
SUPPLEMENTARY	INFORMATION	 1	

SUPPLEMENTARY	INFORMATION	FOR	
	
	
miRTrace	reveals	organismal	origins	of	microRNA	sequencing	data	
	
	
Wenjing	Kang1,	Yrin	Eldfjell1,	Bastian	Fromm1,	Xavier	Estivill2,	Inna	Biryukova1,	Marc	R.	Friedländer1	
	
1	 Science	 for	 Life	 Laboratory,	 Department	 of	Molecular	 Biosciences,	 The	Wenner-Gren	 Institute,	 Stockholm	
University,	Stockholm,	Sweden	
2	Genes	and	Disease	Research	Group,	Sidra	Medicine	Research	Center,	Doha,	Qatar	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



SUPPLEMENTARY	INFORMATION	 2	

Table	of	Contents	

Supplementary	Notes	..............................................................................................................	3	
Note	S1:	Effects	of	miRNA	annotation	imbalances	between	species	................................................	3	
Note	S2:	RNA	integrity	and	small	RNA	sequencing	quality	................................................................	4	

Supplementary	Methods	.........................................................................................................	5	
Estimating	sensitivity	of	contamination	detection	............................................................................	5	
Estimating	specificity	of	clade-specific	miRNA	detection	..................................................................	5	
RNA	degradation	at	room	temperature	.............................................................................................	6	
TaqMan	small	RNA	assays	..................................................................................................................	6	
Index	mis-assignment	analysis	using	in-house	libraries	.....................................................................	6	
Computational	removal	of	mis-assigned	reads	based	on	Matranga	et	al.	2014	................................	7	
Tracing	species	origins	of	simulated	Sanger	COI	sequences	using	Barcode	of	Life	Identification	
Engine	................................................................................................................................................	7	
Tracing	species	origins	of	RNA-Seq	datasets	using	FastQ	Screen	......................................................	8	

Supplementary	Figures	............................................................................................................	9	
Figure	S1:	Consistency	of	clade-specific	miRNAs	reported	using	miRBase	and	MirGeneDB	as	
reference	database	..........................................................................................................................	10	
Figure	S2:	Specificity	of	clade-specific	miRNA	detection	.................................................................	11	
Figure	S3:	Presences	of	clade-specific	miRNA	families	in	public	data	sets	......................................	13	
Figure	S4:	miRTrace	sensitivity	in	detecting	contamination	from	different	clades	.........................	14	
Figure	S5:	Circos	plot	showing	potential	index	mis-assignments	when	allowing	one	mismatch	in	
the	index	sequence	..........................................................................................................................	15	
Figure	S6:	Comparison	of	two	approaches	for	removing	mis-assigned	reads	.................................	16	
Figure	S7:	PCA	of	mouse	samples	with	human	contamination	.......................................................	17	
Figure	S8:	PCA	of	mouse	samples	with	fruit	fly	contamination	.......................................................	18	
Figure	S9:	miRNA	differential	expression	analysis	of	mouse	samples	with	human	contamination	19	
Figure	S10:	miRNA	differential	expression	analysis	of	mouse	samples	with	fruit	fly	contamination
	.........................................................................................................................................................	20	
Figure	S11:	Neighbor-joining	tree	of	COI	sequences	of	the	12	Drosophila	species	.........................	21	
Figure	S12:	RNA	integrity	assessment	by	RIN	..................................................................................	22	

References	.............................................................................................................................	23	
	
	
	
	
	
	
	
	
	
	



SUPPLEMENTARY	INFORMATION	 3	

Supplementary	Notes	

Note	S1:	Effects	of	miRNA	annotation	imbalances	between	species		

	
In	 some	 of	 our	 analyses	we	 have	 observed	 that	 the	 relative	 proportions	 of	 clade-specific	
miRNAs	reported	by	miRTrace	do	not	correspond	to	the	known	proportions	of	transcripts	in	
the	samples.	For	 instance,	 in	main	Figure	5F,	the	reported	fruit	 fly	contaminations	are	1-2	
orders	of	magnitude	larger	than	would	be	expected	from	known	proportions	of	the	mixed	
samples,	 suggesting	 that	 miRTrace	 detects	 miRNAs	 from	 distinct	 clades	 with	 different	
sensitivity.	
	
To	 investigate	 the	 sensitivity	 with	 which	 miRTrace	 detects	 contaminations	 from	 distinct	
clades,	a	mouse	data	set	was	in	silico	contaminated	with	varying	amount	of	sequences	from	
12	representative	species,	one	species	at	the	time	(Additional	file	4:	Report	S7).	In	general,	
miRTrace	 sensitively	detects	 the	contaminations	 from	any	of	 the	 species	when	present	at	
0.1%	or	higher,	except	for	Picea	abies	from	the	gymnosperm	clade	(Figure	S4).	However,	the	
exact	detection	sensitivity	varies	from	clade	to	clade.	For	example,	the	contaminations	from	
Drosophila	 melanogaster	 (insect	 clade),	 Gallus	 gallus	 (bird),	 Amphimedon	 queenslandica	
(dicot	plant)	 and	Physcomitrella	patens	 (bryophyte	plant)	 are	detected	when	only	0.001%	
contaminations	 are	 present,	 while	 the	 presence	 of	 Danio	 rerio	 (fish)	 and	 Apostichopus	
japonicas	 (echinoderm)	 is	 not	 detected	 until	 0.1%	 contaminations	 are	 present,	 and	 the	
same	number	for	Picea	abies	(gymnosperm)	is	10%	contaminations.	
	
One	possible	reason	for	this	is	that	some	clades	do	not	have	many	annotated	clade-specific	
miRNAs.	For	instance,	there	are	currently	only	six	annotated	miRNA	families	that	are	specific	
to	 gymnosperms,	 while	 sixty	 miRNA	 families	 are	 known	 to	 be	 specific	 to	 insects.	 These	
imbalances	 in	 part	 reflect	 the	 resources	 put	 into	 annotation	 efforts,	 for	 instance	 well-
studied	model	organisms	 like	 fruit	 flies	versus	gymnosperm	plants.	Therefore,	an	effort	 to	
make	 a	 uniform	 miRNA	 annotation	 across	 animals	 and	 plants	 will	 likely	 ensure	 more	
quantitative	analyses	by	miRTrace.	
	
Another	possible	reason	for	the	varying	sensitivity	of	our	method	is	that	some	clade-specific	
miRNAs	may	be	generally	highly	expressed,	while	other	might	be	generally	lowly	expressed.	
This	 can	be	 seen	by	 contrasting	miRNAs	 that	 are	 specific	 to	 gymnosperm	plants	 to	 those	
that	 are	 specific	 to	 nematodes	 (Additional	 file	 4:	 Report	 S8).	 As	mentioned,	 there	 are	 six	
miRNA	families	that	are	specific	to	gymnosperms;	these	are	present	at	7	reads	per	million	
(RPM)	in	the	gymnosperm	data	used	in	Figure	S4.	Comparably,	there	are	just	four	families	
that	are	specific	to	nematodes,	however	these	are	present	at	>18,000	RPM	in	the	nematode	
data.	Since	it	is	well	established	that	miRNA	families	can	differ	largely	in	their	overall	levels	
of	expression,	these	differences	likely	reflect	biology.	
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In	 summary,	 the	 varying	 sensitivity	 stems	 in	 part	 from	 the	 fact	 that	miRTrace	 integrates	
information	from	a	variable	number	of	miRNA	gene	loci,	rather	than	relying	on	information	
from	 a	 single	 barcoding	 gene	 locus.	 However,	 as	 discussed	 in	 the	 main	 manuscript,	 this	
makes	 the	 analyses	 more	 robust	 to	 evolutionary	 events	 such	 as	 gene	 losses.	 Similarly,	
miRTrace	profiles	RNA	molecules,	which	can	differ	in	copy	number	per	cell,	rather	than	DNA	
molecules	 that	 are	 present	 at	 constant	 levels	 per	 cell	 (typically	 two	 copies	 for	 diploid	
organisms).	 Since	RNA	molecules	 are	often	present	 in	 individual	 cells	 in	 copy	numbers	 of	
hundreds	 or	 thousands,	 this	makes	 the	method	 sensitive,	 so	 that	 it	 can	 accurately	 assign	
single	cells	to	their	clade	of	origin	(see	main	Figure	2B).	
	
	

Note	S2:	RNA	integrity	and	small	RNA	sequencing	quality	

Quality	 and	 quantity	 of	 starting	 RNA	 material	 are	 the	 essential	 factors	 determining	 the	
accuracy	of	sequencing	outcome.	Ribosomal	RNA	comprises	>	80	%	of	total	RNA	sample	and	
can	be	easily	and	accurately	quantified	compared	to	mRNA	and	small	RNAs,	which	make	up	
<	7	%	of	total	RNAs.	Traditionally,	the	RNA	integrity	number	(RIN)	measured	by	evaluating	
ribosomal	 RNA	 quality	 is	 broadly	 used	 to	 indicate	 the	 quality	 of	 other	 RNA	 species.	 RNA	
samples	with	an	RIN	value	≥	8	are	recommended	for	small	RNA	library	preparation	(Illumina,	
Diagenode	and	Qiagen	small	RNA	NGS	protocols).	In	practice,	RIN	values	ranging	from	10.00	
to	7.00	are	usually	considered	as	good	quality	starting	material	by	NGS	facilities.	
	
In	our	hands,	 small	RNA	 libraries	prepared	 from	total	RNAs	degraded	by	RNase	A	enzyme	
with	a	low	RIN	value	(2.30,	main	Figure	5:	7th	bar)	showed	the	miRNA	outcome	comparable	
with	the	standard	small	RNA	libraries	(high	RIN	value	10.00-9.00,	main	Figure	5:	the	5th	bar).	
This	 result	 supports	 the	 previously	 finding	 of	 robust	 miRNA	 stability	 in	 degraded	 clinical	
samples,	which	was	measured	by	RT-qPCR[1].	Importantly,	there	is	no	correlation	between	
RIN	 value	 and	 degradation	 of	 small	 RNAs.	 This	 is	 especially	 relevant	 to	 clinical	 and	 field-
collected	samples,	which	are	particularly	subject	to	RNA	degradation.	We	suggest	that	the	
samples	 with	 minimal	 RIN	 value	 of	 2.00-2.50	 could	 be	 used	 for	 small	 RNA	 library	
preparation	using	standard	TruSeq	small	RNA	protocol	(Illumina).	
	
There	 are	 a	 number	 of	 controversial	 reports	 on	 miRNA	 stability	 at	 different	 storage	
conditions	[1-3].	We	re-evaluated	RNA	stability	at	room	temperature	over	period	of	10	days	
in	 air-protected	 and	 air-exposed	 RNA	 samples	 isolated	 from	 HEK-293T	 with	 a	 standard	
TRIzol-based	protocol	(Figure	S12).	In	our	hands,	air-protected	RNA	samples	were	stable	at	
room	temperature	without	significant	degradation	(RIN	10.00-9.60).	In	contrast,	air-exposed	
RNA	 samples	 showed	 a	 slight	 sign	 of	 RNA	 degradation	 (with	 RIN	 values	 decreasing	 from	
10.00	 to	 8.20).	 This	 suggests	 that	 short-term	 storage	 of	 total	 RNA	 samples	 at	 room	
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temperature	does	not	necessarily	cause	a	substantial	decrease	of	RNA	quality,	as	measured	
by	rRNA	integrity.		
	
	

Supplementary	Methods	

Estimating	sensitivity	of	contamination	detection	

To	 investigate	 the	 sensitivity	 of	 miRTrace,	 in	 detecting	 contaminations	 from	 different	
species,	a	mouse	sample	(SRX869508)	was	computationally	contaminated	with	reads	from	
11	 species.	 These	 various	 levels	 of	 contaminations	were	 tested:	 0.0001%,	 0.001%,	 0.01%,	
1%	and	10%	(Additional	file	4:	Report	S7).	The	samples	that	serve	the	contaminating	“spike-
in”	 reads	 are	 from	 the	 following	 species:	Physcomitrella	 patens	 (SRR768442),	Picea	 abies	
(SRR1771544),	 Oryza	 sativa	 (SRR1013788),	 Arabidopsis	 thaliana	 (SRX1629219),	
Amphimedon	queenslandica	(SRR014252),	Caenorhabditis	elegans	 (SRX748227),	Drosophila	
melanogaster	 (SRX718006),	 Crassostrea	 gigas	 (SRR317146),	 Apostichopus	 japonicas	
(SRR934651),	 Danio	 rerio	 (SRX529157),	 Gallus	 gallus	 (ERX1266892)	 and	 Homo	 sapiens	
(SRX808067).	 Beside	 this,	 to	 study	 the	 sensitivity	 of	 detecting	mouse	 contaminations,	we	
also	 spiked	 in	 reads	 from	 the	 mouse	 sample	 to	 the	 Arabidopsis	 thaliana	 sample.	 These	
samples	were	subsampled	to	the	same	sequencing	depth	of	four	million	reads	using	seqtk	v	
1.2	 (http://github.com/lh3/seqtk).	 These	 samples	 were	 then	 processed	 to	 profile	 clade-
specific	miRNAs	using	miRTrace.	The	method	part	is	related	to	Figure	S4.		
	

Estimating	specificity	of	clade-specific	miRNA	detection	

To	estimate	how	many	reads	are	likely	to	be	identified	as	clade-specific	miRNAs	by	chance,	a	
binomial	 model	 was	 adopted	 for	 the	 analysis.	 The	 Bernoulli	 trails	! =  !!,!!…!! 	of	
detecting	clade-specific	miRNA	were	assumed	to	be	 independent	and	 identical	distributed	
(iid)	 and	 follow	 binomial	 distribution.	 The	 probability	 of	 detecting	 exactly	
! (! = 0,1,2,3…!) 	out	 of	! 	clade-specific	 miRNAs	 was	 given	 by	 the	 probability	 mass	
function:	

! !;!,! =  Ρr ! = ! =  !
! !! 1− ! !!!,	

Where	! = !
!
!"
was	the	probability	of	matching	two	sequences	(coded	in	ATCG;	20	nts)	by	

chance.	According	to	the	probability	mass	function,	probability	of	each	read	being	identified	
as	 clade-specific	 miRNAs	 by	 chance	 was	 Ρr X > 0 = 1− !(0;!;!) .	 Suppose	 the	
experiments	! = (!!,!!…!!) 	of	 matching	 reads	 to	 the	 reference	 sequences	 were	 also	
binomially	 distributed.	 Given	!	number	 of	 sequencing	 reads	 in	 a	 library	 and	!	number	 of	
unique	 clade-specific	 miRNAs	 as	 reference,	 on	 average	Ε ! = !×Ρr X > 0 	reads	 are	
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expected	to	be	detected	as	clade-specific	miRNA	by	chance.	The	method	part	 is	related	to	
Figure	S2.	
	

RNA	degradation	at	room	temperature	

10	μg	of	total	RNA	samples	were	incubated	at	room	temperature	for	up	to	10	days	either	in	
the	lid-closed	tubes	(air-protected)	or	in	the	tubes	without	lids	(air-exposed).	At	each	time	
point,	the	tubes	were	removed	from	room	temperature	and	stored	at	-80°C	until	analysis.	
As	 control,	 total	 RNA	 samples	 stored	 at	 -80°C	 were	 used.	 Aliquots	 corresponding	 to	 50-
100ng	of	the	initial	RNA	amounts	were	heat	denatured	for	2	min	at	70°C	and	analyzed	on	a	
Bioanalyzer	 using	 RNA	 6000	 Nano	 kit.	 The	 degradation	 kinetics	 of	 ribosomal	 RNA	 was	
assessed	by	the	RIN.	The	method	part	is	related	to	Figure	S12.	
	

TaqMan	small	RNA	assays	

10	ng	of	RNA	from	each	samples	was	reverse	transcribed	into	cDNA	using	a	custom	TaqMan	
miRNA	RT	kit.		RNAse/DNAse	free	water	and	the	RT	reaction	without	reverse	transcriptase	
were	 used	 as	 negative	 controls.	 cDNA	 from	 the	 samples	 and	 negative	 controls	 were	
analyzed	 using	 custom	 TaqMan	 small	 RNA	 assays	 ID	 00037	 and	 ID	 002299	 targeting	 hsa-
miR-10a	and	hsa-miR-191,	respectively.	TaqMan	assays	were	performed	on	an	OneStep	Plus	
thermocycler,	 according	 to	 the	manufacturer’s	 protocol.	 Cycling	 conditions:	 activation	 10	
min	95°C,	cycling	15	s	95°C,	60	s	60°C	for	40	cycles.	The	temperature-dependent	increases	
of	Ct	values	was	observed	between	samples	after	1	min	of	incubation	with	RNase	A.	The	Ct	
values	 of	 the	 samples	 incubated	 at	 +4°C	 and	 +30°C	 were	 28.38+0.025	 and	 29.72+0.19,	
respectively	for	hsa-miR-10a	and	28.72+0.09	and	29.99+0.19	for	hsa-miR-191.	
 

Index	mis-assignment	analysis	using	in-house	libraries	

During	demultiplexing,	reads	can	be	mis-assigned	to	the	wrong	sample	if	errors	occur	in	the	
index	 sequence.	 This	 happened	 in	 our	 in-house	 libraries	 and	was	 detected	 as	 cross-clade	
contaminations	by	miRTrace	since	rodent-specific	miRNAs	were	mis-assigned	to	the	human	
samples	(main	Figure	3C).	To	check	if	the	index	mis-assignment	is	more	likely	to	happen	in	
the	samples	with	similar	 indices,	we	generated	a	network	to	show	the	similarity	of	 indices	
across	samples	(Figure	S5).	We	found	the	samples	with	more	similar	indices	(or	links)	tend	
to	have	more	mis-assigned	reads,	which	is	consistent	with	main	Figure	3C.		
	
We	 performed	 this	 analysis	 using	 the	 in-house	 samples	 that	 were	 demultiplexed	 with	
allowing	 1	mismatch	 for	 index	matching.	We	 first	 extracted	 index	 sequence	 of	 each	 read	
using	Linux	“grep”	command.	Each	FASTQ	read	is	encoded	by	4	lines:	first	is	ID	line,	second	
is	raw	sequence,	third	is	a	symbol	“+”	and	fourth	has	quality	values	for	the	sequence.	In	our	
case,	the	index	sequence	is	located	in	the	second	field	of	the	ID	line,	which	is	separated	by	
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space.	For	each	sample,	we	then	collapsed	the	redundant	indices	to	unique	sequences.	As	
expected,	each	sample	has	25	index	possibilities:	the	default	index	and	plus	24	indices	with	
one	mismatch	 to	 the	 default	 one.	 Each	 index	 was	 then	 aligned	 to	 any	 other	 index	 from	
other	 samples.	 If	 they	 differ	 by	 1	 nucleotide	 using	 pairwiseAlignment()	 function	 from	
Biostrings	package	in	R	v	3.0.1,	we	defined	them	as	an	index	pair.	The	network	of	potential	
mis-assigned	cases	was	generated	based	on	these	identified	index	pairs.	The	method	part	is	
related	to	Figure	S5.	
	

	Computational	removal	of	mis-assigned	reads	based	on	Matranga	et	al.	2014	

To	 compare	 how	 well	 our	 approach	 (in	 main	 Figure	 3E)	 removing	 mis-assigned	 reads	
compare	to	the	method	used	in	Matranga	et	al.	2014	[4],	we	processed	our	raw	sequencing	
data	based	on	the	cutoffs	suggested	by	the	method	section	“Demultiplexing	of	sequencing	
runs	and	QC”	of	Matranga’s	paper	 [4].	 In	brief,	 the	output	data	 from	 Illumina	sequencing	
machine	were	demultiplexed	from	BCL	to	FASTQ	format	based	on	the	sample	unique	indices	
using	bcl2fastq	v	2.17	with	option	“--barcode-mismatches	0	--create-fastq-for-index-reads”.	
In	 addition	 to	 the	 demultiplexed	 FASTQ	 file	 for	 reads,	 a	 separate	 FASTQ	 file	 with	 the	
corresponding	index	information	was	generated,	containing	index	identity	(same	as	the	read	
identity),	 index	 sequence	 and	 index	 quality	 scores.	 To	 remove	 the	 reads	with	 low-quality	
indices,	we	 first	 discarded	 the	 low-quality	 indices	 that	have	a	minimum	quality	 score	 less	
than	 Q25	 using	 fastq_quality_filter	 with	 option	 “-q	 25	 -p	 100”	 from	 Fastx	 v	 0.0.14.	 The	
identities	of	the	remained	indices	were	then	used	to	extract	the	qualified	reads	using	seqtk	
subseq.	The	method	part	is	related	to	Figure	S6.		
	

Tracing	species	origins	of	simulated	Sanger	COI	sequences	using	Barcode	of	Life	

Identification	Engine	

The	aim	of	the	analysis	 is	to	know	how	well	miRTrace	tracing	taxonomic	origins	of	sample	
compare	 to	 Barcode	 of	 Life	 Identification	 Engine	 [5],	 which	 uses	 certain	 genes	 in	 an	
organism	 as	 marker	 to	 identify	 species	 origin.	 For	 example	 the	 mitochondrial	 gene	
cytochrome	oxidase	I	(COI)	gene	is	used	as	barcode	for	animal	species.	Sanger	sequencing	is	
widely	 used	 in	 the	 scientific	 community	 to	 profile	 the	 DNA	 barcode	 region	 for	 species	
analysis.	In	order	to	mimic	the	real	data,	we	simulated	COI	sequences	of	the	12	Drosophila	
species	 (same	 as	 in	 main	 Figure	 6)	 with	 taking	 into	 account	 intra-species	 variation	 and	
Sanger	 sequencing	error	and	 then	applied	Barcode	of	 Life	 Identification	Engine	 to	 resolve	
species	origins	of	these	sequences.		
	
To	 obtain	 COI	 sequences	 of	 the	 12	 Drosophila	 species	 as	 reference	 for	 simulation,	 we	
aligned	 Drosophila	 melanogaster	 COI	 sequence	 (with	 GeneBank	 accession	 number:	
HM102299)	to	nucleotide	collection	(nr/nt)	database	with	specifying	the	organism	option	as	
the	 other	 11	 Drosophila	 species	 using	 nucleotide	 BLAST	



SUPPLEMENTARY	INFORMATION	 8	

(https://blast.ncbi.nlm.nih.gov/Blast.cgi).	 The	 COI	 sequences	 of	 the	 other	 11	 Drosophila	
species	 were	 manually	 selected	 based	 on	 the	 best	 blast	 alignments.	 The	 intra-species	
mutation	rate	was	calculated	based	on	the	pairwise	alignments	of	Drosophila	persimilis	COI	
sequences	 downloaded	 from	 barcode	 of	 life	 data	 system	 (BOLD	 system	
http://www.boldsystems.org/).	 For	 each	 pairwise	 alignment,	 we	measured	 how	 different	
between	 the	 sequences	 by	 dividing	 the	 number	 of	mismatches	 by	 the	 alignment	 length.	
Among	 these	 measurements,	 the	 maximum	 value	 0.013	 (13	 mismatches	 in	 1000	
nucleotides)	was	used	as	intra-species	mutation	rate	for	all	the	12	species.	For	each	species,	
we	simulated	1000	sequences	from	the	corresponding	COI	sequence	with	considering	both	
intra-species	variation	and	Sanger	error.	We	used	custom	script	 to	 introduce	 intra-species	
variation,	 while	Mason	 v	 0.1.2	 [6]	 was	 applied	 to	 introduce	 Sanger	 sequencing	 error.	 To	
resolve	 species	 origin,	 each	 simulated	 sequence	 was	 mapped	 against	 to	 the	 7,312	
Drosophila	COI	 records	 (downloaded	 from	BOLD	system,	20/08/2018),	which	have	species	
names	and	represent	more	than	400	Drosophila	species,	using	blastn	in	BLAST	v	2.2.31.	We	
defined	 the	 good	 blast	 alignments	 primarily	 by	 high	 bit-score	 and	 secondarily	 by	 low	 e-
value.	 If	 sequence	 matches	 equally	 well	 to	 more	 than	 one	 species,	 we	 marked	 it	 as	
“ambiguous	hit”.	The	method	part	is	related	to	main	Figure	6B.	
	

Tracing	species	origins	of	RNA-Seq	datasets	using	FastQ	Screen	

FastQ	 Screen	 [7]	 is	 originally	 built	 for	 quality	 control	 of	 RNA-Seq	 datasets,	 especially	 for	
contamination	detection,	but	can	also	be	used	to	characterize	species	origins	of	sample.	It	
aligns	 sequencing	 reads	against	 a	panel	of	different	genomes	provided	by	user	 to	 resolve	
from	where	the	sequences	originate.	In	order	to	make	a	fair	comparison	between	miRTrace	
and	FastQ	Screen,	we	used	public	RNA-Seq	datasets	from	the	12	Drosophila	species	in	main	
Figure	6.	Notably,	three	of	them	(D.melanogaster:	SRR4463849,	D.erecta:	SRR1617567	and	
D.virilis:	 SRR1617568)	are	 from	the	same	studies	as	 the	miRNA	sequencing	data	shown	 in	
main	Figure	6A.	The	SRA	number	of	these	datasets	can	be	found	in	Additional	file	3:	Table	
S23.	 We	 used	 12	 Drosophila	 genomes	 downloaded	 from	 FlyBase,	 including	 D.simulans	
(r2.02),	 D.sechellia	 (r1.3),	 D.melanogaster	 (r6.22),	 D.yakuba	 (r1.05),	 D.erecta	 (r1.05),	
D.ananassae	 (r1.05),	 D.pseudoobscura	 (r3.04),	 D.persimilis	 (r1.3),	 D.willistoni	 (r1.05),	
D.mojavensis	 (r1.04),	D.virilis	 (r1.06)	 and	D.grimshawi	 (r1.05),	 as	 reference.	 The	 RNA-Seq	
datasets	were	mapped	against	 to	each	of	 the	12	reference	genomes	using	FastQ	Screen	v	
0.9.2	 with	 option	 “--aligner	 bowtie	 --subset	 100000”.	 The	 “one	 hit/one	 genome”	 and	
“multiple	hits/one	genome”	 reads	were	used	 for	 the	 species	analysis.	 The	method	part	 is	
related	to	main	Figure	6C.	
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Supplementary	Figures	

	
A)	Comparison	of	clade-specific	miRNA	counts	profiled	using	miRBase	and	MirGeneDB		

								 			 	
B)	Comparison	of	clade-specific	miRNA	families	profiled	using	miRBase	and	MirGeneDB	
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Figure	S1:	Consistency	of	clade-specific	miRNAs	reported	using	miRBase	and	MirGeneDB	

as	reference	database	

A)	The	bar	plot	shows	the	composition	of	clade-specific	miRNAs	profiled	using	miRBase	and	
MirGeneDB.	These	are	the	same	samples	as	used	in	main	Figure	2A.	The	number	on	the	top	
of	each	bar	 indicates	the	total	number	of	clade-specific	miRNAs.	The	white	number	 inside	
the	 bar	 indicates	 the	 proportion	 of	 the	 clade-specific	 miRNAs	 that	 are	 assigned	 to	 the	
expected	clade.	Notably,	MirGeneDB	does	not	have	miRNA	entries	for	sponge	(right	panel,	
the	9th	bar).		
B)	The	scatter	plot	shows	the	consistency	of	the	abundance	of	clade-specific	miRNA	family	
profiled	 using	 miRBase	 and	 MirGeneDB.	 For	 each	 sample,	 the	 family	 abundance	 is	
calculated	by	summing	up	the	counts	of	the	miRNAs	belonging	to	the	family.	The	families	on	
the	diagonal	line	are	equally	abundant,	indicating	miRBase	and	MirGeneDB	give	consistent	
miRNA	 sequences	 as	 reference.	 The	 families	 that	 are	off	 the	diagonal	 into	 the	upper	 and	
lower	triangular	region	tend	to	have	more	miRNA	sequences	as	reference	from	miRBase	and	
MirGeneDB	respectively.	For	example,	the	miRNA	families	on	the	vertical	x=0	have	miRNA	
entries	 in	 miRBase	 but	 not	 in	 MirGeneDB,	 indicating	 these	 sequences	 could	 be	 newly	
emerged	miRNAs	or	false	positives.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



SUPPLEMENTARY	INFORMATION	 11	

	

Figure	S2:	Specificity	of	clade-specific	miRNA	detection	
The	 plot	 shows	 the	 absolute	 number	 of	 clade-specific	 miRNAs	 detected	 by	 chance	 as	 a	
function	 of	 sequencing	 depth	 (number	 of	 reads)	 and	 number	 of	 unique	 miRNAs	 in	 the	
reference	database.	The	estimations	are	based	on	binomial	statistics,	as	described	above	in	
the	 Supplementary	 Method	 section	 “Estimating	 specificity	 of	 clade-specific	 miRNA	
detection”.	The	blue,	white	and	red	colors	indicate	the	expected	absolute	frequency	is	less	
than	 1,	 equal	 to	 1	 and	 more	 than	 1	 respectively.	 No	 miRNA	 sequence	 (with	 expected	
absolute	 frequency	 <	 1)	 is	 expected	 to	 be	 detected	 by	 chance	 given	 a	 typical	 sRNA-Seq	
sequencing	depth	with	10	million	reads	and	1,533	unique	clade-specific	miRNAs	used	in	the	
study	 (arrowheads	 and	 dashed	 lines).	 More	 information	 of	 the	 analysis	 can	 be	 found	 in	
Supplementary	Method	section	“Estimating	specificity	of	clade-specific	miRNA	detection”.	
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Public	sRNA-Seq	data	sets		
Mouse	(n	=	428)	

	
Nematode	(n	=	151)	

	
Drosophila	(n	=	150)	
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Figure	S3:	Presences	of	clade-specific	miRNA	families	in	public	data	sets	
The	 heatmaps	 show	 the	 presences	 of	 the	 clade-specific	 miRNA	 families.	 Every	 column	
represents	 one	 sample.	 The	 samples	 are	 grouped	 in	 studies	 based	 on	 NCBI	 Bio	 project	
numbers,	 which	 are	 showed	 on	 the	 top	 of	 the	 heatmaps.	 Every	 row	 indicates	 a	 clade-
specific	 miRNA	 family.	 The	 host	 derived	 clade-specific	 miRNAs	 are	 widely	 present	 across	
studies,	 while	 most	 of	 the	 contamination-derived	 clade-specific	 miRNAs	 are	 sparsely	
distributed,	and	some	of	them	are	present	in	study-specific	manner,	indicating	batch	effect.	
The	miRTrace	reports	of	these	public	data	sets	can	be	found	in	Additional	file	4:	Report	S2	-	
S4.		
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Figure	S4:	miRTrace	sensitivity	in	detecting	contamination	from	different	clades	
The	heatmap	 shows	how	many	proportion	of	 reference	 clade-specific	miRNA	 families	 are	
detected	 in	 the	samples	with	various	amounts	of	 contamination	 reads	 from	13	clades.	To	
see	 the	 exact	 species	 used	 for	 the	 analysis,	 see	 the	 Supplementary	 Method	 section	
“Estimating	sensitivity	of	contamination	detection”.		
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Figure	S5:	Circos	plot	showing	potential	index	mis-assignments	when	allowing	one	
mismatch	in	the	index	sequence	
The	outer	ring	shows	the	nine	human	(blue)	and	nine	mouse	samples	(red)	that	were	used	
for	the	experiment	in	main	figure	3C-E.	The	next	ring	represents	the	possible	indices	of	each	
sample,	 allowing	 for	 one	mismatch.	 Each	 sample	 can	 thus	 have	 25	 different	 indices:	 the	
expected	 (correct)	 index	 and	 24	 that	 results	 from	 sequencing	 errors	 at	 various	 positions.	
There	 are	 24	 possible	 indices	 assuming	 a	 single	 mismatch	 error,	 since	 the	 index	 is	 6	
nucleotides	 long,	 and	 a	 sequencing	 error	 can	 occur	 by	 any	 of	 these	 positions	 being	
converted	 into	 one	 of	 the	 three	 wrong	 nucleotides	 or	 an	 ‘N’,	 representing	 an	 uncalled	
nucleotide.	 The	 links	 show	 indices	 that	 are	 differ	 in	 one	 nucleotide	 between	 different	
samples.	These	are	cases	where	a	single	sequencing	error	can	cause	an	index	to	be	assigned	
to	the	wrong	sample.	Interestingly,	the	human	samples	7	and	9	have	the	most	links.	These	
are	samples	 that	have	high	contamination	 rates,	but	where	 the	contamination	disappears	
when	 only	 perfect	 index	 matches	 are	 considered	 (main	 Figure	 3C-D).	 More	 information	
about	 the	analysis	can	be	 found	 in	Supplementary	Method	section	“Index	mis-assignment	
analysis	using	in-house	libraries	
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Figure	S6:	Comparison	of	two	approaches	for	removing	mis-assigned	reads	
Human	 and	 mouse	 samples	 were	 sequenced	 together	 in	 the	 same	 flow	 cell.	 Two	
approaches	 were	 used	 for	 sample	 demultiplexing	 and	 QC	 check:	 1)	 Demultiplexing	 with	
allowing	 for	 0	 mismatches	 and	 discarding	 sequences	 with	 inconsistent	 indices	 (see	 main	
Figure	3E);	2)	Demultiplexing	with	allowing	for	0	mismatches	and	discarding	sequences	with	
low-quality	indices	(used	in	Matranga	et	al.	2014).		
A)	 Using	 the	 second	 approach,	 rodent	 contaminations	 was	 detected	 in	 three	 human	
samples.	 Each	 bar	 represents	 one	 sample,	 and	 the	 numbers	 (white	 color)	 in	 each	 bar	
indicate	the	number	of	rodent-specific	miRNA	sequences	(bars	below).		
B)	The	samples	demultiplexed	using	the	two	approaches	have	comparable	amount	of	total	
reads.		
C)	The	samples	demultiplexed	using	the	first	approach	contain	more	miRNA	reads	compared	
to	the	second	approach.		
D)	The	samples	demultiplexed	using	the	first	approach	have	higher	miRNA	complexity.		
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More	 information	 about	 the	 analysis	 can	 be	 found	 in	 Supplementary	 Method	 section	
“Computational	removal	of	mis-assigned	reads	based	on	Matranga	et	al.	2014”.	
	

	

Figure	S7:	PCA	of	mouse	samples	with	human	contamination	
The	 PCA	 plot	 shows	 how	 the	 miRNA	 profile	 changes	 with	 increasing	 the	 human	
contamination	 levels.	 The	 LIF	and	RA	 indicate	mouse	embryonic	 stem	cells	 that	had	been	
cultivated	 in	 a	 medium	 to	 maintain	 their	 pluripotency	 (LIF)	 and	 a	 medium	 to	 stimulate	
differentiation	to	neuron	(RA)	respectively.	The	plot	is	the	3D	version	of	main	Figure	3F	left	
panel.		
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Figure	S8:	PCA	of	mouse	samples	with	fruit	fly	contamination	
The	PCA	plot	shows	how	the	miRNA	profile	changes	with	 increasing	the	fly	contamination	
levels.	Abbreviations	are	the	same	as	in	Figure	S7.	The	plot	is	the	3D	version	of	main	Figure	
3F	right	panel.		
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Figure	S9:	miRNA	differential	expression	analysis	of	mouse	samples	with	human	
contamination	
The	 scatter	 plots	 show	 how	 many	 differentially	 expressed	 miRNAs	 are	 identified	 with	
increasing	 the	 contamination	 levels.	 The	miRNA	 expression	 levels	 are	 indicated	 by	 log10	
(RPM	 +	 1)	 in	 x	 and	 y	 axis.	 The	 criteria	 to	 identify	 differentially	 expressed	miRNAs:	 i)	 for	
miRNA	expressed	 in	both	samples,	 requires	≥	10	RPM	 in	one	of	 the	samples	and	>	2	 fold	
change	 in	RPM	expression	between	the	 two	samples;	 ii)	 for	miRNA	expressed	only	 in	one	
sample,	requires	RPM	≥	10.		
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Figure	S10:	miRNA	differential	expression	analysis	of	mouse	samples	with	fruit	fly	
contamination	
The	 scatter	 plots	 show	 how	 many	 differentially	 expressed	 miRNAs	 are	 identified	 with	
increasing	the	contamination	levels.	The	criteria	are	the	same	as	in	Figure	S9.		
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Figure	S11:	Neighbor-joining	tree	of	COI	sequences	of	the	12	Drosophila	species	
Neighbor-joining	 tree	 of	 aligned	 segments	 of	 approximately	 600	 base	 pairs	 of	 the	
mitochondrial	 gene	 cytochrome	 oxidase	 I	 (COI)	 ‘barcode	 segments’	 for	 all	 available	
sequences	 for	 12	Drosophilid	 species	 collected	 from	NCBI	 (accession	date:	 31st	 of	August	
2018).	 While	 the	 majority	 of	 representatives	 clustered	 according	 to	 their	 species	
annotations	 in	 monophyletic	 groups	 (black	 triangles;	 8	 blocks	 that	 contain	 all	
representatives	of	exact	one	species:	D.	willistoni,	D.	mojavensis,	D.	virilis,	D.	melanogaster,	
D.	sechellia,	D.erecta,	D.	yakuba,	D.	ananassae),	2	described	species	were	not	resolved	as	a	
monophyletic	 group	 but	 were	 paraphyletic	 with	 respect	 to	 another	 species	 	 (yellow	
triangles;	 highlighted	 in	 petrol	 colored	 text:	D.	 pseudoobscura	 included	D.	 persimilis	 (red	
text),	 and	 highlighted	 in	 green	 text:	D.	 simulans	 included	monophyletic	D.	 sechellia	 (blue	
text)).	 In	 these	 two	 cases	 the	 intra-species	 variations	 are	 larger	 than	 the	 inter-species	
variations.	No	statement	about	the	monophyly	or	paraphyly	of	D.	grimshawi	or	D.	persimilis	
can	be	made	as	these	species	are	only	represented	by	one	sample	sequence.	
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Figure	S12:	RNA	integrity	assessment	by	RIN	
A)	Total	RNA	degradation	at	+4°C	and	+30°C	in	the	RNase	A	treated	samples.		
B)	 Total	 RNA	 degradation	 at	 room	 temperature	 in	 the	 air-protected	 and	 air-exposed	
samples.	No	significant	degradation	of	RNA	was	observed	in	the	samples	protected	from	air.	
In	 contrast,	 RNA	 exposed	 to	 air	 showed	 a	 slight	 degradation	 of	 18S/28S	 rRNA.	 The	 RIN	
values	 dropped	 from	 10.00	 to	 8.20	 after	 10	 days	 at	 room	 temperature	 (C).	 More	
information	 about	 the	 experiment	 can	 be	 found	 in	 Supplementary	Method	 section	 “RNA	
degradation	at	room	temperature”.	
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