
R Code Supplement

R code to process Whole Blood Microarrays after Stimulation
(chitin and others)

This report uses various R packages to walk the reader from the raw data to the paper’s main figures. It
is intended to create full transparency and computational reproducibility, and further offers deeper insights
into the data than possible in the main figure. We welcome any feedback and invite you to keep it friendly
and constructive.

This report was compiled by Felix Frauhammer (whose personal opinion is that all published papers should
include the code of their computational analysis) using R function knitr::spin("file",knit=F) and RStu-
dio’s Compile Report button to knit the Rmd into PDF.

date() # date of compilation

## [1] "Mon Mar 5 14:47:18 2018"

This report goes together with the following paper:

• Whole blood gene expression after stimulation with TLR2 ligands (chitin oligomers, Pam2, Pam3) and
the TLR4-ligand LPS

• Corresponding author: Alexander NR Weber (E-mail alexander.weber@uni-tuebingen.de)
• GEO record GSE103094 (download the GSE103094_non-normalized.txt.gz and unzip it to get started)

#

Information on the 24 microarrays in this dataset:

It has the following treatments:

• Unstimulated
• PAM2: Pam2CSK4 (TLR2 ligand)
• PAM3: Pam3CSK4 (TLR2 ligand)
• Chit: chitin oligomers (object of this study)
• LPS: lipopolysaccharide (TLR4 ligand)

#

It has the following donors:

• P1: 4 treatments
• P2: 4 treatments
• P3: 5 treatments
• P4: 5 treatments
• P5: 5 treatments
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#

Install these packages if not already available on your machine:

library(limma)
library(ggplot2)
library(cowplot)
library(tidyverse)
library(pheatmap)
library(ComplexHeatmap)
# see end of script for the package versions.

Read in data

Option1: raw IDAT files

While we recommend using the next paragraph (“Option2: GSE103094_non-normalized.txt”), here are
useful hints as to how you would process the raw files.

This data was generated using the ‘Illumina Arrays HumanHT-12v4’, and the Illumina BeadScan
software outputs IDAT-files. In order to read these into R, you need to download the ~ 70 MB Manifest File
“HumanHT-12 v4.0 Manifest File (TXT Format)” from the chip’s product files page, next to the raw array
files from GEO, and then do this:

# idatfiles.all <- dir(pattern="idat") # in download directory
# # idatfiles.all should now be a character vector with IDAT-filepaths
# chitin.raw <- limma::read.idat(idatfiles.all, bgxfile="path/to/manifest-file.bgx")
# # should produce the same as `chitin.raw` produced in next paragraph

Option2: GSE103094_non-normalized.txt

We assume you have downloaded and unzipped the supplementary file from our GEO Record. Then you
can read it into R like this:

fileFromGeo <- "/home/felix/chitin_microarrays/data/GSE103094_non-normalized.txt"
# adapt path to where you downloaded the file

GEOdata <- read.csv(fileFromGeo, header=T, sep="\t" )

Quick overview over this table:

• The Column “Status” lists the control probes (ERCCs, negative controls, etc.) and then the 47323
probes measuring gene expression.

• each sample has two columns, one with gene expression and one with the DetectionPvalue, i.e. whether
the gene in this array is significantly above background signal

• The other three columns are Illumina “Probe_Id”, “Array_Address_Id” and, most useful for the
biology, the Gene Symbol.

#
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Convert to limma class “EListRaw”

# extract expression columns:
geneExprs <- as.matrix(GEOdata[,-c(1:4)])
geneExprs <- geneExprs[,!grepl("Detection", colnames(geneExprs))]
# Create EListRaw object. Note that the neqc function below uses the information in
# column `Status` of the the genes-slot to know which probes are "negative" and which are
# "regular" (i.e. measured Genes) for background correction, etc..
chitin.raw <- new("EListRaw",list(E=geneExprs, genes=GEOdata[,1:4],

other=list(Detection=GEOdata[,grepl("Detection", colnames(GEOdata))])))

Normalization, filtering and sample Information

We use limma’s robust neqc-function for normalization, which completes the following steps for us:

• corrects background (as measured by negative probes, provided in slot chitin.rawgenesStatus)
• removes control probes (and the now obsolete slot genes$Status)
• log2-transforms data (see further: limma::limmaUsersGuide(), section 17.3)

chitin <- neqc(chitin.raw)

Next, we filter the measured genes by removing non-expressed probes. We only keep genes detected signifi-
cantly (p<.05) above background in more than 3 arrays:

expressed <- rowSums(chitin$other$Detection < 0.05) > 3
chitin <- chitin[expressed,] # filters out ~ 24,000 probes

For analysis below, we want to know the Treatment and Patient identiy of each array. It’s part of the
colnames, so we can extract it conveniently here:

meta <- data.frame(t(rbind.data.frame( strsplit(colnames(chitin), "_"))),
row.names=colnames(chitin))

colnames(meta) <-c("Treatment","Patient")

Principal Component Analysis

Below we compute principal component analysis on all non-filtered probes (22929 genes) and then again
on 6191 genes that vary significantly between treatment groups according to ANOVA (done with limma’s
F-test). In the paper’s main figure, we show the latter as the former is influenced more by patient-patient
heterogeneity, as we’ll see below.

#

F-test for high-variance genes

This paragraph identifies genes that vary significantly across treatment groups (Chitin, LPS, PAM2, PAM3,
Unstimulated). The 6191 identified genes and their expression values (see object anovaexprs at end of
paragraph) will go into PCA, see next heading.
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# design matrix for lmFit
ct <- factor(meta$Treatment)
# It is good practice to set the control as first level:
ct <- relevel(ct, "Unstimulated")
design <- model.matrix(~0+ct)
colnames(design) <- levels(ct)
# duplicate correlation for lmFit
dupcor <- duplicateCorrelation(chitin, design, block=meta$Patient)
dupcor$consensus.correlation # can be fed into lmFit function

## [1] 0.3112271

We see that differently treated samples from the same patient correlate moderately with each other (~0.3), as
expected from human material. Notifying lmFit of this patient-patient heterogeneity will make the analysis
more robust.

# fit limma model:
fit <- lmFit(chitin, design, block=meta$Patient,

correlation = dupcor$consensus.correlation)

contrasts.all <- makeContrasts(
Chitin-LPS,Chitin-PAM2, Chitin-PAM3, Chitin-Unstimulated,
LPS-PAM2, LPS-PAM3, LPS-Unstimulated,
PAM2-PAM3,PAM2-Unstimulated, PAM3-Unstimulated,
levels=design

)
fit2.all <- contrasts.fit(fit, contrasts.all)
fit2.all <- eBayes(fit2.all, trend=T)

The two lines above compute an F-test, which is equivalent to a one-way ANOVA for each gene except that
the residual mean squares have been moderated between genes. (see limma::limmaUsersGuide()) After
multiple testing correction with Benjamini-Hochberg, 6191 genes are found to vary across different groups
with FDR<.05:

anova <- topTableF(fit2.all, p.value=0.05, number=50000, adjust.method = 'BH')
dim(anova)

## [1] 6191 17

These genes contain the information on what separates different treatments independent of the patient of
origin. To analyze them in PCA, we extract the expression values of these genes:

anovaexprs <- chitin$E
rownames(anovaexprs) <- chitin$genes$Probe_Id
anovaexprs <- anovaexprs[rownames(anovaexprs) %in% anova$Probe_Id,]

PCA on all genes separates Patients

Human material often shows high patient-patient variability. In line with this, the largest variation captured
by PCA on all genes is driven by patient-patient differences, as we see in the following.
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pca.allGenes <- prcomp(t(chitin$E))
scores.allGenes <- cbind(as.data.frame(pca.allGenes$x), meta)

screeplot(pca.allGenes, type = "lines")

pca.allGenes
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ggplot(scores.allGenes, aes(x=PC1, y=PC2, col=Treatment, shape=Patient))+
geom_point(size=3)+ggtitle("allGenes")
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We see that when computed on all genes, PC1 indicates a strong difference between Unstimulated, LPS and
the others, while PC2 separates Patients P1 and P2 from other donors. To better resolve the differences
of Chitin, PAM2 and PAM3, we compute PCA on genes that vary between groups in the next paragraph,
hoping to reduce how much PCA is influenced by donor heterogeneity.
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#

PCA on 6191 ANOVA genes

pca.anova <- prcomp(t(anovaexprs))
scores.anova <- cbind(as.data.frame(pca.anova$x), meta)

screeplot(pca.anova, type = "lines")
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ggplot(scores.anova, aes(x=PC1, y=PC2, col=Treatment, shape=Patient))+
geom_point(size=3)+ggtitle("ANOVA")
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As hoped, the samples do not cluster by patient anymore. As above, PC1 separates Unstimulated and LPS
from the others. Interestingly, PAM2 and PAM3 seem very similar to each other, while all chitin samples
appear clearly distinct from PAM and LPS along PC2. We note, however, that above scree-plot shows PC2
to play a rather minor role, as most variance in the data is captured by PC1. This already indicates that
chitin, PAM2 and PAM3 show rather minor differences relative to the effects induced by LPS. For biological
interpretation of this PCA, we will look into the genes contributing to PCs 1 and 2 in the next subparagraph,
while the next big heading will find and display Differentially Expressed Genes between treatment groups.

#

Obtain and export PCA loadings

To place the PCA figure in above’s paragraph into biological context, we extract the information on which
genes contribute the most to PC1 and PC2.

par(mfrow=c(1,2))
plot(pca.anova$rotation[,1][order(abs(pca.anova$rotation[,1]), decreasing=T)],

main="PC1 loads", ylab="Gene's contribution ('Load') to PC1", xlab="Genes")
plot(pca.anova$rotation[,2][order(abs(pca.anova$rotation[,2]), decreasing=T)],

main="PC2 loads", ylab="Gene's contribution ('Load') to PC2", xlab="Genes")
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par(mfrow=c(1,1))

Notes on above plot: Genes with large absolute loads contribute most to PCs. For example, the genes with
loads around 0.05 make a sample’s PC1 score positive (e.g. all Unstimulated samples in the “ANOVA”-PCA
plot above), whereas high expression of the negative-load genes makes a sample show negative PC1 values
(e.g. LPS samples in above plot).
From the plots above we can estimate roughly by eye that perhaps the 100 or 300 genes with the highest
load are interesting for biological interpretation, as it is mainly their cumulative load separating the different
treatments from each other in PCA plot “ANOVA”. Still, we export all genes that went into the PCA, for
completeness:

topPC1 <- pca.anova$rotation[,1, drop=F]
topPC1 <- topPC1[order(abs(topPC1), decreasing=T),,drop=F]
topPC2 <- pca.anova$rotation[,2, drop=F]
topPC2 <- topPC2[order(abs(topPC2), decreasing=T),,drop=F]
# bring it all into same dataframe and add gene Symbol annotations:
PCtopDF <- data.frame(PC1_load=topPC1[,1], PC1_ProbeID=rownames(topPC1),

PC1_Symbol=GEOdata$Symbol[match(rownames(topPC1), GEOdata$Probe_Id)],
PC2_load=topPC2[,1], PC2_ProbeID=rownames(topPC2),
PC2_Symbol=GEOdata$Symbol[match(rownames(topPC2), GEOdata$Probe_Id)],
stringsAsFactors = F
)

# for duplicated symbols (whenever the array measures genes with >1 probes), we
# only keep the first probe to avoid confusion.
PCtopDF <- PCtopDF[!duplicated(PCtopDF$PC1_Symbol),]
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PCtopDF <- PCtopDF[!duplicated(PCtopDF$PC2_Symbol),]
head(PCtopDF)

## PC1_load PC1_ProbeID PC1_Symbol PC2_load PC2_ProbeID
## ILMN_1699651 -0.09794445 ILMN_1699651 IL6 0.08933929 ILMN_1707695
## ILMN_1671509 -0.09177125 ILMN_1671509 CCL3 0.08698045 ILMN_2054019
## ILMN_1747355 -0.09014691 ILMN_1747355 CCL3L1 0.08145545 ILMN_1701789
## ILMN_1805410 -0.08884788 ILMN_1805410 C15orf48 0.07698123 ILMN_1674811
## ILMN_1838319 -0.08351726 ILMN_1838319 LOC730249 0.07488550 ILMN_2067890
## ILMN_1720048 -0.08231378 ILMN_1720048 CCL2 -0.07485910 ILMN_1686116
## PC2_Symbol
## ILMN_1699651 IFIT1
## ILMN_1671509 ISG15
## ILMN_1747355 IFIT3
## ILMN_1805410 OASL
## ILMN_1838319 CXCL11
## ILMN_1720048 THBS1

The first 3 columns rank genes according to their influence (load) on PC1, the last 3 for PC2. We now write
out the complete table and provide it as supplementary table attached to this paper. Note that it includes
all genes that vary across conditions (according to ANOVA), and the first few hundred genes in each column
contribute the most to PCs 1 and 2.

write_csv(x = PCtopDF, path = paste0("/home/felix/chitin_microarrays/PC1-2_topGenes",
format(Sys.time(), "_%Y%m%d-%H.%M"),".csv"))

Heatmap for the main figure

The heatmap in the main figure is generated at the end of this section and meant to illustrate and emphasise
the existing differences between Chitin and other treatments. It is, however, important to note at this point
that in fact most genes up/down-regulated by one treatment are up/down-regulated in most other treatments
as well. This is expected, as all treatments activate large immune signaling cascades. To make this fact clear
to the reader, we now quickly compare the log-foldchanges of different treatments with each other, before
moving on to the main heatmap.

# get logFCs for each sample ("relative expression", relExprs)
relExprs <-NULL
for(patient in levels(meta$Patient)){

relExprs <-cbind(relExprs, apply(chitin$E[,
grepl(patient, colnames(chitin$E))],2, function(column)
column-chitin$E[,paste0("Unstimulated_",patient)]))

}
relExprs <- relExprs[,!grepl("Unstimulated", colnames(relExprs))]

# average logFCs per treatment:
meanLogFC <- NULL
Ts <-c("Chitin","LPS", "PAM2","PAM3")
for(treatment in Ts){

meanLogFC <- cbind(meanLogFC,
rowMeans(relExprs[,grepl(treatment, colnames(relExprs))]))

}
colnames(meanLogFC) <- Ts
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gather(as.data.frame(meanLogFC),key="Treatment", value="MeanLogFC", LPS:PAM3) %>%
ggplot(aes(x=Chitin, y=MeanLogFC))+geom_point()+facet_wrap(~Treatment)+
xlab("Mean logFC of Chitin samples")+ geom_smooth(method =lm)

As we see, whenever chitin-treatment induces a high log-foldchange for a gene, the other treatments do also
lead to upregulation. One thing to note is that LPS has particularly many upregulations that do not change
for chitin samples (left panel, note the many dots at x=0 lying far above the blue line), and LPS also has
the steepest line, indicating all genes are upregulated more than for other treatments. Again, this is not
unexpected, as we activate strong immune responses with all treatments. Still, we wanted to make this point
clear so that the heatmap in the main paper figure can be read in the right context.

#

Find chitin-specific genes

Now that we are aware how all treatments induce similar big transcriptional changes, it is interesting to
work out differences between them. For this, we will compute differentially expressed genes between Chitin
and the other treatments, and display them in a heatmap for the main paper.

# chitin-specific genes (higher/lower than all other treatments)
contrasts.cs <- makeContrasts(

Chitin-PAM2,Chitin-PAM3, Chitin-LPS,
levels=design)

Firstly, we are interested in genes where chitin is expressed highest. These are not too many, as we just saw
that LPS is the most potent inducer of gene expression, so we choose a rather loose cutoff of foldchange=1.1
to be able to look at a few:
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lfc1.1 <- decideTests(treat( contrasts.fit(fit, contrasts.cs), lfc = log2(1.1) ) )
chit_gt_all <- chitin[rowSums(lfc1.1)==3,]
dim(chit_gt_all)

## [1] 11 23

11 genes are 10 % or more higher in chitin than all three other treatments.

#

Other than being strictly highest, we next ask for genes where Chitin is the most different from the other
Treatments. For this we identify genes that show misregulation compared to both PAMs (foldchange 1.2
or higher), irrespective of whether it is up- or downregulated. For a better overview in the final heatmap,
we choose to split the resulting genes into two groups: one where chitin and LPS show no sign. difference
(chit_LPSnoChange) and one where they do (chit_LPS_DE).

lfc1.2<- decideTests(treat( contrasts.fit(fit, contrasts.cs), lfc = log2(1.2) ) )
# identify genes significantly up- OR downregulated between chitin and PAM2 OR PAM3.

chit_LPSnoChange <- chitin[ (lfc1.2[,1]!=0 & lfc1.2[,2]!=0) & lfc1.2[,3]==0 , ]
chit_LPS_DE <- chitin[ (lfc1.2[,1]!=0 & lfc1.2[,2]!=0) & lfc1.2[,3]!=0 , ]
# to avoid confusion, if multiple array probes measured the same gene we only keep one:
chit_LPSnoChange <- chit_LPSnoChange[!duplicated(chit_LPSnoChange$genes$Symbol),]
chit_LPS_DE <- chit_LPS_DE[!duplicated(chit_LPS_DE$genes$Symbol),]
# we also want to display each gene only once in the heatmap:
chit_LPS_DE <- chit_LPS_DE[! chit_LPS_DE$genes$Symbol %in% chit_gt_all$genes$Symbol,]
chit_LPSnoChange <- chit_LPSnoChange[! chit_LPSnoChange$genes$Symbol %in%

chit_gt_all$genes$Symbol,]

Create Heatmap from main figure

In the above paragraph we have selected interesting genes to look at, and now display them in a heatmap.

# We first sort the columns of the expression matrix by treatments:
heatmap.E <- data.frame(Symbol=chitin$genes$Symbol,

chitin$E[,grepl("Unstimulated", colnames(chitin$E))],
chitin$E[,grepl("PAM3",colnames(chitin$E))],
chitin$E[,grepl("PAM2", colnames(chitin$E))],
chitin$E[,grepl("Chitin",colnames(chitin$E))],
chitin$E[,grepl("LPS", colnames(chitin$E))])

rownames(heatmap.E) <- chitin$genes$Probe_Id
# we now extract the genes of interest, standardize them with `scale` (to get
# z-scores) and assign the corresponding gene Symbols:
genesOfInterest<-c(as.character(chit_gt_all$genes$Probe_Id),

as.character(chit_LPS_DE$genes$Probe_Id),
as.character(chit_LPSnoChange$genes$Probe_Id))

hm <- heatmap.E[ match(genesOfInterest, rownames(heatmap.E)), ]
rownames(hm) <- hm$Symbol; hm$Symbol <- c()
hm <- data.frame(t(scale(t(hm))) )

We create the heatmap as in the main figure using the ComplexHeatmap package. Note that we deactivate
clustering columns on purpose (while clustering is a great approach for unsupervised analysis, using it here
would defeat its purpose: the heatmap should visualize genes selected by their differential expression, which
is a supervised approach).
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Heatmap(hm, cluster_columns = F, cluster_rows = T,
show_row_dend=F,

split=c(
rep(">all\n logFC>1.1",dim(chit_gt_all)[1]),
rep("DE: both PAMs & LPS\n logFC>1.2",dim(chit_LPS_DE)[1]),
rep("DE: both PAMs\n logFC<1.2",dim(chit_LPSnoChange)[1]) ),

name=paste("z-scores","(Expression)", sep = "\n"), row_names_gp = gpar(fontsize=11)
)
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Supplementary figure: PC top genes

We have used PCA to illustrate treatment differences. Here, we place the PCs into biological context by
showing the expression of the 100 genes contributing most to PC1 and PC2.

hm.pc1 <- heatmap.E[ match(PCtopDF$PC1_ProbeID[1:100], rownames(heatmap.E)), ]
rownames(hm.pc1) <- hm.pc1$Symbol; hm.pc1$Symbol <- c()
hm.pc1 <- data.frame(t(scale(t(hm.pc1))) )
Heatmap(hm.pc1, cluster_columns = F, cluster_rows=T, name="PC1 Top100",

row_names_gp = gpar(fontsize=8))
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In above heatmap, we observe again what we already saw in the logFC-plot above: most genes show the same
qualitative reaction (up or down) for all treatments, but differ by how much (e.g. LPS up/downregulates the
most).

hm.pc2 <- heatmap.E[ match(PCtopDF$PC2_ProbeID[1:100], rownames(heatmap.E)), ]
rownames(hm.pc2) <- hm.pc2$Symbol; hm.pc2$Symbol <- c()
hm.pc2 <- data.frame(t(scale(t(hm.pc2))) )
Heatmap(hm.pc2, cluster_columns = F, cluster_rows=T, name="PC2 Top100",

row_names_gp = gpar(fontsize=8))
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For PC2, we see that LPS has many additional genes upregulated which are almost unchanged in the other
treatments. Also, Chitin sometimes behaves more like LPS, and sometimes more like PAMs. We also remark
that donor P2 is behaving somewhat as an outlier.

#

End of Script

sessionInfo()

## R version 3.4.2 (2017-09-28)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] ComplexHeatmap_1.17.1 pheatmap_1.0.8 forcats_0.2.0
## [4] stringr_1.3.0 dplyr_0.7.4 purrr_0.2.4
## [7] readr_1.1.1 tidyr_0.8.0 tibble_1.4.2
## [10] tidyverse_1.2.1 cowplot_0.9.2 ggplot2_2.2.1
## [13] limma_3.34.8
##
## loaded via a namespace (and not attached):
## [1] statmod_1.4.30 shape_1.4.4 circlize_0.4.3
## [4] tidyselect_0.2.3 GetoptLong_0.1.6 reshape2_1.4.3
## [7] splines_3.4.2 haven_1.1.1 lattice_0.20-35
## [10] colorspace_1.3-2 htmltools_0.3.6 yaml_2.1.16
## [13] rlang_0.1.6 pillar_1.1.0 foreign_0.8-69
## [16] glue_1.2.0 RColorBrewer_1.1-2 modelr_0.1.1
## [19] readxl_1.0.0 bindrcpp_0.2 bindr_0.1
## [22] plyr_1.8.4 munsell_0.4.3 gtable_0.2.0
## [25] cellranger_1.1.0 rvest_0.3.2 GlobalOptions_0.0.12
## [28] psych_1.7.8 evaluate_0.10.1 labeling_0.3
## [31] knitr_1.20 parallel_3.4.2 broom_0.4.3
## [34] Rcpp_0.12.15 scales_0.5.0 backports_1.1.2
## [37] jsonlite_1.5 mnormt_1.5-5 rjson_0.2.15
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## [40] hms_0.4.1 digest_0.6.15 stringi_1.1.6
## [43] rprojroot_1.3-2 cli_1.0.0 tools_3.4.2
## [46] magrittr_1.5 lazyeval_0.2.1 crayon_1.3.4
## [49] pkgconfig_2.0.1 xml2_1.2.0 lubridate_1.7.2
## [52] assertthat_0.2.0 rmarkdown_1.8.10 httr_1.3.1
## [55] rstudioapi_0.7 R6_2.2.2 nlme_3.1-131
## [58] compiler_3.4.2
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