTTGGATACAGC	This	2016
rev	AGTACGA	paper	
pRS416- XDJ1for	AGGGGAATTCAAACTCGTTATTCGAAGTTTTC	This paper	1990
pRS416-	AGGGGGATCCGTAGTGTTTTTGGAAGAGATG	This	1991
XDJ1rev	C	paper	
XDJ1-	ATGGGCAAGAAGCTGAAGGCTGATTTAAAGA	This	1992
F151Afor	GACAGGTC	paper	
XDJ1-	GACCTGTCTCTTTAAATCAGCCTTCAGCTTCT	This	1993
F151Arev	TGCCCATG	paper	
XDJ1-	CTGTCAAAGAAGGAAATCGCTACAGTGAACG	This	1994
I243Afor	TGGCTCCG	paper	
XDJ1-	CGGAGCCACGTTCACTGTAGCGATTTCCTTCT	This	1995
I243Arev	TTGACAG	paper	