Supporting Online Material for

Site–Selective Switching Strategies to Functionalize Polyazines

Ryan D. Dolewski, Patrick J. Fricke, and Andrew McNally*

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States. *andy.mcnally@colostate.edu

Table of Contents

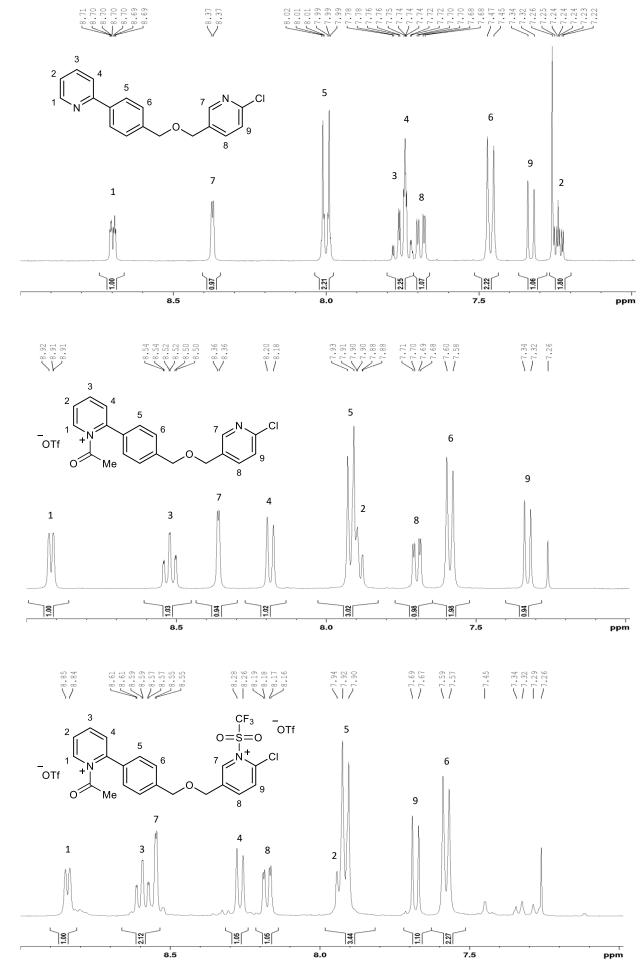
1.	General Information	<i>S2</i>
2.	Acetyl and Triflyl Pyridinium Formation of 1h	<i>S4</i>
3.	Rapid Interconversion of 1q Tf salt isomers	<i>S5</i>
4.	Preparation of Heterocyclic Phosphonium Salt Precursors	<i>S6</i>
5.	Preparation of Heterocyclic Phosphonium Salts	<i>S23</i>
6.	Preparation of Derivatized Polyazaarenes	<i>S</i> 79
7.	References	S90
8.	¹ H, ¹³ C, ¹⁹ F and ³¹ P Spectra	<i>S91</i>

1. General Information

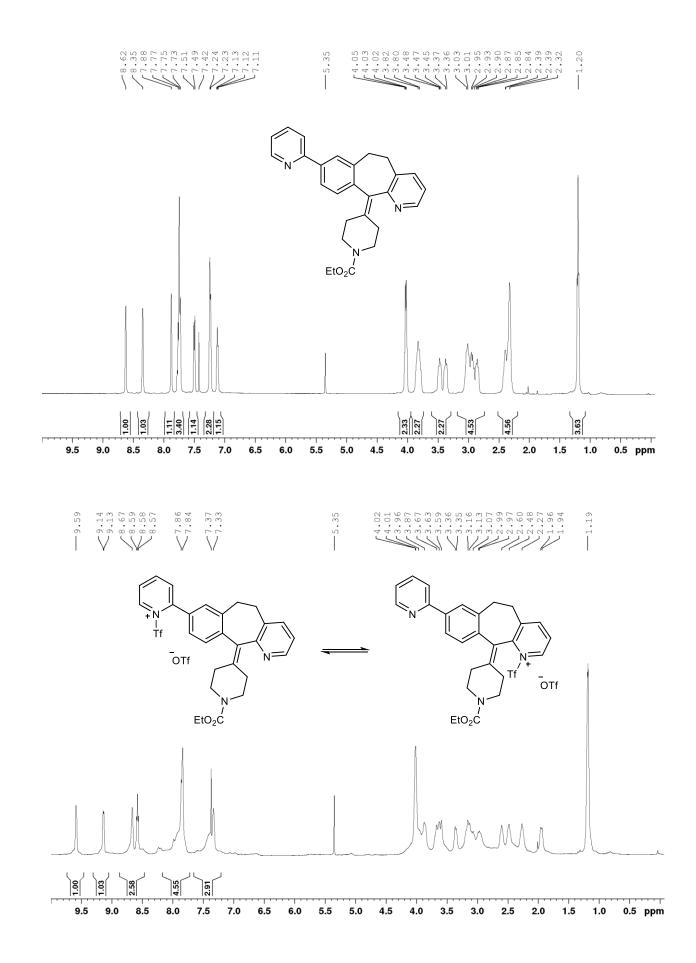
Proton nuclear magnetic resonance (¹H NMR) spectra were recorded at ambient temperature on either a Bruker Ultrashield-400 (400 MHz) spectrometer, a Varian 400 MR (400 MHz) spectrometer or an Agilent Inova 400 (400 MHz) spectrometer. Chemical shifts (δ) are reported in ppm and quoted to the nearest 0.01 ppm relative to the residual protons in CDCl₃ (7.26 ppm), C_6D_6 (7.16 ppm), (CD₃)₂SO (2.50 ppm), CD₃OD (3.31 ppm) or CD₃CN (1.94 ppm) and coupling constants (J) are quoted in Hertz (Hz). Data are reported as follows: Chemical shift (number of protons, multiplicity, coupling constants). Coupling constants were quoted to the nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, sext = sextet, sp = septet, m = multiplet, br = broad. Where coincident coupling constants have been observed, the apparent (app) multiplicity of the proton resonance has been reported. Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded at ambient temperature on either a Bruker Ultrashield-400 (400 MHz) spectrometer, a Varian 400 MR spectrometer (100 MHz) or an Agilent Inova 400 (100 MHz) spectrometer. Chemical shift (δ) was measured in ppm and quoted to the nearest 0.1 ppm relative to the residual solvent peaks in CDCl₃ (77.0 ppm), C₆D₆ (128.06 ppm), (CD₃)₂SO (39.51 ppm), CD₃OD (49.00 ppm) or CD₃CN (1.32 ppm). DEPT135, NOE experiments and 2-dimensional experiments (COSY, HMBC and HSQC) were used to support assignments where appropriate.

Low–resolution mass spectra (LRMS) were measured on an Agilent 6310 Quadrupole Mass Spectrometer. Infared (IR) spectra were recorded on a Bruker Tensor 27 FT–IR spectrometer as either solids or neat films, either through direct application or deposited in CHCl₃, with absorptions reported in wavenumbers (cm⁻¹).

Specific optical rotation measurements were obtained from CHCl₃ solutions having concentrations of 10 mg/mL (example 20) using a Rudolph Research Analytical Autopol III automatic polarimeter operating at 589 nm.

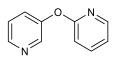

Analytical thin layer chromatography (TLC) was performed using pre-coated Merck glass backed silica gel plates (Silicagel 60 F254). Flash column chromatography was undertaken on Fluka or Material Harvest silica gel (230–400 mesh) under a positive pressure of air. Visualization was

achieved using ultraviolet light (254 nm) and chemical staining with ceric ammonium molybdate or basic potassium permanganate solutions as appropriate.

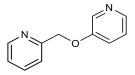

Tetrahydrofuran (THF), toluene, hexane, diethyl ether and dichloromethane were dried and distilled using standard methods.¹ Ethyl acetate (EtOAc), 1,2–Dichloroethane (DCE), 1,4– dioxane, chloroform, chlorobenzene and acetone were purchased anhydrous from Sigma Aldrich chemical company. All reagents were purchased at the highest commercial quality and used without further purification. Reactions were carried out under an atmosphere of nitrogen unless otherwise stated. All reactions were monitored by TLC, ¹H NMR spectra taken from reaction samples, gas chromatography (GC) and gas chromatography–mass spectrometry (GCMS) using an Agilent 5977A fitted with an Agilent J&W HP–5ms Ultra Inert Column (30 m, 0.25 mm, 0.25 μm film) for MS analysis and an Agilent J&W VF–5ms column (10 m, 0.15 mm, 0.15 μm film) for FID analysis or liquid chromatography mass spectrometry (LCMS) using an Agilent 6310 Quadrupole Mass Spectrometer. Melting points (mp) were recorded using a Büchi B–450 melting point apparatus and are reported uncorrected.

PPh₃ (99%) was purchased from Oakwood Chemical and is most effective when crushed to a powder before use. Tf₂O (99%) was purchased from Oakwood Chemical and used without further purification but was routinely stored in a -20 °C fridge. NEt₃ and DBU were distilled before use. Acetyl chloride (98%) was purchased from Sigma Aldrich chemical company and was used without further purification but was routinely stored in a -20 °C fridge. Silver trifluoromethanesulfonate (>99%) was purchased from Sigma Aldrich chemical company and was stored inside a glovebox. NaH (60% in mineral oil) was purchased from Sigma Aldrich and was typically distributed into vials and stored in a desiccator. K₂CO₃ was purchased from Sigma Aldrich chemical company, stored in a desiccator, and is most effective when crushed to a powder before use.

2. Acetyl and Triflyl Pyridinium Formation of 1h

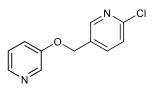


3. Rapid Interconversion of 1q Tf salt isomers


3. Preparation of Heterocyclic Phosphonium Salt Precursors

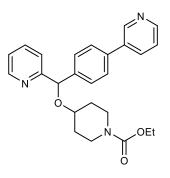
2-(pyridin-3-yloxy)pyridine

An oven dried 25 mL round bottom flask was charged with 3–hydroxypyridine (476 mg, 5.00 mmol), cobalt(II) acetylacetoneate (129 mg, 0.50 mmol), copper(I) iodide (95 mg, 0.50 mmol) and cesium carbonate (3.25 g, 10.00 mmol), and NMP (15 mL). To the reaction flask, 2–bromopyridine (477 μ L, 5.00 mmol) was added and the mixture was stirred at 110 °C overnight. The reaction was cooled to room temperature, diluted with EtOAc (25 mL) and quenched with water (50 mL). The organic layer was separated, and aqueous layer was extracted with EtOAc (3 x 25 mL). The organic extracts were collected, dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (silica gel: 50% EtOAc in hexanes) to provide the title compound as a yellow oil (482 mg, 2.80 mmol, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ : 8.50 (1H, d, *J* = 2.7 Hz), 8.45 (1H, d, *J* = 4.6 Hz), 8.16 (1H, dd, *J* = 4.1, 0.9 Hz), 7.73 (1H, td, *J* = 8.2, 1.0 Hz), 7.53–7.50 (1H, m), 7.35 (1H, dd, *J* = 8.3, 4.7 Hz), 7.05–7.02 (1H, m), 6.98 (1H, d, *J* = 8.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 162.6, 150.4, 147.2, 145.4, 143.4, 139.5, 128.4, 123.7, 118.9, 111.5. The spectroscopic data is in agreement with a reported synthesis.²

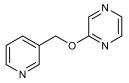

2-((pyridin-3-yloxy)methyl)pyridine

An oven dried 250 mL round bottom flask was charged with sodium hydride (60% dispersion in mineral oil, 3.3 equiv). The flask was subjected to three cycles of vacuum/nitrogen backfill before addition of DMF (4 mL). The mixture was cooled to 0 °C and a mixture of 3–hydroxypyridine (523 mg, 5.50 mmol) in DMF (8 mL) was added dropwise over 5 minutes. The reaction mixture was warmed to room temperature and stirred for 30 minutes before being cooled to 0 °C. A solution

of 2–(chloromethyl)pyridine hydrogen chloride (820 mg, 5.00 mmol) in DMF (13 mL) was then added dropwise to the reaction mixture over 10 minutes. The reaction mixture was warmed to room temperature and allowed to stir for 12 hours before being quenched with water (25 mL) and diluted with CH₂Cl₂ (25 mL). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 25 mL). The combined organic extracts were washed with a saturated solution of brine (5 x), dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (silica gel: 3.5% MeOH in CH₂Cl₂) to provide title compound as a yellow solid (373 mg, 2.00 mmol, 40% yield). 29–30 °C IR v_{max}/cm⁻¹ (film): 3056, 3013, 2921, 1591, 1573, 1475, 1434, 1429, 1272, 1225, 1188, 1050, 797, 757, 705; ¹H NMR (400 MHz, CDCl₃) δ : 8.60 (1H, d, *J* = 4.8 Hz), 8.41 (1H, d, *J* = 2.8 Hz), 8.23 (1H, dd, *J* = 4.6, 1.5 Hz), 7.72 (1H, dt, *J* = 7.7, 1.7 Hz), 7.50 (1H, d, *J* = 7.8 Hz), 7.29–7.19 (3H, m), 5.24 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 156.3, 154.5, 149.4, 142.5, 138.5, 136.9, 123.8, 122.9, 121.3, 121.2, 70.8; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 187.1, C₁₁H₁₁N₂O⁺ requires 187.1.


2-chloro-5-((pyridin-3-yloxy)methyl)pyridine

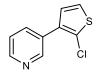
An oven dried 1 L round bottom flask was charged with sodium hydride (60% dispersion in mineral oil, 2.1 equiv). The flask was subjected to three cycles of vacuum/nitrogen backfill before addition of DMF (67 mL) and THF (200 mL). The mixture was cooled to 0 °C and a mixture of 3–hydroxypyridine (1.90 g, 20.00 mmol) in THF (20 mL) was added dropwise over 5 minutes. The reaction mixture was warmed to room temperature and stirred for 1 hour before being cooled to 0 °C. A solution of 2–chloro–5–(chloromethyl)pyridine (3.40 g, 21.00 mmol) in DMF (20 mL) was then added dropwise to the reaction mixture over 10 minutes. The reaction mixture was warmed to room temperature and allowed to stir for 12 hours. The mixture was quenched with water (100 mL) and diluted with EtOAc (100 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 100 mL). The combined organic extracts were dried


(MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (silica gel: 4% MeOH in CH₂Cl₂) to provide the title compound as a brown solid (1.97 g, 8.93 mmol, 45% yield). mp 43–45 °C; IR n_{max}/cm⁻¹ (film): 3065, 3006, 2913, 1577, 1459, 1401, 1272, 1233, 1207, 1100, 1060, 1023, 819, 792, 703; ¹H NMR (400 MHz, CDCl₃) δ : 8.47 (1H, d, *J* = 1.8 Hz), 8.39 (1H, s), 8.29 (1H, t, *J* = 5.7 Hz), 7.76 (1H, dd, *J* = 8.2, 2.2 Hz), 7.39 (1H, d, *J* = 8.2 Hz), 7.32–7.21 (2H, m), 5.11 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 154.3, 151.5, 148.7, 143.0, 138.0, 130.7, 124.3, 123.9, 121.5, 67.0; *m*/*z* LRMS (ESI + APCI) found [M + H]⁺ 221.1, C₁₁H₉ClN₂O⁺ requires 221.0.

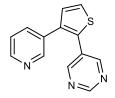
Ethyl 4-(pyridin-2-yl(4-(pyridin-3-yl)phenyl)methoxy)piperidine-1-carboxylate

An oven dried 50 mL Schlenk flask was charged with ethyl 4–((4–chlorophenyl)(pyridin–2– yl)methoxy)piperidine–1–carboxylate (1.46 g, 3.50 mmol), 3–pyridylboronic acid (473 mg, 3.85 mmol), Pd₂(dba)₃ (64 mg, 0.07 mmol), and tricyclohexylphosphine (47 mg, 0.17 mmol). The flask was subjected to five cycles of vacuum/nitrogen backfill before the addition of 1,4–dioxane (4.69 mL) and aqueous K₃PO₄ (1.27 M, 4.69 mL, 5.95 mmol). The Schlenk flask was sealed and heated at 100 °C for 18 hours. The reaction mixture was cooled to room temperature, filtered through a pad of silica gel (washing with EtOAc) and the filtrate concentrated *in vacuo*. The aqueous residue was then extracted with EtOAc (3 x 20 mL) and the combined organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (neutralized silica gel, gradient elution: 75% EtOAc in hexanes to 100% EtOAc) to provide the title compound as a colorless oil (1.01 g, 2.42 mmol, 69% yield). IR v_{max}/cm^{-1} (film): 3052, 2981, 2927, 2867, 1690, 1579, 1432, 1228, 1095, 1026, 729; ¹H NMR (400 MHz, CDCl₃) δ : 8.81 (1H, d, J = 2.0 Hz), 8.56 (1H, d, J = 4.7 Hz), 8.53 (1H, d, J = 4.2 Hz), 7.82 (1H, d, J = 8.0 Hz), 7.70 (1H, td, J = 7.7, 1.4 Hz), 7.61–7.50 (5H, m), 7.33 (1H, dd, J = 7.9, 4.8 Hz), 7.17 (1H, m), 5.70 (1H, s), 4.11 (2H, q, J = 7.1 Hz), 3.78 (2H, br), 3.68 (1H, app. sept), 3.21 (2H, m), 1.86 (2H, m), 1.70 (2H, m), 1.24 (3H, t, J = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 162.0, 155.4, 148.9, 148.4, 148.2, 141.5, 137.0, 136.9, 136.1, 134.1, 127.4, 127.1, 123.4, 122.4, 120.6, 81.3, 72.5, 61.2, 41.0 (d, J = 4.6 Hz), 31.0, 14.6. *m/z* LRMS (ESI + APCI) found [M + H]⁺ 418.3, C₂₅H₂₈N₃O₃⁺ requires 418.2.

2-(pyridin-3-ylmethoxy)pyrazine

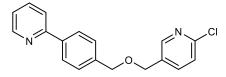

An oven–dried 100 mL round bottomed flask was charged with 3–pyridylmethanol (2.92 mL, 30.00 mmol), 2–chloropyrazine (893 μ L, 10.00 mmol) and DMF (15 mL). The solution was cooled to 0 °C before sodium hydride (60% dispersion in mineral oil, 3.0 equiv) was added in one portion. The reaction mixture was warmed to room temperature and allowed to stir overnight at 70 °C. The mixture was cooled to room temperature, quenched with water (20 mL) and diluted with EtOAc (20 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic extracts were dried (MgSO4), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (neutralized silica gel: 30% EtOAc in hexanes) to provide the title compound as a light yellow solid (1.39 g, 7.43 mmol, 74% yield). mp 43–45 °C; IR n_{max}/cm⁻¹ (film): 3059, 2992, 1579, 1531, 1427, 1284, 1006, 711; ¹H NMR (400 MHz, CDCl₃) δ : 8.72 (1H, d, *J* = 1.5 Hz), 8.59 (1H, dd, *J* = 4.8, 1.5 Hz), 8.28 (1H, d, *J* = 1.2), 8.16 (1H, d, *J* = 2.8 Hz), 8.10–8.07 (1H, m), 7.79 (1H, d, *J* = 7.8 Hz), 7.31 (1H, dd, *J* = 7.8, 4.9 Hz) 5.41 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 159.54, 149.68, 149.54, 140.36, 137.05, 135.97, 135.81, 131.90, 123.37, 65.26; *m*/*z* LRMS (ESI + APCI) found [M + H]⁺ 188.1, C₁₀H₁₀N₃O⁺ requires 188.1.

2-((pyridin-3-ylmethyl)thio)pyrimidine


An oven dried 50 mL round bottom flask was charged with sodium hydride (60% dispersion in mineral oil, 1.1 equiv). The flask was subjected to three cycles of vacuum/nitrogen backfill before addition of DME (12 mL). The reaction mixture was cooled to 0 °C and a solution of pyridin–3– ylmethanethiol (814 mg, 6.50 mmol) in DME (3 mL) was added dropwise over 10 minutes. The reaction mixture stirred for 30 minutes at 0 °C before a solution of 2-chloropyrimidine (677 mg, 5.91 mmol) in DME (5 mL) was added dropwise over 10 minutes. The reaction mixture was warmed to room temperature and allowed to stir for 1 hour. The mixture was quenched with water (10 mL) and diluted with EtOAc (10 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (neutralized silica gel: 70% EtOAc in hexanes) to provide the title compound as a white solid (1.01 g, 4.97 mmol, 84% yield). mp 46–48 °C; IR v_{max}/cm⁻¹ (film): 3030, 2966, 2923, 1562, 1547, 1377, 1201, 1181, 748, 711, 629; ¹H NMR (400 MHz, CDCl₃) δ: 8.69 (1H, d, *J* = 4.9 Hz), 8.52 (2H, d, *J* = 4.8 Hz), 8.47 (1H, d, *J* = 4.6 Hz), 7.76 (1H, d, *J* = 7.8 Hz), 7.22 (1H, dd, *J* = 7.9, 4.9 Hz), 6.98 (1H, t, J = 4.9 Hz), 4.38 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ: 171.3, 157.3, 150.3, 148.4, 136.4, 133.7, 123.3, 116.8, 32.2; *m/z* LRMS (ESI + APCI) found $[M + H]^+$ 204.1, C₁₀H₁₀N₃S⁺ requires 204.1.

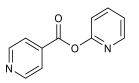
3-(2-chlorothiophen-3-yl)pyridine

An oven dried 500 mL round bottom flask was charged with a solution of 3-bromo-2chlorothiophene (2.73 mL, 25.00 mmol) in toluene (175 mL), followed by an aqueous solution of Na₂CO₃ (80 mL, 2.0 M) and an ethanolic solution (80 mL) of 3-pyridinylbornonic acid (4.61 g, 37.50 mmol). After 10 minutes of stirring at room temperature, Pd(PPh₃)₄ (1.16 g, 1.00 mmol) was added to the reaction flask. The mixture was then deoxygenated under reduced pressure and flushed with nitrogen (3 cycles) before heating under reflux overnight. After cooling to room temperature, EtOAc (100 mL) and water (100 mL) were added and the organic phase was separated. The aqueous phase was extracted with EtOAc (2 x 100 mL) and the combined organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (neutralized silica gel: 20% EtOAc in hexanes) to provide the title compound as a yellow oil (2.64 g, 13.50 mmol, 54% yield). IR v_{max}/cm^{-1} (film): 3106, 3033, 1570, 1476, 1021, 873, 710, 635; ¹H NMR (400 MHz, CDCl₃) δ: 8.81 (1H, d, *J* = 1.7 Hz), 8.59 (1H, dd, *J* = 4.8, 1.6 Hz), 7.90 (1H, dt, *J* = 7.9, 2.0 Hz), 7.36 (1H, ddd, *J* = 7.9, 4.9, 0.7 Hz), 7.20 (1H, d, J = 5.8 Hz), 7.07 (1H, d, J = 5.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 149.3, 148.6, 135.5, 134.8, 130.1, 127.8, 126.2, 123.4, 123.2; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 196.1, C₉H₇ClNS⁺ requires 196.0.

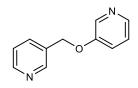

5-(3-(pyridin-3-yl)thiophen-2-yl)pyrimidine

An oven dried 100 mL Schlenk flask was charged with a solution of 3-(2-chlorothiophen-3-yl)pyridine (1.37 g, 7.00 mmol), pyrimidine-5-boronic acid (1.04 g, 8.40 mmol), and Pd(OAc)₂ (63 mg, 0.28 mmol). The flask was subjected to three cycles of vacuum/nitrogen backfill before being taken into glovebox. XPhos (160 mg, 0.34 mmol) was added, the flask then sealed and taken out of glovebox. Degassed *n*-BuOH (39 mL) was added to the flask before stirring the reaction mixture at room temperature for 15 minutes. An aqueous solution of cesium hydroxide monohydrate (1.22 M, 9.78 mL) was added to the mixture, the Schlenk flask sealed, and heated to

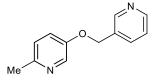
80 °C overnight. The reaction mixture was cooled to room temperature, filtered through a pad of silica gel (washing with EtOAc) and the filtrate concentrated *in vacuo*. The aqueous residue was then extracted with EtOAc (3 x 20 mL) and the combined organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (neutralized silica gel: 50% EtOAc in hexanes) to provide the title compound as a white solid (919 mg, 3.84 mmol, 55% yield). mp 82–85 °C; IR v_{max}/cm^{-1} (film): 3029, 3032, 1548, 1440, 1379, 1188, 879, 722; ¹H NMR (400 MHz, CDCl₃) δ : 9.12 (1H, s), 8.65 (2H, s), 8.61–8.53 (2H, m), 7.61–7.52 (2H, m), 7.32–7.22 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 157.4, 156.3, 149.7, 148.8, 137.0, 136.0, 131.6, 131.1, 130.4, 128.4, 127.2, 123.5; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 240.1, C₁₃H₁₀N₃S⁺ requires 240.1.


2-chloro-5-(((4-(pyridin-2-yl)benzyl)oxy)methyl)pyridine

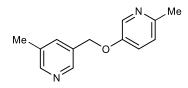
An oven dried 1 L round bottom flask was charged with sodium hydride (60% dispersion in mineral oil, 2.1 equiv). The flask was subjected to three cycles of vacuum/nitrogen backfill before addition of DMF (106 mL) and THF (318 mL). The mixture was cooled to 0 °C and a mixture of (4–(pyridin–2–yl)phenyl)methanol (5.89 g, 31.80 mmol) in THF (20 mL) was added dropwise over 5 minutes. The reaction mixture was warmed to room temperature and stirred for 1 hour before being cooled to 0 °C. A solution of 2–chloro–5–(chloromethyl)pyridine (5.41 g, 33.40 mmol) in DMF (20 mL) was then added dropwise to the reaction mixture over 10 minutes. The reaction mixture was warmed to room temperature over 10 minutes. The reaction mixture was warmed to room temperature over 10 minutes. The reaction mixture was warmed to room temperature over 10 minutes. The reaction mixture was warmed to room temperature and allowed to stir for 12 hours. The mixture was quenched with water (100 mL) and diluted with EtOAc (100 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 100 mL). The combined organic extracts were dried (MgSO4), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (neutralized silica gel: 25% EtOAc in hexanes) to provide the title compound as a light yellow solid (6.91 g, 22.20 mmol, 70% yield). mp 96–98 °C; IR v_{max}/cm⁻¹ (film): 3050, 3006, 2921, 2856, 1586, 1566, 1460, 1094, 776, 743; ¹H NMR (400 MHz, CDCl₃)


δ: 8.69 (1H, d, J = 4.9 Hz), 8.37 (1H, d, J = 2.4 Hz), 8.00 (2H, d, J = 8.2 Hz), 7.80–7.63 (3H, m), 7.45 (2H, d, J = 8.1 Hz), 7.31 (1H, d, J = 8.2 Hz), 7.25–7.20 (1H, m), 4.63 (2H, s), 4.55 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ: 156.9, 150.7, 149.6, 148.8, 139.1, 138.2, 138.2, 136.7, 132.6, 128.1, 127.0, 124.1, 122.1, 120. 4, 72.3, 68.6; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 311.2, C₁₈H₁₆ClN₂O⁺ requires 311.1.

Pyridin-2-yl isonicotinate

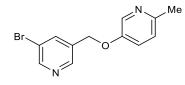

An oven dried 25 mL round bottom flask was charged with isonicotinoyl chloride hydrogen chloride (2.67 g, 15.00 mmol), 4–(dimethylamino)pyridine (660 mg, 5.40 mmol) and 2– hydroxypyridine (1.71 g, 18.00 mmol). THF (45 mL) was added to the reaction flask and triethylamine (6.3 mL, 45.00 mmol) was added dropwise over 5 minutes before heating the mixture at reflux overnight. The reaction cooled to room temperature and diluted with EtOAc (25 mL) and quenched with water (25 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 x 25 mL). The combined organic extracts were dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude material was purified through a plug of silica eluting with 100% EtOAc to provide the title compound as a white solid (532 mg, 2.66 mmol, 18% yield). mp 86–88 °C; IR v_{max}/cm⁻¹ (film): 3056, 3030, 1737, 1594, 1412, 1274, 1196, 1088; ¹H NMR (400 MHz, CDCl₃) δ : 8.87 (2H, d, *J* = 6.0 Hz), 8.48 (1H, dd, *J* = 4.9, 1.4 Hz), 8.03 (2H, d, *J* = 6.0 Hz), 7.90–7.86 (1H, m), 7.34–7.31 (1H, m), 7.24–7.22 (1H, d, *J* = 8.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ : 163.3, 157.5, 150.7, 148.7, 139.7, 136.3, 123.1, 122.5, 116.2; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 201.1, C₁₁H₉N₂O₂⁺ requires 201.1.

3-(pyridin-3-ylmethoxy)pyridine


An oven dried 250 mL round bottom flask was charged with sodium hydride (60% dispersion in mineral oil, 3.3 equiv) and the flask was subjected to three cycles of vacuum/nitrogen backfill before addition of DMF (8 mL). The mixture was cooled to 0 °C and a mixture of 3hydroxypyridine (1.14 g, 12.00 mmol) in DMF (20 mL) was added dropwise over 5 minutes. The reaction mixture was warmed to room temperature and stirred for 30 minutes before being cooled to 0 °C. A solution of 3–(chloromethyl)pyridine hydrogen chloride (1.97 g, 12.00 mmol) in DMF (32 mL) was then added dropwise to the reaction mixture over 10 minutes. The reaction mixture was warmed to room temperature and allowed to stir for 12 hours. The mixture was quenched with water (50 mL) and diluted with CH₂Cl₂ (50 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (3 x 50 mL). The combined organic extracts were washed with a saturated solution of brine (5 x 25 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel: 2.5% MeOH in CH₂Cl₂) to provide the title compound as a colorless oil (1.16 g, 6.25 mmol, 52% yield). IR v_{max}/cm^{-1} (film): 3033, 2918, 2850, 1573, 1475, 1423, 1261, 1225, 1012; ¹H NMR (400 MHz, CDCl₃) δ: 8.69 (1H, s), 8.61 (1H, d, J = 4.7 Hz), 8.40 (1H, s), 8.26 (1H, d, J = 4.1 Hz), 7.78 (1H, d, J = 7.8 Hz), 7.36-7.32 (1H, m), 7.28–7.22 (2H, m), 5.13 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ: 154.5, 149.7, 149.0, 142.8, 138.1, 135.2, 131.7, 123.9, 123.5, 121.5, 67.8; m/z LRMS (ESI + APCI) found $[M + H]^+$ 187.1, $C_{11}H_{11}N_2O^+$ requires 187.1.

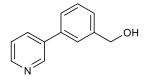
2-methyl-5-(pyridin-3-ylmethoxy)pyridine

An oven dried 100 mL round bottom flask was charged with sodium hydride (60% dispersion in mineral oil, 3.3 equiv) and the flask was subjected to three cycles of vacuum/nitrogen backfill before addition of DMF (4 mL). The mixture was cooled to 0 °C and a mixture of 5-hydroxy-2methylpyridine (798 mg, 7.32 mmol) in DMF (10 mL) was added dropwise over 5 minutes. The reaction mixture was warmed to room temperature and stirred for 30 minutes before being cooled to 0 °C. A solution of 3–(chloromethyl)pyridine hydrogen chloride (1.00 g, 6.10 mmol) in DMF (16.5 mL) was then added dropwise to the reaction mixture over 10 minutes. The reaction mixture was warmed to room temperature and allowed to stir for 12 hours. The mixture was quenched with water (50 mL) and diluted with CH_2Cl_2 (50 mL). The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL). The combined organic extracts were washed with a saturated solution of brine (5 x 25 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel: 4% MeOH in CH₂Cl₂) to provide the title compound as a white amorphous solid (714 mg, 3.57 mmol, 59% yield). IR v_{max}/cm^{-1} (film): 3035, 2918, 2881, 1569, 1483, 1243, 1215, 1025, 1005; ¹H NMR (400 MHz, CDCl₃) δ: 8.67 (1H, s), 8.59 (1H, d, J = 4.4 Hz), 8.26 (1H, s), 7.76 (1H, d, J = 7.8 Hz), 7.33–7.30 (1H, m), 7.18–7.14 (1H, m), 7.07 (1H, d, J = 8.6), 5.08 (2H, s), 2.48 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ: 152.4, 151.1, 149.6, 149.6, 148.9, 136.8, 135.1, 131.9, 123.4, 122.3, 67.9, 23.3; m/z LRMS (ESI + APCI) found $[M + H]^+ 201.1$, $C_{12}H_{13}N_2O^+$ requires 201.1.


2-methyl-5-((5-methypyridin-3-yl)methoxy)pyridine

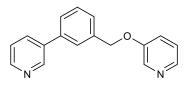
An oven dried 100 mL round bottom flask was charged with sodium hydride (60% dispersion in mineral oil, 3.3 equiv) and the flask was subjected to three cycles of vacuum/nitrogen backfill before addition of DMF (6 mL). The mixture was cooled to 0 °C and a mixture of 5–hydroxy–2– methylpyridine (1.10 g, 10.11 mmol) in DMF (14 mL) was added dropwise over 5 minutes. The reaction mixture was warmed to room temperature and stirred for 30 minutes before being cooled

to 0 °C. A solution of 3–(chloromethyl)–5–methylpyridine hydrogen chloride (1.50 g, 8.42 mmol) in DMF (22.5 mL) was then added dropwise to the reaction mixture over 10 minutes. The reaction mixture was warmed to room temperature and allowed to stir for 12 hours. The mixture was quenched with water (50 mL) and diluted with CH₂Cl₂ (50 mL). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL). The combined organic extracts were washed with a saturated solution of brine (5 x 25 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel: 6% MeOH in CH₂Cl₂) to provide the title compound as a white solid (1.37 g, 6.42 mmol, 76% yield). mp 81-83 °C; IR v_{max}/cm⁻¹ (film): 3070, 2948, 2918, 1569, 1483, 1380, 1267, 1215, 1025; ¹H NMR (400 MHz, CDCl₃) δ: 8.47 (1H, s), 8.42 (1H, s), 8.26 (1H, d, *J* = 2.8 Hz), 7.59 (1H, s), 7.17 (1H, dd, J = 5.7, 2.8 Hz), 7.07 (1H, d, J = 8.4 Hz), 5.05 (2H, s), 2.49 (3H, s), 2.35 (3H, s); ¹³C NMR (100)MHz. CDCl₃) δ: 152.5, 151.1, 150.2, 146.1, 136.9, 135.7, 133.1, 131.3, 123.3, 122.4, 67.9, 23.3, 18.3; m/zLRMS (ESI + APCI) found $[M + H]^+$ 215.2, $C_{13}H_{15}N_2O^+$ requires 215.1.


5-((5-bromopyridin-3-ly)methoxy)-2-methylpyridine

An oven dried 50 mL round bottom flask was charged with 4–dimethylaminopyridine (611 mg, 5.00 mmol) and subjected to three cycles of vacuum/nitrogen backfill before addition of CH₂Cl₂ (17 mL). The mixture was then cooled to 0 °C, 5–bromo–3–pyridinemethanol (1.13 mL, 10.00 mmol) was added dropwise, followed by adding 4–toluenesulfonyl chloride (2.38 g, 12.50 mmol) portion wise over 10 minutes. Triethylamine (2.10 mL, 15.00 mmol) was then added dropwise and the reaction was allowed to stir at room temperature for 6 hours, before being diluted with CH₂Cl₂ (25 mL) and quenched with 1 M HCl (10 mL). The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 25 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo*. The crude mixture was carried onto the next reaction without

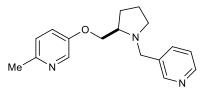
further purification. An oven dried 100 mL round bottom flask was charged with sodium hydride (60% dispersion in mineral oil, 3.3 equiv). The flask was subjected to three cycles of vacuum/nitrogen backfill before addition of DMF (4 mL). The mixture was cooled to 0 °C and a mixture of 5-hydroxy-2-methylpyridine (707 mg, 6.48 mmol) in DMF (9 mL) was added dropwise over 5 minutes. The reaction mixture was warmed to room temperature and stirred for 30 minutes before being cooled to 0 °C. A solution of the crude material in DMF (14.5 mL) was then added dropwise to the reaction mixture over 10 minutes. The reaction mixture was warmed to room temperature and allowed to stir for 12 hours. The mixture was quenched with water (50 mL) and diluted with CH₂Cl₂ (50 mL). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL). The combined organic extracts were washed with a saturated solution of brine (5 x 25 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel: 4% MeOH in CH₂Cl₂) to provide the title compound as a yellow oil (1.08 g, 3.85 mmol, 39% yield). IR v_{max}/cm^{-1} (film): 3042, 3019, 2922, 1587,1494, 1265, 528; ¹H NMR (400 MHz, CDCl₃) δ: 8.66 (1H, d, *J* = 2.2 Hz), 8.58 (1H, d, J = 1.6 Hz), 8.26 (1H, d, J = 2.9 Hz), 7.94 (1H, t, J = 1.9 Hz), 7.17 (1H, dd, J = 8.5, 2.9 Hz), 7.09 (1H, d, J = 8.5 Hz), 5.08 (2H, s), 2.50 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ: 152.2, 151.5, 150.7, 146.8, 137.6, 136.7, 133.7, 123.5, 122.5, 120.9, 67.1, 23.4; *m/z* LRMS (ESI + APCI) found $[M + H]^+$ 279.0, $C_{12}H_{12}BrN_2O^+$ requires 279.0.


(3-(pyridin-3-yl)phenyl)methanol

An oven dried 50 mL round bottom flask was charged with $Pd(OAc)_2$ (225 mg, 1.00 mmol), PPh₃ (682 mg, 2.60 mmol) and aq. Na₂CO₃ (14.2 mL, 28.40 mmol, 2.0 M) and subjected to three cycles of vacuum/nitrogen backfill before H₂O (10 mL) was added. A solution of 3– hydroxymethylphenylboronic acid (3.28 g, 21.60 mmol) and 3–bromopyridine (1.93 mL, 20.00 mmol) in propanol (38 mL) was added to the reaction mixture and the resulting suspension was

allowed to stir at 95°C for 12 hours. The reaction mixture was diluted with EtOAc (75 mL) and quenched with water (50 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 x 50 mL). The organic layers were combined, washed with 1:1 saturated aqueous solution of NaHCO₃ (2 x 50 mL), and once with a saturated solution of brine (50 mL). The organic layer was dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (silica gel: 80% EtOAc in Hexanes) to provide the title compound as a clear-yellow oil (2.50 g, 13.52 mmol, 68% yield). IR v_{max}/cm^{-1} (film): 3226, 3035, 2858, 1606, 1589, 1571, 1401, 1023; ¹H NMR (400 MHz, CDCl₃) δ : 8.83 (1H, d, J = 2.1 Hz), 8.59 (1H, dd, J = 4.8, 1.5 Hz), 7.88 (1H, dt, J = 8.0, 2.3 Hz), 7.60 (1H, s), 7.52–7.34 (4H, m), 4.80 ^{13}C 2.07 (1H, br); NMR (100)(2H, s), MHz, CDCl₃) δ: 147.4, 147.3, 142.5, 137.1, 136.4, 134.4, 128.8, 126.4, 125.4, 125.1, 123.4, 63.9; *m/z* LRMS (ESI + APCI) found $[M + H]^+$ 186.2, $C_{12}H_{12}NO^+$ requires 186.1.

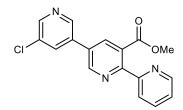
3-((3-(pyridin-3-yl)benzyl)oxy)pyridine



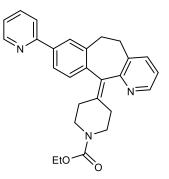
An oven dried 50 mL round bottom flask was charged with 4–dimethylaminopyridine (99 mg, 0.81 mmol) and (3–(pyridin–3–yl)phenyl)methanol (1.50 g, 8.11 mmol) and subjected to three cycles of vacuum/nitrogen backfill, before $CH_2Cl_2(13 \text{ mL})$ was added. The mixture was cooled to 0 °C and 4–toluenesulfonyl chloride (2.32 g, 12.15 mmol) was added over 10 minutes. NEt₃ (2.69 mL, 12.15 mmol) was then added dropwise and the reaction was allowed to stir at room temperature for 6 hours. The mixture was diluted with CH_2Cl_2 (25 mL) and quenched with 0.3 M HCl (25 mL). The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (3 x 25 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo*. The crude mixture was charged with sodium hydride (60% dispersion in mineral oil, 3.3 equiv). The flask was subjected to three cycles of vacuum/nitrogen backfill before addition

of DMF (4 mL). The mixture was cooled to 0 °C and a mixture of 3–hydroxypyridine (585 mg, 6.15 mmol) in DMF (10 mL) was added dropwise over 5 minutes. The reaction mixture was warmed to room temperature and stirred for 30 minutes before being cooled to 0 °C. A solution of the crude material in DMF (14 mL) was then added dropwise to the reaction mixture over 10 minutes. The reaction mixture was warmed to room temperature and allowed to stir for 12 hours. The mixture was quenched with water (50 mL) and diluted with CH₂Cl₂ (50 mL). The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL). The combined organic extracts were washed with a saturated solution of brine (5 x 25 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (silica gel: 3% MeOH in CH₂Cl₂) to provide the title compound as a yellow oil (332 mg, 1.27 mmol, 16% yield). IR v_{max}/cm⁻¹ (film): 3032, 2923, 2873, 1572, 1473, 1424, 1259, 1226, 1021; ¹H NMR (400 MHz, CDCl₃) δ : 8.85 (1H, d, *J* = 2.2 Hz), 8.61 (1H, dd, *J* = 4.8, 1.2 Hz), 8.42 (1H, d, *J* = 2.8 Hz), 8.25 (1H, d, *J* = 4.5 Hz), 7.30–7.21 (2H, m), 5.19 (2H, s); ¹³C NMR (100 MHz, CDCl₃)

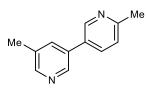
δ: 154.6, 148.6, 148.2, 142.4, 138.2, 138.1, 137.0, 136.0, 134.2, 129.3, 127.0, 126.9, 126.0, 123. 7, 123.4, 121.4, 69.9; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 263.1, C₁₇H₁₅N₂O⁺ requires 263.1.


(R)-2-methyl-5-((1-(pyridin-3-ylmethyl)pyrrolidin-2-yl)methoxy)pyridine

An oven dried 500 mL round bottom flask was charged with PPh₃ (12.77 g, 48.70 mmol) and a stir bar, and subjected to three cycles of vacuum/nitrogen backfill. THF (203 mL) was then added to the flask and diethyazodiethylcarboxylate (7.67 mL, 48.7 mmol) was added dropwise over 20 minutes. The solution was allowed to stir for 30 minutes before Boc–D–prolinol (6.53 g, 32.4 mmol) was added in one portion. The solution stirred for 20 minutes and then 3–hydroxypyridine (5.31 g, 48.70 mmol) was added and the reaction mixture stirred for 36 hours. The mixture was

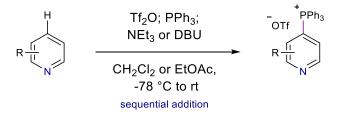

diluted with CH₂Cl₂ (100 mL) and quenched with water (100 mL). The organic layer was separated, and the aqueous phase was extracted with CH₂Cl₂ (3 x 50 mL). The organic extracts were combined, dried (MgSO₄), filtered and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel: 50% EtOAc in hexanes) to provide a mixture of the 2-methyl-5-(pyrrolidin-2-ylmethoxy)pyridine Boc-protected and diethyl 1.2 hydrazinedicarboxylate (10.84 g). The mixture was transferred to a 300 mL round bottom flask equipped with a stir bar and diluted with CH₂Cl₂ (112 mL). Trifluoroacetic acid (31 mL) was added dropwise over 20 minutes and the solution stirred overnight. The solution was quenched with a saturated aqueous solution of NH₄OH (20 mL) and extracted with CH₂Cl₂ (3 x 50 mL). The organic layer was washed with a saturated solution of brine (50 mL), dried (MgSO₄), filtered and concentrated in vacuo. The mixture was purified through flash chromatography (silica gel: 8% MeOH in CH₂Cl₂) to provide 2-methyl-5-(pyrrolidin-2-ylmethoxy)pyridine (1.52 g, 7.37 mmol, 25% yield). In a separate 50 mL round bottom flask, 3-pyridinecarboxaldehyde (675 mL, 7.19 mmol) and a stir bar were added and subjected to three cycles of vacuum/nitrogen backfills before MeOH (19 mL) and aq. acetic acid (0.96 mL, 7.20 mmol, 7.5 M) were added. The 2-methyl-5-((1-methylpyrrolidin-2-yl)methoxy)pyridine (1.52 g, 7.9 mmol) was added, followed by sodium triacetoxyborohydride (1.52 g, 7.19 mmol). The reaction was allowed to stir for 5 hours before being quenched with a saturated aqueous solution of NH₄Cl (40 mL) and diluted with CH₂Cl₂ (50 mL). The organic phase was separated from the aqueous layer and extracted with CH₂Cl₂ (3 x 50 mL). The aqueous layer was neutralized with a saturated aqueous solution of K₂CO₃ and was then extracted with CH₂Cl₂ (3 x 50 mL). The organic extracts were combined, dried (MgSO₄), and concentrated in vacuo. The mixture was purified by flash chromatography (silica gel: 2% MeOH in CH₂Cl₂ to 6% MeOH in CH₂Cl₂) to provide the title compound as a yellow oil (1.07 g, 3.77 mmol, 52% yield). IR v_{max}/cm⁻¹ (film): 3025, 2960, 2920, 2072, 2788, 1572, 1494, 1483, 1424, 1266, 1240, 1211, 1026, 714; ¹H NMR (400 MHz, CDCl₃) δ: 8.55 (1H, s), 8.48 (1H, s), 8.15 (1H, d, J = 1.9 Hz), 7.65 (1H, d, J = 7.6 Hz), 7.22–7.19 (1H, m), 7.07–7.01 (2H, m), 4.13 (1H, d, J = 13.4 Hz), 3.96–3.84 (2H, m), 3.52 (1H, d, *J* = 13.4 Hz), 3.03–2.92 (2H, m), 2.46 (3H, s), 2.30 (1H, q, J = 8.5 Hz), 2.05–2.00 (1H, m), 1.76–1.73 (3H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 153.0, 150.3, 150.0, 148.3, 136.6, 136.3, 134.9, 123.2 (2C), 121.8, 71.9, 62.3, 56.9, 54.5, 28.4, 23.2, 23.0; m/z LRMS (ESI + APCI) found $[M + H]^+$ 284.2, $C_{17}H_{22}N_3O^+$ requires 284.2; Specific Rotation $[\alpha]_{p}^{22}$ +53.52 (*c* 1.00, CHCl₃).

3-(2-chlorothiophen-3-yl)pyridine


An oven dried 25 mL round bottom flask was charged with methyl 5',6-dichloro-[3,3'bipyridine]-5-carboxylate (608 mg, 2.15 mmol) before the flask was subjected to three cycles of vacuum/nitrogen backfill. Degassed DMF (11 mL) was added to the flask followed by 2-(tributylstannyl)pyridine (975 µL, 3.01 mmol), cesium fluoride (980 mg, 6.45 mmol), CuI (82 mg, 0.43 mmol), Pd(PPh₃)₄ (248 mg, 0.22 mmol) in that order. The mixture was then deoxygenated under reduced pressure and flushed with nitrogen (3 cycles) before heating at 80 °C for 2 hours. After cooling to room temperature, the reaction mixture was diluted with EtOAc (25 mL) and filtered through a short pad of Celite. The organic filtrate was washed with water (25 mL x 5) and a saturated solution of brine (25 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuo. The crude material was purified by flash chromatography (neutralized silica gel, gradient elution: 25% EtOAc in hexanes to 50% EtOAc in hexanes) to provide the title compound as a white solid (303 mg, 0.93 mmol, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ: 8.95 (1H, d, *J* = 2.0 Hz), 8.79 (1H, d, *J* = 1.5 Hz), 8.66 (1H, d, *J* = 2.0 Hz), 8.63 (1H, d, *J* = 4.6 Hz), 8.23 (1H, d, J = 7.9 Hz), 8.12 (1H, d, J = 2.0 Hz), 7.94 (1H, s), 7.85 (1H, t, J = 7.9 Hz), 7.34 (1H, dd, J = 7.3, 4.9 Hz), 3.84 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 169.0, 155.2, 155.1, 148.6, 148.6, 148.2, 145.7, 136.8, 135.2, 134.0, 133.4, 132.6, 131.1, 128.8, 124.0, 122.7, 52.5. The spectroscopic data is in agreement with a reported synthesis.³

Ethyl 4–(8–(pyridin–2–yl)–5,6–dihydro–11H–benzo[5,6]cyclohepta[1,2–b]pyridin–11– ylidene)piperidine–1–carboxylate

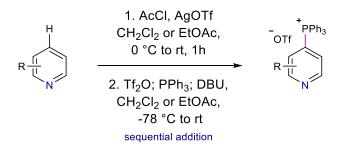
An oven dried 50 mL Schlenk flask was charged with loratadine (ethyl 4–(8–chloro–5,6–dihydro– 11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate) (766 mg, 2.00 mmol), Pd₂(dba)₃ (183 mg, 0.20 mmol), tri-tert-butylphosphonium tetrafluoroborate (116 mg, 0.40 mmol), and cesium fluoride (668 mg, 4.40 mmol). The flask was subjected to three cycles of vacuum/nitrogen backfill before the addition of 1,4-dioxane (17 mL) and 2-(tributylstannyl)pyridine (971 µL, 3.00 mmol). The Schlenk flask was sealed and heated at 100 °C for 12 hours. The reaction mixture was cooled to room temperature and filtered through a pad of silica gel (washing with EtOAc). The filtrate was washed with water (3 x 20 mL) and a saturated aqueous solution of brine (20 mL). The organic extract was dried (MgSO₄), filtered and concentrated in vacuo. The crude material was purified by flash chromatography (neutralized silica gel: 30% EtOAc in hexanes) to provide the title compound as a white amorphous solid (660 mg, 1.55 mmol, 78% yield). IR v_{max}/cm⁻¹ (film): 3029, 2979, 2914, 2856, 1690, 1586, 1228, 1113, 996, 908, 723,; ¹H NMR (400 MHz, CDCl₃) δ: 8.66 (1H, d, *J* = 4.7 Hz), 8.40 (1H, dd, *J* = 4.9, 1.4 Hz), 7.87 (1H, d, J = 1.5 Hz), 7.77–7.67 (3H, m), 7.44 (1H, dd, J = 7.6, 1.3 Hz), 7.30 (1H, d, J = 7.9 Hz), 7.23-7.17 (1H, m), 7.08 (1H, dd, J = 7.7, 4.8 Hz), 4.13 (2H, q, J = 7.1 Hz), 3.82 (2H, br), 3.58–3.31 (2H, m), 3.24–3.06 (2H, m), 3.01–2.82 (2H, m), 2.60–2.27 (4H, m), 1.25, (3H, t, J = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ: 157.2, 157.1, 155.5, 149.6, 146.6, 140.0, 138.5, 138.2, 137.4, 137.1, 136.7, 135.0, 133.6, 129.6, 127.6, 124.5, 122.1, 122.0, 120.4, 61.2, 44.8, 31.9, 31.7, 30.6 (d, J = 25.6 Hz), 14.6; m/z LRMS (ESI + APCI) found $[M + H]^+ 426.3$, $C_{27}H_{28}N_3O_2^+$ requires 426.2.


5,6'-dimethyl-3,3'-bipyridine

An oven dried 250 mL round bottom flask was charged with (6–methylpyrid–3–yl)boronic acid (1.00 g, 7.3 mmol) and Pd(PPh₃)₄ (734 mg, 0.64 mmol), before adding toluene (51 mL) and degassed ethanol (51 mL). 3–bromo–5–methylpyridine (0.74 mL, 6.40 mmol) and aq. Na₂CO₃ (6.7 mL, 13.40 mmol, 2.0 M) were added to the reaction mixture before heating to 110°C and stirring overnight. The solution was cooled to room temperature, diluted with CH₂Cl₂ (50 mL) and quenched with water (50 mL). The organic phase was separated from the aqueous layer and extracted with CH₂Cl₂ (3 x 50 mL). The organic extracts were combined, dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (silica gel: 4% MeOH in CH₂Cl₂) to provide the title compound as a white solid (761 mg, 4.10 mmol, 65% yield); mp 69–74 °C; IR v_{max}/cm⁻¹ (film): 3020, 2990, 2919, 1598, 1494, 1433, 1385; ¹H NMR (400 MHz, CDCl₃) δ : 8.69 (1H, d, *J* = 2.2 Hz), 8.61 (1H, d, *J* = 2.0 Hz), 8.45 (1H, d, *J* = 1.3 Hz), 7.75 (1H, dd, *J* = 8.0, 2.4 Hz), 7.64 (1H, m), 7.24 (1H, d, *J* = 8.0 Hz), 2.60 (3H, s), 2.40 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 158.0, 149.5, 147.4, 145.2, 134.6, 134.6, 133.2, 133.0, 130.6, 123.2, 24.1, 13.2; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 185.2, Cl₂H₁₃N₂⁺ requires 185.1.

4. Preparation of Heterocyclic Phosphonium Salts

General Procedure A



An oven dried 8 mL vial (≤ 0.5 mmol scale) or a round bottom flask (> 0.5 mmol scale) equipped with a stir bar was charged with the heterocycle (1.0 equiv) and placed under a nitrogen atmosphere. CH₂Cl₂ (0.1 M) was added, the reaction vessel cooled to -78 °C and Tf₂O (1.0 equiv) was added dropwise over 5 minutes. The reaction was stirred for 30 minutes before PPh₃ (1.1 equiv) was added in one portion. The reaction was subjected to three rapid cycles of vacuum/nitrogen backfill and was stirred for a further 30 minutes at -78 °C. The stated organic base (NEt₃ or DBU, 1.0 equiv) was added dropwise via syringe, the cooling bath was removed and the reaction was allowed to warm to room temperature while stirring (approximately 15–30 minutes). The reaction mixture was quenched with H_2O (approximately the same volume as CH₂Cl₂) and the mixture was transferred to a separatory funnel. The mixture was diluted CH₂Cl₂ and the resulting organic layer was washed three times with H_2O . The organic layer was dried (MgSO₄), filtered and concentrated in vacuo to approximately 2-10 mL (depending on the scale of the reaction). An excess of chilled Et₂O (0 °C) was added to the concentrated solution that was then placed in a -20 °C refrigerator for approximately 1 hour. The resulting suspension was filtered on a frit, the solid washed with chilled Et₂O (0 °C) and dried in vacuo to provide the pure phosphonium salt.

Notes.

- 1) PPh₃ was crushed into a powder prior to use.
- Certain substrates require longer periods for the precipitation step and specific cases are indicated below.
- 3) In a small number of cases, residual CH₂Cl₂ can become trapped in the phosphonium salt products. In these cases, heating the salts under vacuum (50–100 °C) removed the solvent.
- 4) In order to evaluate regioselectivity from the crude reaction mixtures, a duplicate reaction was performed and aliquots taken after addition of the organic base and warming to room temperature. These aliquots were concentrated *in vacuo* and analyzed by ¹H and ³¹P NMR.

General Procedure B (Acylation–Blocking Conditions)

An oven dried 8 mL vial (≤ 0.50 mmol scale) or a round bottom flask (> 0.50 mmol scale) equipped with a stir bar was charged with the heterocycle (1.0 equiv) and silver trifluormethanesulfonate (1.0 equiv) and placed under a nitrogen atmosphere. CH₂Cl₂ or EtOAc (0.1 M) was added, the reaction vessel cooled to 0 °C and acetyl chloride (1.0 equiv) was added dropwise over 5 minutes. The reaction was warmed to room temperature and stirred^{*} for 1 hour before cooling to -78 °C. Tf₂O (1.0 equiv) was added dropwise over 5 minutes and the reaction mixture stirred for 30 minutes before PPh₃ (1.1 equiv) was added in one portion. The reaction was subjected to three rapid cycles of vacuum/nitrogen backfill and was stirred for a further 30 minutes at -78 °C. DBU (1.0 equiv) was added dropwise via syringe, the cooling bath was removed and the reaction was allowed to warm to room temperature while stirring (approximately 15–30 minutes). The reaction mixture was quenched with pyridine (2.0 equiv) and H₂O (approximately the same volume as CH₂Cl₂) and the suspension was allowed to stir for 30 minutes before being filtered through a pad of Celite (rinsed with CH₂Cl₂). The filtrate was transferred to a separatory funnel and the organic layer was washed three times with H₂O. The organic layer was dried (MgSO₄), filtered and concentrated in vacuo to approximately 2-10 mL (depending on the scale of the reaction). An excess of chilled Et₂O (0 °C) was added to the concentrated solution that was then placed in a -20°C refrigerator for approximately 1 hour. The resulting suspension was filtered on a frit, the solid washed with chilled Et₂O (0 °C) and dried *in vacuo* to provide the pure phosphonium salt.

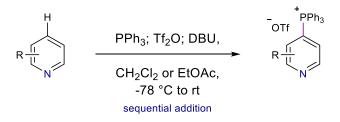
Notes.

^{*} Uniformed stirring is important for the reaction; the reaction vessel was placed directly on the middle of the stir plate and the mixture stirred at 1400–2000 rpms for the duration of the reaction.

- 1) Silver trifluoromethanesulfonate was taken fresh from a glovebox before each reaction.
- 2) PPh₃ was crushed into a powder prior to use.
- Certain substrates require longer periods for the precipitation step and specific cases are indicated below.
- 4) In a small number of cases, residual CH₂Cl₂ can become trapped in the phosphonium salt products. In these cases, heating the salts under vacuum (50–100 °C) removed the solvent.
- 5) In order to evaluate regioselectivity from the crude reaction mixtures, a duplicate reaction was performed and aliquots taken after addition of the organic base and warming to room temperature. These aliquots were concentrated *in vacuo* and analyzed by ¹H and ³¹P NMR.

General Procedure C (Base–Switching Conditions)

An oven dried 8 mL vial (≤ 0.50 mmol scale) or a round bottom flask (> 0.50 mmol scale) equipped with a stir bar was charged with the heterocycle (1.0 equiv) and placed under a nitrogen atmosphere. CH₂Cl₂ or EtOAc (0.1 M) was added, the reaction vessel cooled to -78 °C and Tf₂O (2.0 equiv) was added dropwise over 5 minutes. The reaction was stirred[†] for 30 minutes before PPh₃ (2.0 equiv) was added in one portion. The reaction was subjected to three rapid cycles of vacuum/nitrogen backfill and was stirred for a further 30 minutes at -78 °C. NEt₃, (2.0 equiv) was added dropwise via syringe, the cooling bath was removed and the reaction was allowed to warm to room temperature while stirring (approximately 15–30 minutes). The reaction mixture was quenched with H₂O (approximately the same volume as CH₂Cl₂) and the mixture was transferred to a separatory funnel. The mixture was diluted CH₂Cl₂ and the resulting organic layer was washed

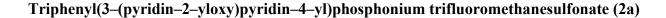

⁺ Uniformed stirring is important for the reaction; the reaction vessel was placed directly on the middle of the stir plate and the mixture stirred at 1400–2000 rpms for the duration of the reaction.

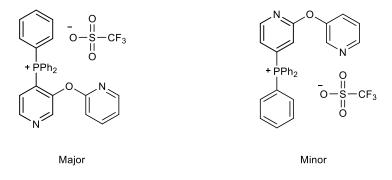
at least five times with H₂O. The organic layer was dried (MgSO₄), filtered and concentrated *in vacuo* to approximately 2–10 mL (depending on the scale of the reaction). An excess of chilled Et₂O (0 °C) was added to the concentrated solution that was then placed in a –20 °C refrigerator for approximately 1 hour. The resulting suspension was filtered on a frit, the solid washed with chilled Et₂O (0 °C) and dried *in vacuo* to provide the pure phosphonium salt.

Notes.

- 1) PPh₃ was crushed into a powder prior to use.
- Certain substrates contain residual protonated NEt₃ after the precipitation step. In these cases, the phosphonium salt is diluted with CH₂Cl₂ and washed with H₂O until the protonated NEt₃ disappears.
- Certain substrates require longer periods for the precipitation step and specific cases are indicated below.
- 4) In a small number of cases, residual CH₂Cl₂ can become trapped in the phosphonium salt products. In these cases, heating the salts under vacuum (50–100 °C) removed the solvent.
- 5) In order to evaluate regioselectivity from the crude reaction mixtures, a duplicate reaction was performed and aliquots taken after addition of the organic base and warming to room temperature. These aliquots were concentrated *in vacuo* and analyzed by ¹H and ³¹P NMR.

General Procedure D (Reverse Order of Reagent Addition)

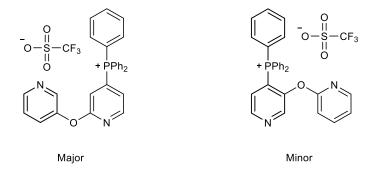



An oven dried 8 mL vial (≤ 0.50 mmol scale) or a round bottom flask (> 0.50 mmol scale) equipped with a stir bar was charged with the heterocycle (1.0 equiv) and PPh₃ (1.0 equiv) and placed under a nitrogen atmosphere. CH₂Cl₂ (0.1 M) was added, the reaction vessel cooled to -78 °C and Tf₂O (1.0 equiv) was added dropwise over 5 minutes. The reaction was stirred[‡] for 1 hour before DBU (1.0 equiv) was added dropwise via syringe, the cooling bath removed and the reaction warmed to room temperature while stirring (approximately 15–30 minutes). The reaction mixture was quenched with H₂O (approximately the same volume as CH₂Cl₂) and the mixture was transferred to a separatory funnel. The mixture was diluted CH₂Cl₂ and the resulting organic layer was washed three times with H₂O. The organic layer was dried (MgSO₄), filtered and concentrated *in vacuo* to approximately 2–10 mL (depending on the scale of the reaction). An excess of chilled Et₂O (0 °C) was added to the concentrated solution that was then placed in a –20 °C refrigerator for approximately 1 hour. The resulting suspension was filtered on a frit, the solid washed with chilled Et₂O (0 °C) and dried *in vacuo* to provide the pure phosphonium salt.

Notes.

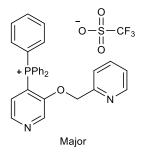
- 1) PPh_3 was crushed into a powder prior to use.
- Certain substrates require longer periods for the precipitation step and specific cases are indicated below.
- 3) In a small number of cases, residual CH₂Cl₂ can become trapped in the phosphonium salt products. In these cases, heating the salts under vacuum (50–100 °C) removed the solvent.
- 4) In order to evaluate regioselectivity from the crude reaction mixtures, a duplicate reaction was performed and aliquots taken after addition of the organic base and warming to room temperature. These aliquots were concentrated *in vacuo* and analyzed by ¹H and ³¹P NMR.

[‡] Uniformed stirring is important for the reaction; the reaction vessel was placed directly on the middle of the stir plate and the mixture stirred at 1400–2000 rpms for the duration of the reaction.



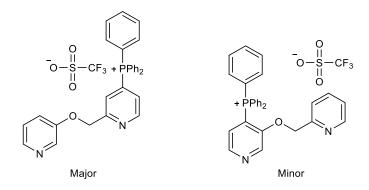
>20:1(Major:Minor) Mixture of Isomers

Prepared according to general procedure A using 2–(pyridin–3yloxy)pyridine (183 mg, 1.06 mmol), Tf₂O (179 µL, 1.06 mmol), PPh₃ (306 mg, 1.17 mmol), DBU (159 µL, 1.06 mmol) and CH₂Cl₂ (10.6 mL). After the purification procedure, the title compound was isolated as a white solid (498 mg, 0.85 mmol, 81% yield). mp 149–158 °C; Both isomers, IR ν_{max}/cm^{-1} (film): 3063, 1601, 1589, 1437, 1269, 1221, 1140, 1031; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.91 (1H, app d, J = 6.2 Hz), 8.76 (1H, app t, J = 8.8 Hz), 7.98 (1H, dd, J = 4.8, 1.8 Hz), 7.83–7.64 (15H, m), 7.55–7.51 (1H, m), 7.30 (1H, dd, J = 14.2, 5.0 Hz), 7.02 (1H, dd, J = 7.2, 5.0 Hz); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 159.4, 151.1, 146.6, 146.4 (d, J = 10.1 Hz), 146.3 (d, J = 4.4 Hz), 140.4, 135.6 (d, J = 3.1 Hz), 133.9 (d, J = 11.0 Hz), 130.6 (d, J = 13.4 Hz), 120.9, 120.7 (q, J = 320.3 Hz), 119.6 (d, J = 86.1 Hz), 115.7 (d, J = 91.4 Hz), 111.2; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.12; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.13; *m*/z LRMS (ESI + APCI) found [M – OTf]⁺ 433.2, C₂₈H₂₂N₂OP⁺ requires 433.1.


Triphenyl(2–(pyridin–3–yloxy)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2a)

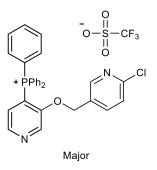
17:1:1:1 (Major:Minor:Undefined phosphonium isomers) Mixture of Isomers

Prepared according to general procedure B (except that the phosphine was stirred for 6 hours at – 50 °C instead of 30 minutes at –78 °C) using 2–(pyridin–3yloxy)pyridine (86 mg, 0.50 mmol), silver trifluormethanesulfonate (129 mg, 0.50 mmol), acetyl chloride (36 μ L, 0.50 mmol), Tf₂O (85 μ L, 0.50 mmol), PPh₃ (145 mg, 0.55 mmol), DBU (75 μ L, 0.50 mmol), pyridine (81 μ L, 1.00 mmol), and EtOAc (5.0 mL). After the purification procedure, the title compound was isolated as a brown solid (113 mg, 0.19 mmol, 39% combined yield).; Both isomers, IR v_{max}/cm⁻¹ (film): 3064, 1588, 1439, 1382, 1260, 1222, 1108, 1030, 906, 734, 689, 647; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.49–8.46 (3H, m), 7.93–7.62 (16H, m), 7.37 (1H, dd, *J* = 8.2, 4.7 Hz), 7.30 (1H, dd, *J* = 11.9, 5.2 Hz), 7.12 (1H, d, *J* = 14.5 Hz); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 163.4 (d, *J* = 15.9 Hz), 149.8 (d, *J* = 12.1 Hz), 149.2, 146.4, 143.3, 136.2 (d, *J* = 3.0 Hz), 134.4 (d, *J* = 10.6 Hz), 132.2 (d, *J* = 84.5 Hz), 130.9 (d, *J* = 13.1 Hz), 126.4, 124.1, 121.6 (d, *J* = 8.3 Hz), 120.7 (q, *J* = 321.2 Hz), 116.5 (d, *J* = 10.3 Hz), 115.4 (d, *J* = 89.5 Hz); Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.12; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 22.39; Minor isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 21.97, 21.17, 21.00; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 433.2, C₂₈H₂₂N₂OP ⁺ requires 433.1.


Triphenyl(3–(pyridin–2–ylmethoxy)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2b)

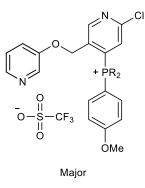
>20:1 (Major:Minor) (Minor is a 2-position phosphonium isomer) Mixture of Isomers

Prepared according to general procedure D using 2–((pyridin–3–yloxy)methyl)pyridine (31 mg, 0.17 mmol), Tf₂O (29 µL, 0.17 mmol), PPh₃ (45 mg, 0.17 mmol), DBU (26 µL, 0.17 mmol), and EtOAc (1.7 mL). After the purification procedure, the title compound was isolated as a white solid (103 mg, 0.17 mmol, >99% combined yield). mp: 40–45 °C; Both isomers, IR v_{max}/cm⁻¹ (film): 3060, 1483, 1438, 1414, 1260, 1223, 1151, 1107, 1030, 911, 722, 636; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.78 (1H, app d, *J* = 6.7 Hz), 8.52 (1H, app t, *J* = 4.4 Hz), 8.37 (1H, d, *J* = 4.4 Hz), 7.84–7.80 (3H, m), 7.71–7.66 (6H, m), 7.60–7.55 (6H, m), 7.47 (1H, td. *J* = 7.7, 1.6 Hz), 7.14 (1H, dd, *J* = 7.0, 4.9 Hz), 7.07 (1H, dd, *J* = 15.2, 4.4 Hz), 6.57 (1H, d, *J* = 7.8 Hz), 5.15 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 154.9, 152.9, 149.0, 143.9 (d, *J* = 10.9 Hz), 137.1 (d, *J* = 4.4 Hz), 136.8, 135.5 (d, *J* = 3.0 Hz), 133.8 (d, *J* = 10.8 Hz), 130.5 (d, *J* = 13.4 Hz), 127.9 (d, *J* = 7.0 Hz), 123.4, 122.0, 120.7 (q, *J* = 321.3 Hz), 116.1 (d, *J* = 91.4 Hz), 115.0 (d, *J* = 86.6 Hz), 72.3; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.13; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 18.44; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 447.2, C₂₉H₂₄N₂OP⁺ requires 447.2.


Triphenyl(2–((pyridin–3–yloxy)methyl)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2b)

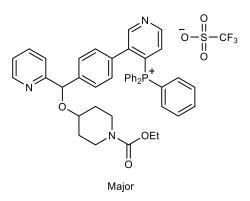
11:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure B using 2–((pyridin–3–yloxy)methyl)pyridine (19 mg, 0.10 mmol), silver trifluormethanesulfonate (27 mg, 0.10 mmol), acetyl chloride (8 μ L, 0.10 mmol), Tf₂O (18 μ L, 0.11 mmol), PPh₃ (30 mg, 0.11 mmol), DBU (16 μ L, 0.11 mmol), pyridine (17 μ L, 0.20 mmol), and EtOAc (1 mL). After the purification procedure, the title compound was isolated as a brown solid (22 mg, 0.037 mmol, 37% combined yield). Both isomers, IR v_{max}/cm⁻¹ (film): 3062, 1585, 1575, 1439, 1260, 1224, 1154, 1108, 1030, 908, 723, 689, 635; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.03 (1H, app t, *J* = 5.0 Hz), 8.23 (2H, bs), 7.92–7.57 (17H, m), 7.23 (2H, s), 5.38 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 159.1 (d, *J* = 10.2 Hz), 153.8, 151.6 (d, *J* = 10.4 Hz), 142.8, 138.4, 136.2 (d, *J* = 2.9 Hz), 134.5 (d, *J* = 10.4 Hz), 131.0 (d, *J* = 13.1 Hz), 129.3 (d, *J* = 84.3 Hz), 126.5 (d, *J* = 8.4 Hz), 124.5 (d, *J* = 8.9 Hz), 124.1, 121.2, 120.8 (q, *J* = 321.0 Hz), 115.6 (d, *J* = 89.5 Hz), 69.8; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : 21.64; *m*/z LRMS (ESI + APCI) found [M – OTf]⁺ 447.2, C₂₉H₂₄N₂OP ⁺ requires 447.2.


Triphenyl(3-(pyridin-2-yloxy)pyridin-4-yl)phosphonium trifluoromethanesulfonate (2c)

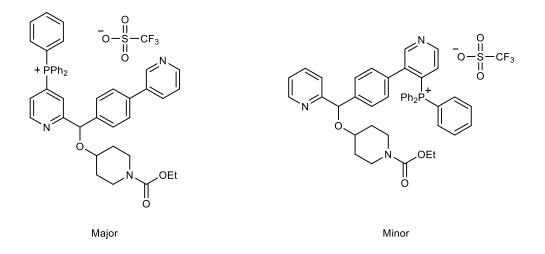
20:1:1 (Major:Unidentified phosphonium isomers) Mixture of Isomers

Prepared according to general procedure A using 2–chloro–5–((pyridin–3–yloxy)methyl)pyridine (110 mg, 0.50 mmol), Tf₂O (84 µL, 0.50 mmol), PPh₃ (144 mg, 0.55 mmol), DBU (75 µL, 0.50 mmol) and CH₂Cl₂ (5 mL). After the purification procedure, the title compound was isolated as a white solid (265 mg, 0.42 mmol, 84% yield). All isomers, IR v_{max}/cm⁻¹ (film): 3059, 2924, 1570, 1438, 1414, 1261, 1105, 1029, 721, 689, 636; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.92 (1H, d, *J* = 6.7 Hz), 8.54 (1H, app t, *J* = 4.3 Hz), 7.94–7.47 (16H, m), 7.38 (1H, dd, *J* = 8.2, 2.4 Hz), 7.08 (2H, d, *J* = 8.2 Hz), 7.02 (1H, dd, *J* = 14.6, 4.9 Hz), 5.30 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 154.7, 151.2, 149.0, 143.9 (d, *J* = 11.0 Hz), 139.2, 137.3 (d *J* = 4.3 Hz), 135.5 (d, *J* = 2.9 Hz), 133.7 (d, *J* = 10.7 Hz), 130.9 (d, *J* = 13.0 Hz), 128.6, 127.7 (d, *J* = 6.9 Hz), 123.9, 120.7 (q, *J* = 321.1 Hz), 116.1 (d, *J* = 91.3 Hz), 114.6 (d, *J* = 87.1 Hz), 68.6; All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.18; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.22, 18.53; *m*/z LRMS (ESI + APCI) found [M – OTf]⁺ 481.2, C₂₉H₂₃ClN₂OP⁺ requires 482.1.


Triphenyl(2-(pyridin-3-yloxy)pyridin-4-yl)phosphonium trifluoromethanesulfonate (2c)

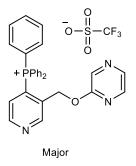
12.8:2.2:2.2 (Major:Unidentified phosphonium isomers) Mixture of Isomers

Prepared according to general procedure B (except that tris(4–methoxyphenyl)phosphine was used instead of triphenylphosphine) using 2–chloro–5–((pyridin–3–yloxy)methyl)pyridine (55 mg, 0.25 mmol), silver trifluormethanesulfonate (64 mg, 0.25 mmol), acetyl chloride (18 µL, 0.25 mmol), Tf₂O (42 µL, 0.25 mmol), tris(4–methoxyphenyl)phosphine (97 mg, 0.28 mmol), DBU (37 µL, 0.25 mmol), pyridine (40 µL, 0.50 mmol), and EtOAc (2.5 mL). After the purification procedure, the title compound was isolated as a brown solid (79 mg, 0.11 mmol, 44% combined yield). All isomers, IR v_{max} /cm⁻¹ (film): 3061, 2916, 1438, 1398, 1260, 1152, 1108, 1030, 908, 722, 636; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.90 (1H, d, *J* = 6.3 Hz), 8.11 (1H, d, *J* = 3.8 Hz), 7.86–6.71 (16H, m), 4.80 (2H, s), 3.91 (9H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 165.2 (d, *J* = 2.7 Hz), 153.7 (d, *J* = 9.1 Hz), 153.5 (d, *J* = 15.1 Hz), 148.9, 142.5, 137.3, 136.1 (d, *J* = 12.2 Hz), 133.2 (d, *J* = 5.6 Hz), 132.2 (d, *J* = 81.7 Hz), 129.2 (d, *J* = 11.0 Hz), 124.0 (br), 120.7 (q, *J* = 321.0 Hz), 119.1, 116.4 (d, *J* = 14.4 Hz), 106.1 (d, *J* = 98.8 Hz), 65.3 (d, *J* = 2.5 Hz), 56.0; All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.19; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.17; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 19.56, 19.42, 19.20; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 571.2, C₂₈H₂₂N₂OP⁺ requires 571.2.


(3–(4–(((1–(ethoxycarbonyl)piperidin–4–yl)oxy)(pyridin–2–yl)methyl)phenyl)pyridin–4– yl)triphenylphosphonium trifluoromethanesulfonate (2d)

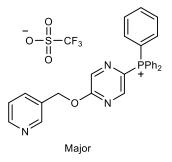
5.9:2.2:1 (Major:Unidentified phosphonium isomer) Mixture of Isomers

Prepared according to general procedure A (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture) using ethyl 4-(pyridin-2-yl(4-(pyridin-3yl)phenyl)methoxy)piperidine-1-carboxylate (42 mg, 0.10 mmol), Tf₂O (17 μ L, 0.10 mmol), PPh₃ (29 mg, 0.11 mmol), DBU (15 µL, 0.10 mmol), 1,3,5-trimethoxybenzene as an internal standard (17 mg, 0.10 mmol), and CH_2Cl_2 (1 mL) to afford the title compound (combined ¹H NMR) yield: 73%). Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.99-8.89 (1H, m), 8.75 (1H, d, J =6.8 Hz), 8.64 (1H, d, J = 5.3 Hz), 8.09-7.14 (19H, m), 7.09 (2H, d, J = 8.0 Hz), 6.71 (2H, d, J = 8.1 Hz), 5.59 (1H, s), 4.19-4.03 (2H, m), 3.84-3.66 (2H, m), 3.60-3.37 (1H, m), 3.29-3.01 (2H, m), 1.92-1.51 (4H, m), 1.33-1.15 (3H, m); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ: 21.45; Other phosphonium isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 22.61 (d, J = 19.9 Hz); m/z LRMS (ESI + APCI) found $[M - OTf]^+$ 678.3, $C_{43}H_{41}N_3O_3P^+$ requires 678.3.


(2-(((1-(ethoxycarbonyl)piperidin-4-yl)oxy)(4-(pyridin-3-yl)phenyl)methyl)pyridin-4yl)triphenylphosphonium trifluoromethanesulfonate (2d)

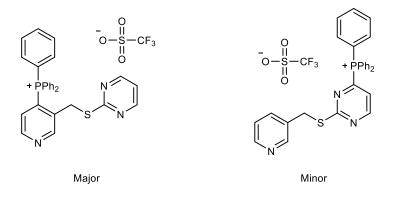
>20:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure B using acetyl chloride (14 μ L, 0.20 mmol), silver trifluoromethanesulfonate (51 mg, 0.40 mmol), ethyl 4-(pyridin-2-yl(4-(pyridin-3vl)phenvl)methoxy)piperidine-1-carboxylate (83 mg, 0.20 mmol), Tf₂O (34 µL, 0.20 mmol), PPh₃ (58 mg, 0.22 mmol), DBU (30 µL, 0.20 mmol) and CH₂Cl₂ (2.0 mL). After the purification procedure, the title compound was isolated as an off-white solid (62 mg, 0.075 mmol, 37% combined yield). All isomers, IR v_{max}/cm⁻¹ (film): 3009, 2930, 1685, 1437, 1264, 1225, 1108, 1030, 747; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.94 (1H, app t, J = 5.0 Hz), 8.82 (1H, br), 8.59 (1H, br), 7.99–7.43 (22H, m), 7.38 (1H, br s), 5.81 (1H, s), 4.13 (2H, q, J = 7.1 Hz), 3.83–3.62 (1H, m), 3.60–3.38 (2H, m), 3.31–3.10 (2H, m), 1.98–1.36 (4H, m), 1.26 (3H, t, J = 7.0 Hz); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 164.5 (d, J = 9.6 Hz), 155.4, 151.1 (d, J =10.5 Hz), 148.4, 147.9, 140.0, 137.6, 136.2 (d, J = 2.9 Hz), 135.9, 134.4 (d, J = 10.5 Hz), 130.9 (d, J = 13.1 Hz), 130.5, 129.2 (d, J = 83.8 Hz), 127.8, 127.3, 125.8 (d, J = 8.1 Hz), 123.9-123.5(2C, m), 120.8 (q, J = 321.2 Hz), 115.7 (d, J = 89.4 Hz), 80.2, 72.6, 61.2, 40.6 (d, J = 5.6 Hz), 30.7 (d, J = 103.8 Hz), 14.6; All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.16; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ: 22.69; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ: 21.46; *m/z* LRMS (ESI + APCI) found $[M - OTf]^+$ 678.3, C₄₃H₄₁N₃O₃P⁺ requires 678.3.


Triphenyl(3–((pyrazin–2–yloxy)methyl)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2e)

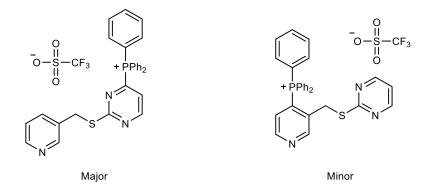
10:1.4:1.2:1.2:1 (Major: Unidentified phosphonium isomer) Mixture of Isomers

Prepared according to general procedure A (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture) using 2–(pyridin–3–ylmethoxy)pyrazine (19 mg, 0.10 mmol), Tf₂O (17 μ L, 0.10 mmol), PPh₃ (29 mg, 0.11 mmol), DBU (15 μ L, 0.10 mmol), 1,3,5-trimethoxybenzene as an internal standard (17 mg, 0.10 mmol), and CH₂Cl₂ (1 mL) to afford the title compound (combined ¹H NMR yield: 58%). Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.05 (1H, d, *J* = 6.6 Hz), 8.90 (1H, app t, *J* = 5.6 Hz), 8.06-8.00 (1H, m), 7.86-7.30 (18H, m), 4.91 (2H, s); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 22.71; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 21.25, 21.03, 17.74, 16.72; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 448.3, C₂₈H₂₃N₃OP ⁺ requires 448.2.


Triphenyl(5–(pyridin–3–ylmethoxy)pyrazin–2–yl)phosphonium trifluoromethanesulfonate (2e)

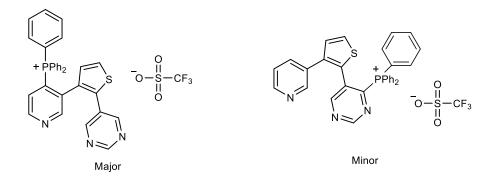
>20:1:1 (Major:Unidentified phosphonium isomer) Mixture of Isomers

Prepared according to general procedure B using acetyl chloride (29 µL, 0.40 mmol), silver trifluoromethanesulfonate (103 mg, 0.40 mmol), 2–(pyridin–3–ylmethoxy)pyrazine (75 mg, 0.40 mmol), Tf₂O (68 µL, 0.40 mmol), PPh₃ (115 mg, 0.44 mmol), DBU (60 µL, 0.40 mmol) and EtOAc (4.0 mL). After the purification procedure, the title compound was isolated as an off white solid (120 mg, 0.20 mmol, 50% combined yield). All isomers, IR v_{max}/cm^{-1} (film): 3061, 3011, 1525, 1439, 1262, 1152, 1030, 748, 636; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.66 (1H, dd, *J* = 4.1, 2.4 Hz), 8.57 (1H, dd, *J* = 1.6, 1.2 Hz), 8.48, (1H, dd, *J* = 2.4, 1.4 Hz), 8.11 (1H, d, *J* = 1.4 Hz), 7.87–7.50 (15H, m), 7.32 (1H, dt, 7.8, 1.6 Hz), 7.16 (1H, dd, *J* = 7.7, 4.8 Hz), 5.38 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 161.9 (d, *J* = 17.8 Hz), 149.8 (2C), 147.7 (d, *J* = 3.4 Hz), 139.8 (d, *J* = 15.1 Hz), 136.8, 135.3 (d, *J* = 3.0 Hz), 134.2 (d, *J* = 10.5 Hz), 130.2 (d, *J* = 13.3 Hz), 129.6, 127.0 (d, *J* = 121.9 Hz), 123.4, 120.7 (q, *J* = 321.2 Hz), 116.3 (d, *J* = 90.8 Hz), 67.4; All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.12; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.04; *m*/z LRMS (ESI + APCI) found [M – OTf]⁺ 448.2, C₂₈H₂₃N₃OP ⁺ requires 448.2.


Triphenyl(3–((pyrimidin–2–ylthio)methyl)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2f)

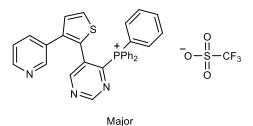
>20:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure D using 2–((pyridin–3–ylmethyl)thio)pyrimidine (102 mg, 0.50 mmol), Tf₂O (85 µL, 0.50 mmol), PPh₃ (131 mg, 0.50 mmol), DBU (75 µL, 0.50 mmol) and CH₂Cl₂ (5.0 mL). After the purification procedure, the title compound was isolated as a white solid (254 mg, 0.41 mmol, 83% combined yield). mp 75–81 °C; Both isomers, IR v_{max}/cm^{-1} (film): 3061, 2962, 1584, 1551, 1380, 1259, 1151, 1106, 1029, 912, 721, 689; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.18 (1H, d, *J* = 6.8 Hz), 8.84 (1H, app t, *J* = 4.4 Hz), 8.45 (2H, d, *J* = 4.8 Hz), 7.98–7.62 (15H, m), 7.17 (1H, dd, *J* = 15.2, 5.0 Hz), 7.03 (1H, t, *J* = 4.8 Hz), 4.18 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 169.1, 157.5, 153.7 (d, *J* = 7.4 Hz), 150.3 (d, *J* = 10.4 Hz), 137.0 (d, *J* = 5.9 Hz), 136.1 (d, *J* = 3.0 Hz), 134.2 (d, *J* = 10.6 Hz), 131.1 (d, *J* = 13.1 Hz), 128.0 (d, *J* = 9.7 Hz), 126.1 (d, *J* = 82.6 Hz), 120.7 (q, *J* = 321.2 Hz), 117.5, 115.8 (d, *J* = 88.6 Hz), 31.7 (d, *J* = 5.1 Hz); Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.10; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.42; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 464.2, C₂₈H₂₃N₃PS⁺ requires 464.1.


Triphenyl(2–((pyridin–3–ylmethyl)thio)pyrimidin–4–yl)phosphonium trifluoromethanesulfonate (2f)

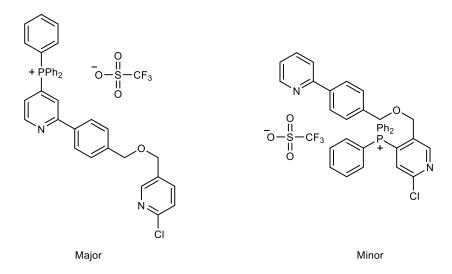
>20:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure B using acetyl chloride (29 µL, 0.40 mmol), silver trifluoromethanesulfonate (103 mg, 0.40 mmol), 2–((pyridin–3–ylmethyl)thio)pyrimidine (81 mg, 0.40 mmol), Tf₂O (68 µL, 0.40 mmol), PPh₃ (115 mg, 0.44 mmol), DBU (60 µL, 0.40 mmol) and EtOAc (4.0 mL). After the purification procedure, the title compound was isolated as a white solid (184 mg, 0.30 mmol, 75% yield). All isomers, IR v_{max}/cm^{-1} (film): 3061, 3030, 2985, 1528, 1438, 1260, 1149, 1009, 1029, 911, 724; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.04 (1H, dd, *J* = 7.6, 5.0 Hz), 8.54–8.35 (2H, m), 8.03–7.57 (17H, m), 7.34–7.11 (1H, m), 4.29 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 173.7 (d, *J* = 17.6 Hz), 160.6 (d, *J* = 7.4 Hz), 154.6 (d, *J* = 111.5 Hz), 149.6, 148.6, 136.2, 136.1 (d, *J* = 2.9 Hz), 134.6 (d, *J* = 10.3 Hz), 132.2, 130.7 (d, *J* = 13.1 Hz), 123.4, 123.1 (d, *J* = 20.3 Hz), 120.7 (q, *J* = 321.1 Hz), 114.9 (d, *J* = 88.9 Hz), 32.5; All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.18; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 16.66; *m*/z LRMS (ESI + APCI) found [M – OTf]⁺ 464.2, C₂₈H₂₃N₃PS⁺ requires 464.1.


Triphenyl(3–(2–(pyrimidin–5–yl)thiophen–3–yl)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2g)

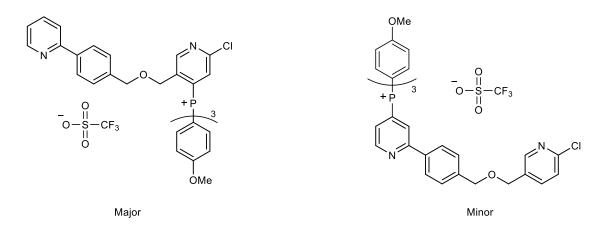
5.6:3.1:1 (Major:Unidentified phosphonium isomer:Minor) Mixture of Isomers

Prepared according to general procedure A (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture) using 5–(3–(pyridin–3–yl)thiophen–2–yl)pyrimidine (72 mg, 0.30 mmol), Tf₂O (51 μ L, 0.30 mmol), PPh₃ (87 mg, 0.33 mmol), DBU (45 μ L, 0.30 mmol), 1,3,5-trimethoxybenzene as an internal standard (25 mg, 0.15 mmol), and CH₂Cl₂ (3 mL) to afford the title compound (combined ¹H NMR yield: 53%). Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.98-8.90 (2H, m), 8.70 (1H, d, *J* = 6.7 Hz), 8.09 (2H, s), 7.85-7.29 (16H, m), 7.10 (1H, d, *J* = 5.2 Hz), 6.57 (1H, d, *J* = 5.2 Hz); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.75; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 23.21, 20.73, 18.67; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 500.1, C₃₁H₂₃N₃PS⁺ requires 500.1.


Triphenyl(5–(3–(pyridin–3–yl)thiophen–2–yl)pyrimidin–4–yl)phosphonium trifluoromethanesulfonate (2g)

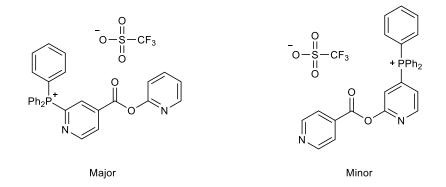
>20:1 (Major:2–position phosphonium isomer) Mixture of Isomers

Prepared according to general procedure B using acetyl chloride (11 µL, 0.15 mmol), silver trifluoromethanesulfonate (39 mg, 0.15 mmol), 5–(3–(pyridin–3–yl)thiophen–2–yl)pyrimidine (36 mg, 0.15 mmol), Tf₂O (25 µL, 0.15 mmol), PPh₃ (43 mg, 0.17 mmol), DBU (22 µL, 0.15 mmol) and CH₂Cl₂ (1.5 mL). After the purification procedure, the title compound was isolated as a yellow/orange solid (41 mg, 0.063 mmol, 42% combined yield). All isomers, IR v_{max}/cm⁻¹ (film): 3062, 1438, 1261, 1153, 1106, 1030, 912, 720, 636; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.51 (1H, s), 8.97 (1H, d, *J* = 8.7 Hz), 8.45 (1H, br s), 8.19–7.15 (19H, m), 6.98 (1H, d, *J* = 5.2 Hz); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 163.2 (d, *J* = 5.1 Hz), 158.0 (d, *J* = 16.7 Hz), 152.6 (d, *J* = 113.3 Hz), 146.7 (2C, m), 138.8–138.2 (2C, m), 135.7, 135.5 (d, *J* = 3.1 Hz), 134.5 (d, *J* = 10.2 Hz), 132.0 (d, *J* = 9.9 Hz), 130.8, 130.3 (d, *J* = 11.9 Hz), 129.4, 128.4 (d, *J* = 11.9 Hz), 127.8, 120.7 (q, *J* = 320.5 Hz), 116.1 (d, *J* = 88.6 Hz); All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.11; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 16.02; *m*/z LRMS (ESI + APCI) found [M – OTf]⁺ 500.1, C₃₁H₂₃N₃PS⁺ requires 500.1.


(2–(4–(((6–chloropyridin–3–yl)methoxy)methyl)phenyl)pyridin–4– yl)triphenylphosphonium trifluoromethanesulfonate (2h)

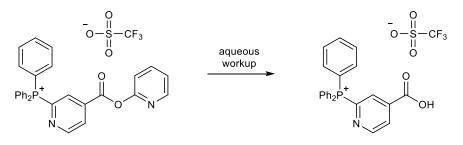
19:1:1 (Major:Minor:2-position phosphonium isomer) Mixture of Isomers

2-chloro-5-(((4-(pyridin-2-Prepared according to general procedure А using yl)benzyl)oxy)methyl)pyridine (466 µL, 1.50 mmol), Tf₂O (253 µL, 1.50 mmol), PPh₃ (433 mg, 1.65 mmol), DBU (227 µL, 1.50 mmol) and CH₂Cl₂ (15 mL). After the purification procedure, the title compound was isolated as a white solid (957 mg, 1.33 mmol, 88% combined yield). All isomers, IR v_{max}/cm⁻¹ (film): 3060, 2851, 1584, 1438, 1260, 1148, 1107, 1029, 688; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.07 (1H, app t, J = 5.1 Hz), 8.33 (1H, d, J = 2.2 Hz), 8.06–7.62 (19H, m), 7.60–7.41 (3H, m), 7.31 (1H, d, J = 4.1 Hz), 4.62 (2H, s), 4.54 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 158.9 (d, J = 10.2 Hz), 151.7 (d, J = 10.6 Hz), 150.5, 148.7, 140.2, 138.3, 136.4 (d, J = 1.5 Hz), 136.2 (d, J = 3.0 Hz), 134.4 (d, J = 10.4 Hz), 132.5, 131.0 (d, J = 10.4 Hz), 132.5, 13.1 Hz), 129.3 (d, J = 84.1 Hz), 128.3, 127.3, 125.3 (d, J = 8.2 Hz), 124.0, 123.2 (d, J = 8.6 Hz), 120.7 (q, J = 321.2 Hz), 115.6 (d, J = 89.6 Hz), 71.9, 68.7; All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ: -78.10; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ: 22.83; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ: 23.79, 15.38; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 571.2, C₃₆H₂₉ClN₂OP⁺ requires 571.2.


(2-chloro-5-(((4-(pyridin-2-yl)benzyl)oxy)methyl)pyridin-4-yl)tris(4methoxyphenyl)phosphonium trifluoromethanesulfonate (2h)

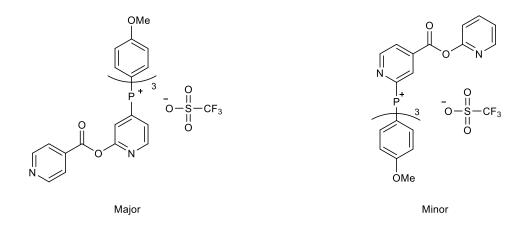
>20:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure B (except that the phosphine was added as a solution in CH₂Cl₂ (4.5 mL) dropwise over 30 minutes) using acetyl chloride (43 µL, 0.60 mmol), silver trifluoromethanesulfonate (154)0.60 mmol), 2-chloro-5-(((4-(pyridin-2mg, yl)benzyl)oxy)methyl)pyridine (186 mg, 0.60 mmol), Tf₂O (101 µL, 0.60 mmol), tris(4methoxyphenyl)phosphine (233 mg, 0.66 mmol), DBU (91 µL, 0.60 mmol) and CH₂Cl₂ (6.0 mL). After the purification procedure, the title compound was isolated as a grey solid (308 mg, 0.38 mmol, 63%). mp 81-85 °C; Both isomers, IR v_{max}/cm⁻¹ (film): 3093, 3010, 2975, 2944, 2843, 1591, 1262, 1106, 1018, 636; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.83 (1H, d, J = 6.2Hz), 8.67 (1H, d, J = 4.4 Hz), 7.86 (2H, d, J = 8.2 Hz), 7.82–7.70 (2H, m), 7.59–7.38 (6H, m), 7.31-7.11 (7H, m), 7.09-6.96 (3H, m), 4.10 (2H, s), 4.06 (2H, s), 3.87 (9H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 165.1 (d, J = 2.9 Hz), 156.3, 152.7 (d, J = 15.3 Hz), 152.7 (d, J = 9.3Hz), 149.4, 138.9, 136.8, 136.5, 135.9 (d, J = 12.2 Hz), 135.2 (d, J = 5.9 Hz), 131.5 (d, J = 82.2 Hz), 128.8 (d, J = 11.2 Hz), 128.3, 126.6, 122.2, 120.8 (q, J = 321.4 Hz), 120.3, 116.4 (d, J = 14.3 Hz), 106.5 (d, J = 98.9 Hz), 72.9, 67.5 (d, J = 3.6 Hz), 55.9; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.11; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 20.60; *m/z* LRMS (ESI + APCI) found $[M - OTf]^+$ 661.3, C₃₉H₃₅ClN₂O₄P⁺ requires 661.2.


Triphenyl(4–((pyridin–2–yloxy)carbonyl)pyridin–2–yl)phosphonium trifluoromethanesulfonate (2i)

>20:1 Mixture of Isomers

Prepared according to general procedure A (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture)[§] using pyridin–2–yl isonicotinate (52 mg, 0.26 mmol), Tf₂O (44 μ L, 0.26 mmol), triphenylphosphine (75 mg, 0.28 mmol), DBU (39 μ L, 0.26 mmol), 1,3,5-trimethoxybenzene as an internal standard (44 mg, 0.26 mmol), and CH₂Cl₂ (2.6 mL) to afford the title compound (combined ¹H NMR yield: 68%). ¹H NMR (400 MHz, CDCl₃) δ : 9.23 (1H, d *J* = 4.8 Hz), 8.50-8.44 (1H, m), 8.39 (1H, dd, *J* = 4.9, 1.6 Hz), 8.36 (1H, d, *J* = 6.3 Hz), 7.97-7.60 (16H, m), 7.37 (1H, d, *J* = 8.2 Hz), 7.30 (1H, dd, *J* = 7.0, 5.3 Hz); Major isomer, ³¹P NMR (162


[§] ¹H NMR and ³¹P NMR were run on the crude reaction mixture due to partial hydrolysis of the product during the aqueous workup.

 $\label{eq:mz} \begin{array}{l} \mbox{detected by LCMS} \\ \mbox{m/z LRMS (ESI + APCI) found [M - OTf]+ 384.1, $C_{24}H_{19}NO_2P^{+}$ requires 384.1 \\ \end{array}$

MHz, CDCl₃) δ : 16.25; Hydrolyzed product, ³¹P NMR (162 MHz, CDCl₃) δ : 15.73; *m/z* LRMS (ESI + APCI) found [M - OTf]⁺ 461.1, C₂₉H₂₂N₂O₂P⁺ requires 461.1.

(2–(isonicotinoyloxy)pyridin–4–yl)tris(4–methoxyphenyl)phosphonium trifluoromethanesulfonate (2i)

>20:1 (Major:Minor) Mixture of Isomers

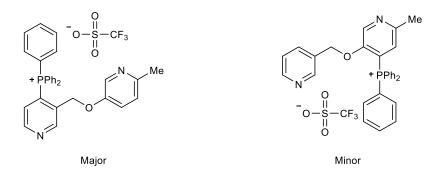
Prepared according to general procedure B using Pyridin–2–yl isonicotinate (50 mg, 0.25 mmol), silver trifluoromethanesulfonate (64 mg, 0.25 mmol), acetyl chloride (18 μ L, 0.25 mmol) Tf₂O (42 μ L, 0.25 mmol), tris(4–methoxyphenyl)phosphane (97 mg, 0.28 mmol), DBU (37 μ L, 0.25 mmol) and EtOAc (2.5 mL). After the purification procedure, the title compound was isolated as a brown solid (76 mg, 0.11 mmol, 43% yield). mp 70–78 °C; Both isomers, IR ν_{max}/cm^{-1} (film): 3095, 2974, 2948, 1754, 1664, 1592, 1503, 1298, 1111, 1030; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.82–8.79 (3H, m), 7.98 (2H, d, *J* = 5.8 Hz), 7.61–7.22 (14H, m), 3.92 (9H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 165.5 (d, *J* = 2.9 Hz), 163.0, 158.2 (d, *J* = 15.3 Hz), 151.0 (d, *J* = 12.1 Hz), 150.7, 136.3 (d, *J* = 12.3 Hz), 135.4, 134.9 (d, *J* = 85.2 Hz), 125.8 (d, *J* = 8.5 Hz), 123.2, 120.7 (q, *J* = 321.0 Hz), 120.2 (d, *J* = 9.9 Hz), 116.7 (d, *J* = 14.3 Hz), 105.7 (d, *J* = 98.9 Hz), 56.0; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.17; Major isomer, ³¹P NMR

(162 MHz, CDCl₃) δ : 20.54; *m*/z LRMS (ESI + APCI) found [M - OTf]⁺ 551.3, C₃₂H₂₈N₂O₅P⁺ requires 551.2.

Triphenyl(3–(pyridin–3–ylmethoxy)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2j)

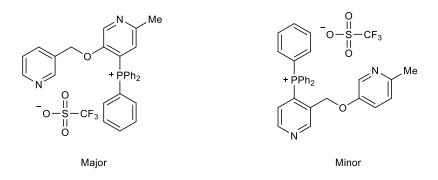
2.9:2.2:2.8 (Major:Minor:mix of 2 phosphonium isomers) Mixture of Isomers

Prepared according to general procedure A (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture) using 3–(pyridin–3–ylmethoxy)pyridine (26 mg, 0.16 mmol), Tf₂O (26 μ L, 0.16 mmol), PPh₃ (50 mg, 0.18 mmol), DBU (23 μ L, 0.16 mmol), 1,3,5-trimethoxybenzene as an internal standard (27 mg, 0.16 mmol), and CH₂Cl₂ (1.6mL) to afford the title compound (combined ¹H NMR yield: 77%). Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.83 (1H, d, J = 6.7 Hz), 8.50 (1H, app t, J = 4.3 Hz), 8.34 (1H, d, J = 2.6 Hz), 7.93-7.36 (16H, m), 7.36-6.88 (3H, m), 5.08 (2H, s); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.36; Other phosphonium isomers isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 23.84, 21.11, 20.90; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 447.2, C₂₉H₂₄N₂OP⁺ requires 447.2.

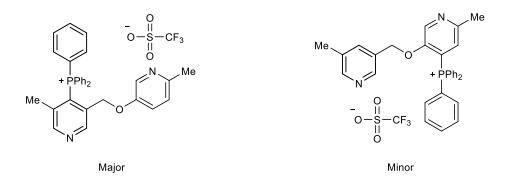

Triphenyl(3–(pyridin–3–ylmethoxy)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2j)

>20:1 (Major:Minor) Mixture of Isomers

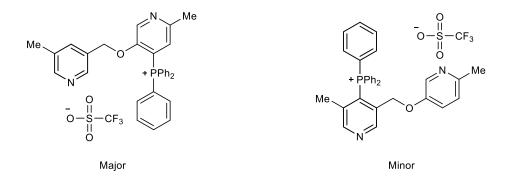
Prepared according to general procedure C (except that the phosphine addition and stirring was conducted at -30 °C instead of -78 °C) using 3–(pyridin–3–ylmethoxy)pyridine (194 mg, 1.04 mmol), Tf₂O (352 µL, 2.09 mmol), PPh₃ (548 mg, 2.09 mmol), NEt₃ (291 µL, 2.09 mmol) and CH₂Cl₂ (10.4 mL). After the purification procedure, the title compound was isolated as a purple amorphous solid (408 mg, 4.08 mmol, 69% yield); Both isomers, IR v_{max}/cm⁻¹ (film): 3058, 1572, 1543, 1438, 1413, 1260, 1190, 1149,1029; Major isomer, ¹H NMR (400 MHz, CDCl₃) & 8.90 (1H, app d, *J* = 6.7 Hz), 8.59 (1H, app t, *J* = 4.4 Hz), 8.43 (1H, dd, *J* = 3.5, 1.2 Hz), 7.87–7.55 (16H, m), 7.30–7.28 (1H, m), 7.09 (1H, d, *J* = 4.9 Hz), 7.06 (1H, dd, *J* = 5.1, 4.8 Hz), 5.25 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) & 154.6, 149.4, 148.8, 143.7 (d, *J* = 11.0 Hz), 136.9 (d, *J* = 4.4 Hz), 135.9, 135.3 (d, *J* = 3.0 Hz), 133.5 (d, *J* = 10.9 Hz), 130.3 (d, *J* = 13.3 Hz), 129.1, 127.6 (d, *J* = 7.2 Hz), 123.1, 120.5 (q, *J* = 321.1 Hz), 115.9 (d, *J* = 91.5 Hz), 114.6 (d, *J* = 87.0 Hz), 69.3; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.15; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.42; *m*/*z* LRMS (ESI + APCI) found [M – OTf]⁺ 447.2, C₂₉H₂₄N₂OP⁺ requires 447.2.


(3–(((6–methylpyridin–3–yl)oxy)methyl)pyridin–4–yl)triphenylphosphonium trifluoromethanesulfonate (2k)

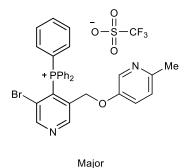
>20:1 (Major:Minor) Mixture of Isomers


Prepared according to general procedure A using 2–methyl–5–(pyridin–3–ylmethoxy)pyridine (111 mg, 0.55 mmol), Tf₂O (94 µL, 0.55 mmol), PPh₃ (160 mg, 0.61 mmol), DBU (83 µL, 0.55 mmol) and CH₂Cl₂ (5.6 mL). After the purification procedure, the title compound was isolated as a white solid (226 mg, 0.37 mmol, 68% yield). mp 150–160 °C; Both isomers, IR v_{max}/cm^{-1} (film):3059, 1586, 1573, 1484, 1438, 1259, 1153, 1105, 1029; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.11 (1H, app d, *J* = 6.4 Hz), 8.92 (1H, app t, *J* = 4.2 Hz), 7.83–7.65 (15H, m), 7.30–7.25 (1H, m), 6.94 (1H, d, *J* = 2.5 Hz), 6.84 (1H, d, *J* = 8.6 Hz), 6.46 (1H, dd, *J* = 8.5, 2.5 Hz), 4.74 (2H, s), 2.36 (3H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 152.7 (d, *J* = 8.1 Hz), 151.9 (d, *J* = 10.8 Hz), 151.5, 150.3, 136.1, 135.7 (d, *J* = 3.1 Hz), 134.9 (d, *J* = 5.1 Hz), 134.2 (d, *J* = 10.2 Hz), 130.6 (d, *J* = 13.0 Hz), 129.2 (d, *J* = 9.7 Hz), 126.1 (d, *J* = 82.0 Hz), 123.4, 120.7 (q, *J* = 320.9 Hz), 120.3, 116.6 (d, *J* = 90.1 Hz), 66.2, 23.2; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.18; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 23.99; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 461.2, C₃₀H₂₆N₂OP⁺ requires 461.2

(2-methyl-5-(pyridin-3-ylmethoxy)pyridin-4-yl)triphenylphosphonium trifluoromethanesulfonate (2k)

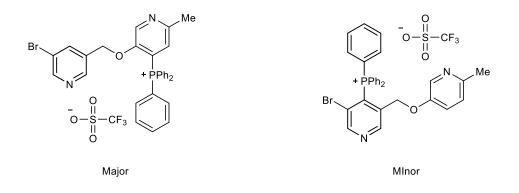

13:1 (Major: Minor) Mixture of Isomers

Prepared according to general procedure C (except the phosphine was stirred for 1 hour instead of 30 minutes) using 2–methyl–5–(pyridin–3–ylmethoxy)pyridine (41 mg, 0.21 mmol), Tf₂O (70 µL, 0.41 mmol), PPh₃ (108 mg, 0.41 mmol), *N*,*N*–dimethylcyclohexylamine (62 µL, 0.41 mmol) and CH₂Cl₂ (2.1 mL). After the purification procedure, the title compound was isolated as a yellow solid (69 mg, 0.11 mmol, 55% yield); Both isomers, IR v_{max}/cm⁻¹ (film): 3058, 1579, 1438, 1351, 1263, 1106, 908; Major isomer, ¹H NMR (400 MHz, CDCl₃) & 8.77 (1H, app d, *J* = 6.9 Hz), 8.42 (1H, s), 7.86–7.82 (4H, m), 7.73–7.68 (6H, m), 7.58–7.53 (6H, m), 7.24–7.22 (1H, m), 7.08 (1H, dd, *J* = 7.6, 4.8 Hz), 6.82 (1H, d, *J* = 15.1 Hz), 5.18 (2H, s), 2.53 (3H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) & 153.3 (d, *J* = 10.9 Hz), 152.7, 149.7, 148.9, 136.1 (d, *J* = 5.0 Hz), 136.0, 135.3 (d, *J* = 3.0 Hz), 133.8 (d, *J* = 10.7 Hz), 130.6 (d, *J* = 13.2 Hz), 129.4, 127.1 (d, *J* = 6.9 Hz), 123.3, 120.8 (q, *J* = 321.4 Hz), 116.2 (d, *J* = 91.4 Hz), 115.3 (d, *J* = 86.4 Hz), 69.5, 23.7; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.13; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.34; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 23.91; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 461.3, C₃₀H₂₆N₂OP⁺ requires 461.2.


20:1:2.9 (Major: Minor: Unidentified phosphonium isomers) Mixture of Isomers

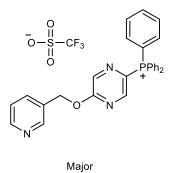
Prepared according to general procedure A (except that the Tf₂O stirred for 1 hour and phosphine stirred for 2 hours) using 2–methyl–5–((5–methylpyridin–3–yl)methoxy)pyridine (107 mg, 0.50 mmol), Tf₂O (85 µL, 0.50 mmol), PPh₃ (145 mg, 0.55 mmol), DBU (75 µL, 0.50 mmol) and CH₂Cl₂ (5.0 mL). After the purification procedure, the title compound was isolated as brown oil (169 mg, 0.27 mmol, 54% yield). Both isomers, IR v_{max} /cm⁻¹ (film): 3058, 2958, 2923, 1572, 1482, 1438, 1261, 1030; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.84 (1H, app d, *J* = 6.1 Hz), 8.74 (1H, app d, *J* = 6.3 Hz), 7.86–7.60 (15H, m), 7.44 (1H, d, *J* = 3.0 Hz), 6.89 (1H, d, *J* = 8.5 Hz), 6.49 (1H, dd, *J* = 8.5, 3.0 Hz), 4.54 (2H, s), 2.42 (3H, s), 1.85 (3H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 154.6 (d, *J* = 8.6 Hz), 152.0 (d, *J* = 8.4 Hz), 151.1, 150.6, 138.0 (d, *J* = 7.2 Hz), 136.1, 136.0, 135.2 (d, *J* = 3.0 Hz), 133.9 (d, *J* = 10.3 Hz), 130.5 (d, *J* = 13.1 Hz), 126.7 (d, *J* = 80.4 Hz), 123.2, 120.6, 120.6 (q, *J* = 320.9 Hz), 118.1 (d, *J* = 87.0 Hz), 65.7 (d, *J* = 4.4 Hz), 23.0, 21.4 (d, *J* = 5.6 Hz); Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.20; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 17.56; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 22.39, 21.30, 16.43; *m*/z LRMS (ESI + APCI) found [M – OTf]⁺ 475.3, C₃₁H₂₈N₂OP⁺ requires 475.2.

>20:1 (Major:Minor) Mixture of Isomers


Prepared according to general procedure C (except that 3 equivalents of NEt₃ were used instead of 1 equiv) using 2–methyl–5–((5–methylpyridin–3–yl)methoxy)pyridine (107 mg, 0.50 mmol), Tf₂O (169 µL, 1.00 mmol), PPh₃ (262 mg, 1.00 mmol), NEt₃ (209 µL, 1.50 mmol) and CH₂Cl₂ (5.0 mL). After the purification procedure, the title compound was isolated as a brown solid (203 mg, 0.33 mmol, 65% yield). mp 65–75 °C; Both isomers, IR v_{max}/cm^{-1} (film): 3058, 3026, 2924, 1584, 1438, 1260, 1149, 1029; Major isomer, ¹H NMR (400 MHz, CDCl₃) & 8.71 (1H, app d, *J* = 6.9 Hz), 8.26 (1H, s), 7.86–7.55 (16H, m), 6.97 (1H, s), 6.86 (1H, d, *J* = 15.1 Hz), 5.09 (2H, s), 2.54 (3H, s), 2.17 (3H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) & 153.3 (d, *J* = 11.1 Hz), 152.7, 150.3, 146.0, 136.2, 136.0 (d, *J* = 5.0 Hz), 135.4 (d, *J* = 3.1 Hz), 133.8 (d, *J* = 10.9 Hz), 132.8, 130.5 (d, *J* = 13.2 Hz), 128.8, 127.2 (d, *J* = 7.2 Hz), 120.7 (q, *J* = 321.7 Hz), 116.3 (d, *J* = 91.3 Hz), 115.3 (d, *J* = 86.6 Hz), 69.4, 23.7, 18.0; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) &: – 78.20; Major isomer, ³¹P NMR (162 MHz, CDCl₃) &: 21.28; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 475.2, C₃₁H₂₈N₂OP ⁺ requires 475.2.

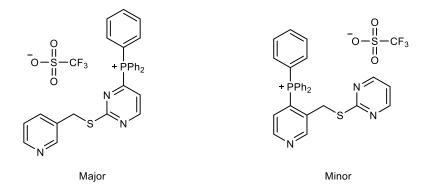
Mixture of Isomers

Prepared according to general procedure A (except that yield was not determined due to a mixture of phosphonium isomers) using 5–((5–bromopyridin–3–yl)methoxy)–2–methylpyridine (33 mg, 0.12 mmol), Tf₂O (20 μ L, 0.12 mmol), PPh₃ (34 mg, 0.13 mmol), DBU (18 μ L, 0.12 mmol), and CH₂Cl₂ (1.2 mL) to afford the title compound. Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 22.13; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 22.26, 21.31, 20.96; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 539.1, C₃₀H₂₅BrN₂OP⁺ requires 539.1.


(5–((5–bromopyridin–3–yl)methoxy)–2–methylpyridin–4–yl)triphenylphosphonium trifluoromethanesulfonate (2m)

Prepared according to general procedure C using 5–((5–bromopyridin–3–yl)methoxy)–2– methylpyridine (191 mg, 0.68 mmol), Tf₂O (231 µL, 1.37 mmol), PPh₃ (359 mg, 1.37 mmol), NEt₃ (191 µL, 1.37 mmol) and CH₂Cl₂ (6.8 mL). After the purification procedure, the title compound was isolated as a brown solid (261 mg, 0.38 mmol, 56% yield). mp 68–75 °C; Both isomers, IR v_{max}/cm^{-1} (film): 3058, 2923, 1585, 1484, 1351, 1260, 1106, 1029; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.77 (1H, app d, *J* = 7.0 Hz), 8.46 (1H, d, *J* = 2.1 Hz), 7.95 (1H, s), 787–7.55 (15H, m), 7.21 (1H, t, *J* = 1.8 Hz), 6.82 (1H, d, *J* = 15.2 Hz), 5.23 (2H, s), 2.53 (3H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 152.2 (d, *J* = 11.1 Hz), 152.4, 150.5, 147.0, 138.0, 136.2 (d, *J* = 4.8 Hz), 135.4 (d, *J* = 3.0 Hz), 133.6 (d, *J* = 10.8 Hz), 131.3, 130.5 (d, *J* = 13.4 Hz), 126.9 (d, *J* = 7.0 Hz), 120.6 (q, *J* = 321.1 Hz), 120.0, 116.1 (d, *J* = 91.3 Hz), 115.0 (d, *J* = 86.5 Hz), 68.3, 23.6; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.20; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.31; *m*/z LRMS (ESI + APCI) found [M – OTf]⁺ 539.1, C₃₀H₂₅BrN₂OP⁺ requires 539.1.

Triphenyl(5–(pyridin–3–ylmethoxy)pyrazin–2–yl)phosphonium trifluoromethanesulfonate (2e)

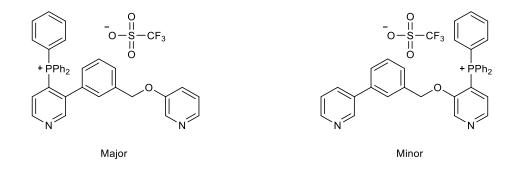


>20:1 (Major:2–position phosphonium isomer) Mixture of Isomers

Prepared according to general procedure C (except that the reaction mixture was warmed to -30 °C prior to adding PPh₃ and remained at -30 °C for 30 minutes before cooling down to -78 °C for NEt₃ addition) using 2–(pyridin–3–ylmethoxy)pyrazine (75 mg, 0.40 mmol), Tf₂O (135 µL, 0.80 mmol), PPh₃ (210 mg, 0.80 mmol), NEt₃ (112 µL, 0.80 mmol) and EtOAc (4.0 mL). After the

purification procedure, the title compound was isolated as a white solid (176 mg, 0.29 mmol, 74% combined yield). All isomers, IR v_{max}/cm^{-1} (film): 3061, 2954, 1553, 1525, 1439, 1260, 1152, 1030, 723, 636; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.68 (1H, dd, *J* = 4.1, 2.4 Hz), 8.58 (1H, m), 8.49 (1H, d, *J* = 3.7 Hz), 8.10 (1H, s), 7.94–7.49 (15H, m), 7.42 (1H, d, *J* = 7.8 Hz), 7.17 (1H, dd, *J* = 7.7, 4.9 Hz), 5.42 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 162.0 (d, *J* = 17.9 Hz), 149.8 (2C), 147.7 (d, *J* = 3.4 Hz), 139.8 (d, *J* = 15.0 Hz), 136.8, 135.3 (d, *J* = 3.1 Hz), 134.2 (d, *J* = 10.6 Hz), 130.2 (d, *J* = 13.2 Hz), 130.0, 127.0 (d, *J* = 122.0 Hz), 123.4, 120.7 (q, *J* = 321.1 Hz), 116.3 (d, *J* = 90.8 Hz), 67.4; All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.12; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 17.22; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 17.22; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 17.22; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 17.22; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 17.22; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 17.22; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 17.22; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 17.22; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 17.22; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 17.22; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 17.91; *m*/z LRMS (ESI + APCI) found [M – OTf]⁺ 448.2, C₂₈H₂₃N₃OP ⁺ requires 448.2.

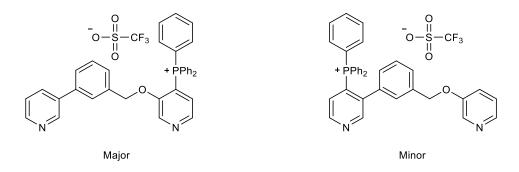
Triphenyl(2–((pyridin–3–ylmethyl)thio)pyrimidin–4–yl)phosphonium trifluoromethanesulfonate (2f)



>20:1 (Major:Minor) Mixture of Isomers

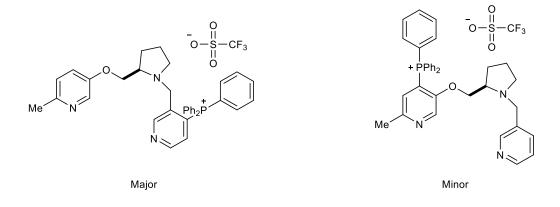
Prepared according to general procedure C using 2–((pyridin–3–ylmethyl)thio)pyrimidine (102 mg, 0.50 mmol), Tf₂O (169 µL, 1.00 mmol), PPh₃ (262 mg, 1.00 mmol), NEt₃ (139 µL, 1.00 mmol) and CH₂Cl₂ (5.0 mL). After the purification procedure, the title compound was isolated as a white solid (210 mg, 0.34 mmol, 68% yield). mp 157–163 °C; Both isomers, IR v_{max}/cm^{-1} (film): 3061, 2964, 1528, 1438, 1259, 1150, 1109, 1029, 910, 724; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.03 (1H, dd, J = 7.6, 4.9 Hz), 8.51–8.35 (2H, m), 7.96–7.83 (3H, m), 7.82–7.58 (14H, m),

7.30–7.19 (1H, m), 4.30 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 173.7 (d, J = 17.6 Hz), 160.5 (d, J = 7.4 Hz), 154.6 (d, J = 111.6 Hz), 149.5, 148.5, 136.3, 136.1 (d, J = 2.9 Hz), 134.6 (d, J = 10.3 Hz), 132.3, 130.7 (d, J = 13.1 Hz), 123.5, 123.1 (d, J = 20.2 Hz), 120.6 (q, J = 321.2 Hz), 114.9 (d, J = 88.8 Hz), 32.5; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.23; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 16.61; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.19; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 464.2, C₂₈H₂₃N₃PS⁺ requires 464.1.


Triphenyl(3–((3–(pyridin–3–yl)benzyl)oxy)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2n)

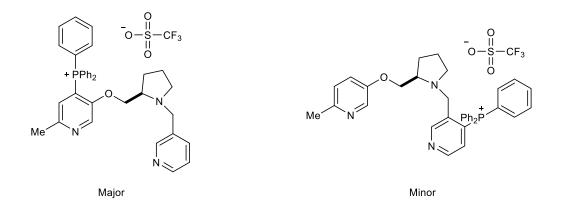
2.2:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure A (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture) using 3–((3–(pyridin–3–yl)benzyl)oxy)pyridine (27 mg, 0.10 mmol), Tf₂O (18 μ L, 0.10 mmol), PPh₃ (30 mg, 0.11 mmol), DBU (16 μ L, 0.10 mmol), 1,3,5-trimethoxybenzene as an internal standard (19 mg, 0.10 mmol), and CH₂Cl₂ (1 mL) to afford the title compound (combined ¹H NMR yield: 67%). Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.90-8.79 (1H, m), 8.66-8.46 (3H, m), 8.05-7.12 (19H, m), 7.05 (1H, dd, *J* = 14.8, 4.7 Hz), 6.90 (1H, s), 6.80 (1H, d, *J* = 7.5 Hz), 5.17 (2H, s); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.35; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.44; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 523.3, C₃₅H₂₈N₂OP⁺ requires 523.3.


Triphenyl(3–((3–(pyridin–3–yl)benzyl)oxy)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2n)

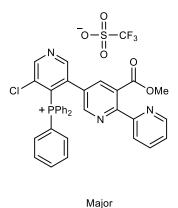
>20:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure C using $3-((3-(pyridin-3-yl)benzyl)oxy)pyridine (55 mg, 0.21 mmol), Tf₂O (71 µL, 0.42 mmol), PPh₃ (110 mg, 0.42 mmol), NEt₃ (59 µL, 0.42 mmol) and CH₂Cl₂ (2.1 mL). After the purification procedure, the title compound was isolated as a brown oil (115 mg, 0.17 mmol, 82% yield); Both isomers, IR <math>v_{max}/cm^{-1}$ (film): 3058, 2923, 1438, 1414, 1261, 1222, 1149, 1107, 1029, 980, 915, 721, 688, 635; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.86 (1H, app d, J = 6.7 Hz), 8.62 (1H, dd, J = 4.8, 1.4 Hz), 8.57 (1H, app t, J = 8.8 Hz), 8.54 (1H, d, J = 2.0 Hz), 7.75–7.53 (16H, m), 7.43–7.38 (2H, m), 7.25 (1H, t, J = 7.7 Hz), 7.09 (1H, dd, J = 14.8, 4.9 Hz), 6.91 (1H, s), 6.84 (1H, d, J = 7.6 Hz), 5.22 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 155.1, 148.7, 147.9, 144.0 (d, J = 11.0 Hz), 137.9, 137.0, 137.0, 135.7, 135.4 (d, J = 2.9 Hz), 134.4, 133.9 (d, J = 10.7 Hz), 130.5 (d, J = 13.2 Hz), 129.3, 128.0 (d, J = 7.1 Hz), 127.7, 127.3, 126.6, 123.7, 120.9 (q, J = 321.2 Hz), 116.2 (d, J = 91.4 Hz), 114.9 (d, J = 86.9 Hz), 71.9; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.10; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.39; *m*/*z* LRMS (ESI + APCI) found [M – OTf]⁺ 523.3, C₃₅H₂₈N₂OP⁺ requires 523.3.


(3–((2–(((6–methylpyridin–3–yl)oxy)methyl)pyrrolidin–1–yl)methyl)pyridin–4– yl)triphenylphosphonium trifluoromethanesulfonate (20)

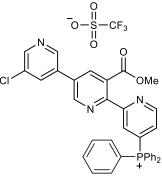
>20:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure А using 2-methyl-5-((1-(pyridin-3ylmethyl)pyrrolidin–2–yl)methoxy)pyridine (150 mg, 0.53 mmol), Tf₂O (89 µL, 0.53 mmol), PPh₃ (153 mg, 0.58 mmol), DBU (80 µL, 0.53 mmol) and CH₂Cl₂ (5.3 mL). After the purification procedure, the title compound was isolated as a yellow solid (227 mg, 0.33 mmol, 65% yield). mp 55–61 °C; Both isomers, IR v_{max}/cm⁻¹ (film): 3060, 2953, 2872, 2815, 1571, 1484, 1438, 1401, 1260, 1151, 1106, 909; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.39 (1H, app d, J = 6.7Hz), 8.81 (1H, app t, J = 4.6 Hz), 7.91–7.60 (16H, m), 7.11 (1H, dd, J = 15.5, 5.1 Hz), 7.06 (1H, d, J = 8.6 Hz), 3.85 (1H, d, J = 16.0 Hz), 3.73–3.71 (2H, m), 3.31 (1H, d, J = 16.0 Hz), 2.76–2.65 (2H, m) 2,48 (3H, s), 1.88–1.79 (1H, m), 1.74–1.50 (4H, m); Major isomer, ¹³C NMR (100 MHz, $CDCl_3$) δ : 152.9 (d, J = 7.9 Hz), 152.5, 150.4, 150.0 (d, J = 10.5 Hz), 139.0 (d, J = 6.2 Hz), 136.6, 135.9 (d, J = 2.9 Hz), 133.9 (d, J = 10.5 Hz), 130.9, 127.7 (d, J = 9.7 Hz), 125.4 (d, J = 81.8 Hz), 123.3, 121.4, 120.7 (q, J = 321.2 Hz), 116.2 (d, J = 88.7 Hz), 71.8, 62.1, 56.3 (d, J = 4.8 Hz), 53.7, 27.5, 23.1, 23.1; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ: -78.12; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ: 20.83; *m/z* LRMS (ESI + APCI) found [M - OTf]⁺ 544.3, $C_{35}H_{35}N_{3}OP^{+}$ requires 544.3; Specific Rotation $[\alpha]_{D}^{22}$ +50.88 (*c* 1.00, CHCl₃).


(2-methyl-5-((1-(pyridin-3-ylmethyl)pyrrolidin-2-yl)methoxy)pyridin-4yl)triphenylphosphonium trifluoromethanesulfonate (20)

>20:1 (Major:Minor) Mixture of Isomers

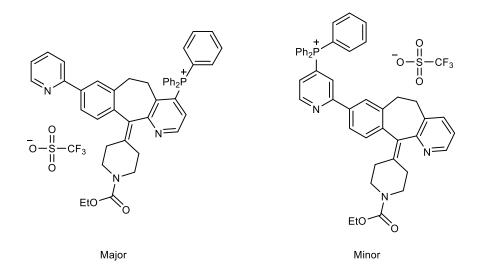
procedure С using 2-methyl-5-((1-(pyridin-3-Prepared according to general vlmethyl)pyrrolidin–2–yl)methoxy)pyridine (147.0 mg, 0.52 mmol), Tf₂O (175 µL, 1.04 mmol), PPh₃ (272.1 mg, 1.04 mmol), Et₃N (145 µL, 1.04 mmol) and CH₂Cl₂ (5.2 mL). After the purification procedure, the title compound was isolated as a brown solid (193.9 mg, 0.28 mmol, 54% yield). mp 70–78 °C; Both isomers, IR v_{max}/cm⁻¹ (film): 3061, 2987, 2881, 1439, 1260, 1155, 1107, 1030, 907, 723, 636; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.62 (1H, app d, J = 6.4Hz), 8.47–8.46 (2H, m), 7.78–7.70 (11H, m), 7.62–7.56 (7H, m), 7.23 (1H, dd, J = 7.7, 4.9 Hz), 6.73 (1H, d, J = 15.3 Hz), 4.36 (1H, bs), 3.88 (1H, t, J = 7.3 Hz), 3.70 (1H, d, J = 12.4 Hz), 3.41 (1H, s), 2.85 (1H, s), 2.46 (5H, m), 1.54 (3H, m), 1.06 (1H, m); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 153.3 (d, J = 11.0 Hz), 153.2, 149.7, 148.5, 136.4, 135.9 (d, J = 5.1 Hz), 135.7 (d, J = 3.0 Hz), 133.8 (d, J = 10.8 Hz), 130.7 (d, J = 13.2 Hz), 129.9, 127.5 (d, J = 7.1 Hz), 123.3,120.8 (q, J = 321.3 Hz), 116.5 (d, J = 91.0 Hz), 115.0 (d, J = 86.5 Hz), 72.9, 61.7, 56.9, 54.1, 28.0, 23.7, 22.8; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ: -78.15; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.42; *m*/*z* LRMS (ESI + APCI) found [M - OTf]⁺ 544.3, C₃₅H₃₅N₃OP⁺ requires 544.3; Specific Rotation $[\alpha]_{D}^{22}$ +10.26 (c 0.85, CHCl₃).


(5''-chloro-3'-(methoxycarbonyl)-[2,2':5',3''-terpyridin]-4''-yl)triphenylphosphonium trifluoromethanesulfonate (2p)

10:3.1:1 (Major:Bis-phosphonium isomer:Unidentified phosphonium isomer) Mixture of Isomers

Prepared according to general procedure A (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture) using methyl–5"–chloro–[2,2':5',3"–terpyridine]–3'–carboxylate (16 mg, 0.05 mmol), Tf₂O (9 μ L, 0.05 mmol), PPh₃ (14 mg, 0.06 mmol), DBU (8 μ L, 0.05 mmol), 1,3,5-trimethoxybenzene as an internal standard (17 mg, 0.10 mmol), and CH₂Cl₂ (0.5 mL) to afford the title compound (combined ¹H NMR yield: 83%). Major isomer ¹H NMR (400 MHz, CDCl₃) δ : 8.93 (1H, d, *J* = 5.4 Hz), 8.70-8.55 (2H, m), 8.26 (1H, d, *J* = 2.0 Hz), 8.02-7.50 (18H, m), 7.40-7.30 (1H, m), 3.70 (3H, s); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 20.82; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 22.71, 22.60, 20.71, 21.67; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 586.2, C₃₅H₂₆ClN₃O₂P⁺ requires 586.2.

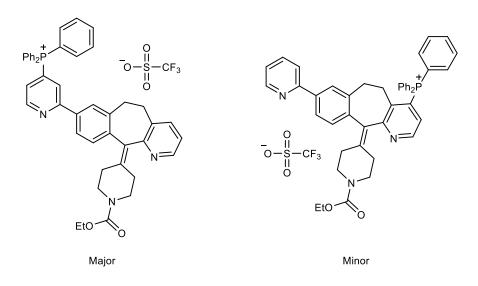
(5''-chloro-3'-(methoxycarbonyl)-[2,2':5',3''-terpyridin]-4-yl)triphenylphosphonium trifluoromethanesulfonate (2p)



Major

>20:1 (Major:Unidentified phosphonium isomer) Mixture of Isomers

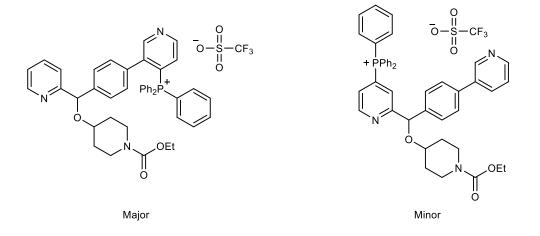
Prepared according to general procedure C (except that the reaction mixture was warmed to -50 °C prior to adding PPh₃ and remained at -50 °C for 1 hour before cooling down to -78 °C for NEt₃ addition) using methyl–5"–chloro–[2,2':5',3"–terpyridine]–3'–carboxylate (65 mg, 0.20 mmol), Tf₂O (68 µL, 0.40 mmol), PPh₃ (105 mg, 0.40 mmol), NEt₃ (56 µL, 0.40 mmol) and CH₂Cl₂ (2.0 mL). After the purification procedure, the title compound was isolated as a yellow solid (132 mg, 0.18 mmol, 89% combined yield). All isomers, IR v_{max}/cm⁻¹ (film): 3059, 2951, 1728, 1439, 1259, 1107, 1030, 909, 724, 646; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.07 (1H, app t, *J* = 4.8 Hz), 8.88 (1H, s), 8.76 (1H, s), 8.66 (1H, s), 8.42 (1H, d, *J* = 13.6 Hz), 8.16 (1H, d, *J* = 2.2 Hz), 8.07–7.61 (17H, m), 3.90 (3H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 168.0, 156.9 (d, *J* = 10.6 Hz), 152.3 (d, *J* = 2.0 Hz), 150.7 (d, *J* = 10.3 Hz), 148.7, 148.4, 145.5, 136.2 (d, *J* = 2.9 Hz), 135.4, 134.4 (d, *J* = 10.5 Hz), 134.0, 132.8, 132.5, 132.3, 131.0 (d, *J* = 13.0 Hz), 129.5 (d, *J* = 84.2 Hz), 129.1, 127.4 (d, *J* = 8.4 Hz), 125.7 (d, *J* = 9.3 Hz), 120.7 (q, *J* = 321.4 Hz), 115.5 (d, *J* = 89.8 Hz), 52.9; All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.15; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 22.66; Other phosphonium isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 22.68; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 586.2, C₃₅H₂₆ClN₃O₂P⁺ requires 586.2.


(2-(11-(1-(ethoxycarbonyl)piperidin-4-ylidene)-6,11-dihydro-5Hbenzo[5,6]cyclohepta[1,2-b]pyridin-8-yl)pyridin-4-yl)triphenylphosphonium trifluoromethanesulfonate (2q)

10:3.1:1 (Major:Bis-phosphonium isomer:Minor) Mixture of Isomers

Prepared according to general procedure A (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture) using ethyl 4-(8-(pyridin-2-yl)-5,6-dihydro-11Hbenzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate (21 mg, 0.05 mmol), Tf₂O (9 µL, 0.05 mmol), PPh₃ (14 mg, 0.06 mmol), DBU (8 µL, 0.05 mmol), 1,3,5trimethoxybenzene as an internal standard (17 mg, 0.10 mmol), and CH₂Cl₂ (0.5 mL) to afford the title compound (combined ¹H NMR vield: 89%). Major isomer, ¹H NMR (400 MHz, CDCl₃) δ: 8.72 (1H, app t, J = 4.8 Hz), 8.66-8.57 (1H, m), 8.01-7.33 (19H, m), 7.33-7.15 (2H, m), 7.02 (1H, dd, J = 14.8, 5.2 Hz), 4.20-4.02 (2H, m), 3.91-3.60 (2H, m), 3.42-3.20 (3H, m), 3.00-2.79 (1H, m), 2.65-2.05 (5H, m), 1.78-1.54 (1H, m) 1.36-1.07 (3H, m); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ: 21.24; Other phosphonium isomer, ³¹P NMR (162 MHz, CDCl₃) δ: 22.79, 22.77, 21.13; m/z LRMS (ESI + APCI) found $[M - OTf]^+$ 686.4, C₄₅H₄₁N₃O₂P⁺ requires 686.3.

(11-(1-(ethoxycarbonyl)piperidin-4-ylidene)-8-(pyridin-2-yl)-6,11-dihydro-5Hbenzo[5,6]cyclohepta[1,2-b]pyridin-4-yl)triphenylphosphonium trifluoromethanesulfonate (2q)

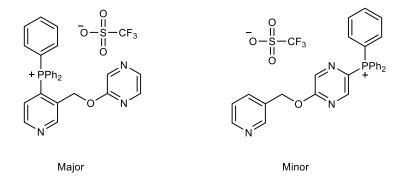


>20:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure C using ethyl 4–(8–(pyridin–2–yl)–5,6–dihydro–11H– benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate (213 mg, 0.50 mmol), Tf₂O (169 μL, 1.00 mmol), PPh₃ (262 mg, 1.00 mmol), NEt₃ (139 μL, 1.00 mmol) and CH₂Cl₂ (5.0 mL). After the purification procedure, the title compound was isolated as a white solid (301 mg, 0.36 mmol, 72% combined yield). Both isomers, IR v_{max}/cm^{-1} (film): 3060, 2982, 2910, 2868, 1686, 1437, 1260, 1223, 1109, 1030, 909, 724, 646; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.07 (1H, app t, J = 4.9 Hz), 8.39 (1H, dd, J = 5.0, 1.4 Hz), 7.98–7.89 (3H, m), 7.86 (1H, d, J = 1.5 Hz), 7.85–7.76 (7H, m), 7.75–7.65 (6H, m), 7.59 (1H, dd, J = 7.9, 1.8 Hz), 7.54–7.44 (2H, m), 7.29 (1H, d, J = 8.0 Hz), 7.11 (1H, dd, J = 7.7, 4.8 Hz), 4.13 (2H, q, J = 7.1 Hz), 3.94–3.69 (2H, m), 3.57–3.30 (2H, m), 3.23–3.03 (2H, m), 3.03–2.82 (2H, m), 2.61–2.24 (4H, m), 1.24 (3H, t, J = 7.1 Hz); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 159.0 (d, J = 10.3 Hz), 151.7 (d, J= 11.2 Hz), 156.4, 155.4, 146.2, 141.7, 139.0, 138.0, 137.9, 136.2 (d, J = 2.9 Hz), 136.1 (d, J = 1.5 Hz), 134.5 (d, J = 10.7 Hz), 134.2, 133.8, 131.0 (d, J = 13.1 Hz), 129.9, 129.3 (d, J = 83.6Hz), 125.2 (d, J = 8.4 Hz), 124.7, 123.2 (d, J = 8.8 Hz), 122.4, 120.8 (q, J = 320.8 Hz), 115.7 (d, J = 89.2 Hz), 61.2, 44.7, 31.7, 31.5, 30.7, 30.5, 14.6; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) &: -78.15; Major isomer, ³¹P NMR (162 MHz, CDCl₃) &: 22.79; Minor isomer, ³¹P NMR

(162 MHz, CDCl₃) δ : 21.17; *m*/*z* LRMS (ESI + APCI) found [M - OTf]⁺ 686.3, C₄₅H₄₁N₃O₂P⁺ requires 686.3.

(3–(4–(((1–(ethoxycarbonyl)piperidin–4–yl)oxy)(pyridin–2–yl)methyl)phenyl)pyridin–4– yl)triphenylphosphonium trifluoromethanesulfonate (2d)

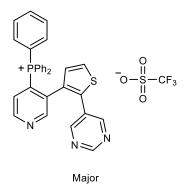


>20:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure D (except that Tf₂O was added at -50 °C and stirred for 1 hour instead of at -78 °C for 1 hour) using ethyl 4–(pyridin–2–yl(4–(pyridin–3–yl)phenyl)methoxy)piperidine–1–carboxylate (104 mg, 0.25 mmol), Tf₂O (42 µL, 0.25 mmol), PPh₃ (66 mg, 0.25 mmol), DBU (37 µL, 0.25 mmol) and CH₂Cl₂ (2.5 mL). After the purification procedure, the title compound was isolated as a light yellow solid (167 mg, 0.20 mmol, 81% combined yield). Both isomers, IR v_{max}/cm⁻¹ (film): 3062, 2929, 2856, 1685, 1436, 1261, 1153, 1099, 1029, 909, 724, 635; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.94 (1H, app t, *J* = 4.6 Hz), 8.72 (1H, d, *J* = 6.8 Hz), 8.58 (1H, d, *J* = 4.3 Hz), 7.93–7.17 (19H, m), 7.03 (2H, d, *J* = 8.2 Hz), 6.69 (2H, d, *J* = 8.2 Hz), 5.47 (1H, s), 4.10 (2H, q, *J* = 7.1 Hz); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 161.1, 155.2, 153.6 (d, *J* = 10.2 Hz), 149.8 (d, *J* = 10.2 Hz), 148.7, 142.1, 141.3 (d, *J* = 7.0 Hz), 137.0, 135.2 (d, *J* = 2.7 Hz), 134.0 (d, *J* = 10.2 Hz), 133.6 (d, *J* = 3.9 Hz), 130.3 (d, *J* = 13.0 Hz), 129.1, 128.1 (d, *J* = 9.6 Hz), 126.2, 126.1 (d, *J* = 83.2 Hz), 122.7, 120.7

(q, J = 321.2 Hz), 120.6, 116.6 (d, J = 89.0 Hz), 80.6, 72.4, 61.0, 40.7, 30.7 (d, J = 38.0 Hz), 14.4;Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.11; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.45; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 22.49; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 678.3, C₄₃H₄₁N₃O₃P⁺ requires 678.3.

Triphenyl(3–((pyrazin–2–yloxy)methyl)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2e)



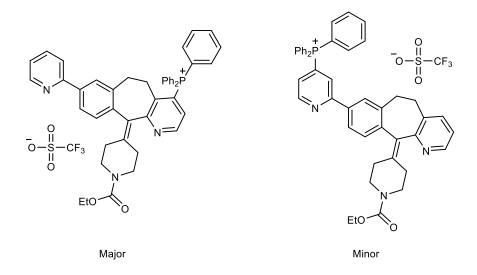
18.5:1:1:1 (Major:2–position phosphonium isomer:Minor:Unidentified phosphonium isomer) Mixture of Isomers

Prepared according to general procedure D using 2–(pyridin–3–ylmethoxy)pyrazine (94 mg, 0.50 mmol), Tf₂O (85 µL, 0.50 mmol), PPh₃ (131 mg, 0.50 mmol), DBU (75 µL, 0.50 mmol) and CH₂Cl₂ (5.0 mL). After the purification procedure, the title compound was isolated as a white solid (249 mg, 0.42 mmol, 83% combined yield). All isomers, IR v_{max}/cm^{-1} (film): 3063, 2903, 1585, 1484, 1259, 1152, 1030, 908, 722; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.09 (1H, app d, J = 6.6 Hz), 8.96 (1H, app t, J = 4.6 Hz), 8.08 (1H, d, J = 2.7 Hz), 7.91–7.58 (16H, m), 7.39 (1H, d, J = 1.2 Hz), 7.33 (1H, dd, J = 15.7, 5.1 Hz), 4.96 (2H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 157.4, 152.8 (d, J = 7.8 Hz), 151.9, (d, J = 10.6 Hz), 140.3, 137.7, 135.9 (d, J = 2.9 Hz), 134.6, 134.4 (d, J = 5.8 Hz), 134.2 (d, J = 10.6 Hz), 130.7 (d, J = 13.1 Hz), 129.0 (d, J = 9.4 Hz), 126.5 (d, J = 81.5 Hz), 120.7 (q, J = 321.1 Hz), 116.1 (d, J = 89.2 Hz), 63.6 (d, J = 4.0 Hz); All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.16; Major isomer, ³¹P NMR (162 MHz,

CDCl₃) δ : 22.70; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 21.33, 21.01, 16.64; *m/z* LRMS (ESI + APCI) found [M - OTf]⁺ 448.3, C₂₈H₂₃N₃OP ⁺ requires 448.2.

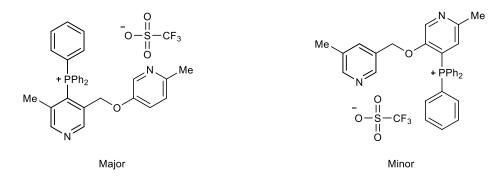
Triphenyl(3–(2–(pyrimidin–5–yl)thiophen–3–yl)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2g)

17.3:1:1 (Major:Unidentified phosphonium isomer:2-position phosphonium isomer) Mixture of Isomers

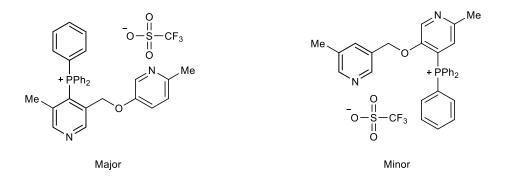

Prepared according to general procedure D using 5–(3–(pyridin–3–yl)thiophen–2–yl)pyrimidine (24 mg, 0.10 mmol), Tf₂O (17 µL, 0.10 mmol), PPh₃ (27 mg, 0.10 mmol), DBU (15 µL, 0.10 mmol) and CH₂Cl₂ (1.0 mL). After the purification procedure, the title compound was isolated as a yellow solid (50 mg, 0.077 mmol, 77% combined yield). All isomers, IR v_{max}/cm⁻¹ (film): 3064, 2957, 2852, 1438, 1262, 1153, 1104, 1030, 721; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.19–8.91 (2H, m), 8.81 (1H, d, *J* = 6.7 Hz), 8.19 (2H, br s), 7.97–7.39 (16H, m), 7.15 (1H, d, *J* = 5.0 Hz), 6.74 (1H, d, *J* = 5.0 Hz); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 157.3, 154.2 (d, *J* = 6.5 Hz), 154.7 (2C), 150.6 (d, *J* = 10.0 Hz), 136.2 (d, *J* = 5.7 Hz), 135.7 (d, *J* = 2.9 Hz), 134.4, 134.1 (d, *J* = 10.3 Hz), 132.7 (d, *J* = 4.2 Hz), 131.9, 130.7 (d, *J* = 13.0 Hz), 129.1 (d, *J* = 8.7 Hz), 127.9, 127.2 (d, *J* = 82.7 Hz), 120.8 (q, *J* = 321.2 Hz), 116.0 (d, *J* = 88.7 Hz); All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.14; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.79; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 23.32, 15.38; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 500.1, C₃₁H₂₃N₃PS⁺ requires 500.1.

(5''-chloro-3'-(methoxycarbonyl)-[2,2':5',3''-terpyridin]-4''-yl)triphenylphosphonium trifluoromethanesulfonate (2p)

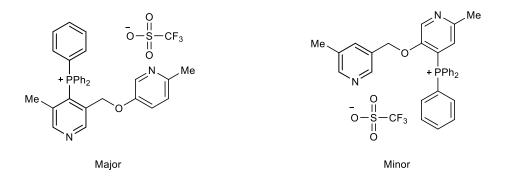
>20:1 (Major:Unidentified phosphonium isomer) Mixture of Isomers


Prepared according to general procedure D using methyl–5"–chloro–[2,2':5',3"–terpyridine]–3'– carboxylate (65 mg, 0.20 mmol), Tf₂O (34 µL, 0.20 mmol), PPh₃ (52 mg, 0.20 mmol), DBU (30 µL, 0.20 mmol) and CH₂Cl₂ (2.0 mL). After the purification procedure, the title compound was isolated as a tan solid (137 mg, 0.19 mmol, 93% combined yield). All isomers, IR v_{max}/cm⁻¹ (film): 3062, 2986, 1728, 1438, 1263, 1152, 1030, 912, 720, 636; Major isomer ¹H NMR (400 MHz, CDCl₃) δ : 8.96 (1H, d, *J* = 4.5 Hz), 8.70 (1H, d, *J* = 3.1 Hz), 8.61 (1H, s), 8.28 (1H, s), 8.06–7.46 (18H, m), 7.40–7.29 (1H, m), 3.74 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 167.6, 155.3 (d, *J* = 2.2 Hz), 154.7, 152.4 (d, *J* = 7.2 Hz), 151.9 (d, *J* = 4.8 Hz), 149.6, 148.6, 140.7 (d, *J* = 5.7 Hz), 136.9 (d, *J* = 10.9 Hz), 136.8, 136.1 (d, *J* = 2.3 Hz), 135.4 (d, *J* = 2.7 Hz), 134.0 (d, *J* = 10.6 Hz), 130.7 (d, *J* = 13.6 Hz), 130.0, 127.5, 125.5 (d, *J* = 88.0 Hz), 124.1, 122.6, 120.8 (q, *J* = 321.4 Hz), 116.9 (d, *J* = 89.1 Hz), 52.3; All isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.17; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 20.78; Other phosphonium isomers, ³¹P NMR (162 MHz, CDCl₃) δ : 21.65; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 586.2, C₃₅H₂₆ClN₃O₂P⁺ requires 586.2. (2-(11-(1-(ethoxycarbonyl)piperidin-4-ylidene)-6,11-dihydro-5Hbenzo[5,6]cyclohepta[1,2-b]pyridin-8-yl)pyridin-4-yl)triphenylphosphonium trifluoromethanesulfonate (2q)

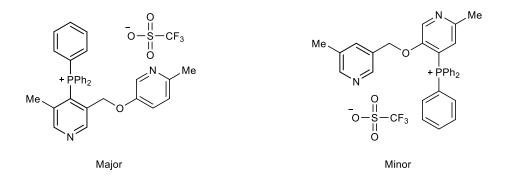
>20:1 (Major:Minor) Mixture of Isomers


Prepared according to general procedure D using ethyl 4–(8–(pyridin–2–yl)–5,6–dihydro–11H– benzo[5,6]cyclohepta[1,2–b]pyridin–11–ylidene)piperidine–1–carboxylate (86 mg, 0.20 mmol), Tf₂O (34 µL, 0.20 mmol), PPh₃ (59 mg, 0.20 mmol), DBU (30 µL, 0.20 mmol) and CH₂Cl₂ (2.0 mL). After the purification procedure, the title compound was isolated as a yellow solid (123 mg, 0.15 mmol, 74% combined yield). Both isomers, IR v_{max} /cm⁻¹ (film): 3089, 2980, 1689, 1578, 1437, 1261, 1222, 1108, 1029, 726, 634; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.75 (1H, app t, *J* = 4.5 Hz), 8.67 (1H, d, *J* = 3.3 Hz), 8.06–7.56 (18H, m), 7.44 (1H, s), 7.35–7.17 (2H, m), 7.05 (1H, dd, *J* = 14.9, 5.1 Hz), 4.16 (2H, q, *J* = 7.0 Hz), 3.90–3.62 (2H, m), 3.54–3.24 (3H, m), 3.03–2.81 (1H, m), 2.74–2.35 (4H, m), 2.32–2.07 (1H, m), 1.91–1.67 (1H, m), 1.28 (3H, t, *J* = 7.0 Hz); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 163.8 (d, *J* = 8.5 Hz), 156.2, 155.4, 149.4, 149.0 (d, *J* = 11.5 Hz), 139.1–138.7 (2C), 137.2 (d, *J* = 7.1 Hz), 136.1 (d, *J* = 2.1 Hz), 135.4, 134.2 (d, *J* = 10.5 Hz), 133.2 (d, *J* = 2.1 Hz), 131.1 (d, *J* = 13.0 Hz), 130.8, 128.6, 126.8 (d, *J* = 81.4 Hz), 127.1 (d, *J* = 9.8 Hz), 124.7, 122.4, 120.8 (q, *J* = 321.3 Hz), 120.5, 116.5 (d, *J* = 88.8 Hz), 61.4, 44.7, 44.8, 30.8, 30.8, 30.5, 29.8, 14.6; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : – 78.13; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ: 21.24; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ: 22.72; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 686.4, C₄₅H₄₁N₃O₂P⁺ requires 686.3.

(3-methyl-5-(((6-methylpyridin-3-yl)oxy)methyl)pyridin-4-yl)triphenylphosphonium trifluoromethanesulfonate (2l)


1:1.5:2 (Mixure of 2 phosphonium isomers: Major: Minor) Mixture of Isomers

Prepared according to general procedure A (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture and that Tf₂O stirred for 15 minutes instead of 30 minutes) using 2–methyl– 5–((5–methylpyridin–3–yl)methoxy)pyridine (22 mg, 0.10 mmol), Tf₂O (17 µL, 0.10 mmol), PPh₃ (29 mg, 0.11 mmol), DBU (15 µL, 0.10 mmol), 1,3,5-trimethoxybenzene as an internal standard (17 mg, 0.10 mmol), and CH₂Cl₂ (0.5 mL) to afford the title compound (combined ¹H NMR yield: 44%). Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.84 (1H, d, *J* = 6.0 Hz), 8.79-8.72 (1H, m), 7.94-7.33 (17H, m), 7.12-7.03 (1H, m), 6.86-6.76 (1H, m), 4.63 (1H, s), 2.22 (3H, s), 1.86 (3H, s); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 17.53; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.86, 21.33, 16.43; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 475.3, C₃₁H₂₈N₂OP⁺ requires 475.2.

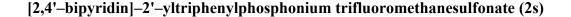

3.3:1:1 (Major: Minor: Mixture of 2 phosphonium isomers) Mixture of Isomers

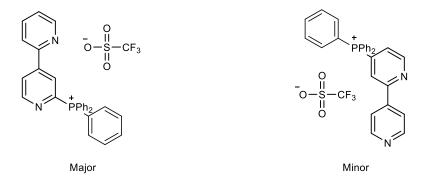
Prepared according to general procedure A (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture) using 2–methyl–5–((5–methylpyridin–3–yl)methoxy)pyridine (22 mg, 0.10 mmol), Tf₂O (17 µL, 0.10 mmol), PPh₃ (29 mg, 0.11 mmol), DBU (15 µL, 0.10 mmol), 1,3,5-trimethoxybenzene as an internal standard (17 mg, 0.10 mmol), and CH₂Cl₂ (0.5 mL) to afford the title compound (combined ¹H NMR yield: 52%). Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.81 (1H, d, *J* = 6.0 Hz), 8.75 (1H, d, *J* = 6.2 Hz), 7.88-7.37 (16H, m), 7.03-6.92 (1H, m), 6.59 (1H, dd, *J* = 8.7, 3.0 Hz), 4.49 (2H, s), 2.43 (3H, s), 1.85 (3H, s); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 17.57; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.96, 21.29, 16.41; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 475.3, C₃₁H₂₈N₂OP⁺ requires 475.2.

20:1:2.9 (Major: Minor: Mixture of 2 phosphonium isomers) Mixture of Isomers

Prepared according to general procedure A (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture that Tf₂O stirred for 60 minutes instead of 30 minutes) using 2–methyl–5– ((5–methylpyridin–3–yl)methoxy)pyridine (22 mg, 0.10 mmol), Tf₂O (17 µL, 0.10 mmol), PPh₃ (29 mg, 0.11 mmol), DBU (15 µL, 0.10 mmol), 1,3,5-trimethoxybenzene as an internal standard (17 mg, 0.10 mmol), and CH₂Cl₂ (0.5 mL) to afford the title compound (combined ¹H NMR yield: 72%). Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.81 (1H, d, *J* = 6.0 Hz), 8.74 (1H, d, *J* = 6.2 Hz), 7.92-7.33 (16H, m), 6.88 (1H, d, *J* = 8.6 Hz), 6.44 (1H, dd, *J* = 8.6, 3.0 Hz), 4.45 (2H, s), 2.40 (3H, s), 1.85 (3H, s); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 17.58; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.90, 21.28, 16.42; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 475.3, C₃₁H₂₈N₂OP⁺ requires 475.2.

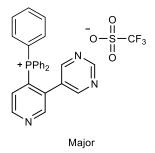
4.3:1:1.1 (Major: Minor: Mixture of 2 phosphonium isomers) Mixture of Isomers


Prepared according to general procedure D (except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture) using 2–methyl–5–((5–methylpyridin–3–yl)methoxy)pyridine (50 mg, 0.23 mmol), Tf₂O (39 µL, 0.23 mmol), PPh₃ (60 mg, 0.23 mmol), DBU (35 µL, 0.23 mmol), 1,3,5-trimethoxybenzene as an internal standard (39 mg, 0.23 mmol), and CH₂Cl₂ (2.3 mL) to afford the title compound (combined ¹H NMR yield: 52%). Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.76 (1H, d, *J* = 6.0 Hz), 8.70 (1H, d, *J* = 6.2 Hz), 8.08-7.17 (16H, m), 7.06-7.00 (1H, m), 6.47-6.35 (1H, m), 4.41 (2H, s), 2.31 (3H, s), 1.81 (3H, s); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 17.57; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.81, 21.27, 16.39; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 475.3, C₃₁H₂₈N₂OP⁺ requires 475.2.


[2,3'-bipyridin]-4'-yltriphenylphosphonium trifluoromethanesulfonate (2r)

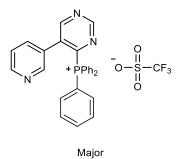
>20:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure A using 2,3'-bipyridine (156 mg, 1.00 mmol), Tf₂O (169 μ L, 1.00 mmol), PPh₃ (288 mg, 1.10 mmol), DBU (150 μ L, 1.00 mmol) and CH₂Cl₂ (10 mL). After the purification procedure, the title compound was isolated as a white amorphous solid (542 mg, 0.96 mmol, 96% combined yield). Both isomers, IR v_{max}/cm⁻¹ (film): 3072, 3029, 1591, 1438, 1275, 1257, 1223, 1166, 1109, 1029, 739, 659, 569; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.60 (1H, d, *J* = 6.6 Hz), 8.94 (1H, app t, *J* = 4.8 Hz), 8.06 (1H, d, *J* = 8.1 Hz), 7.85–7.46 (17H, m), 7.21 (1H, dd, *J* = 15.9, 5.1 Hz), 7.04 (1H, dd, *J* = 7.6, 5.1 Hz); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 151.8 (d, *J* = 11.6 Hz), 150.0 (d, *J* = 6.6 Hz), 148.3, 146.4, 138.5, 136.3, 134.2 (d, *J* = 2.9 Hz), 132.9 (d, *J* = 97.7 Hz), 131.2 (d, *J* = 10.8 Hz), 130.1 (d, *J* = 13.3 Hz), 125.3 (d, *J* = 91.6 Hz), 125.0, 122.1 (d, *J* = 95.9 Hz), 121.4, 120.9 (q, *J* = 321.2 Hz); Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.05; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 26.26; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 417.2, C₂₈H₂₂N₂P⁺ requires 417.2.

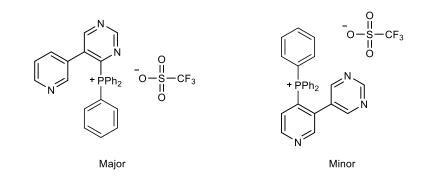


>20:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure D using 2,4'-bipyridine (39 mg, 0.25 mmol), Tf₂O (42 μ L, 0.25 mmol), PPh₃ (66 mg, 0.25 mmol), DBU (37 μ L, 0.25 mmol) and EtOAc (2.5 mL). After the purification procedure, the title compound was isolated as a grey amorphous solid (83 mg, 0.17 mmol, 59% combined yield). Both isomers, IR ν_{max}/cm^{-1} (film): 3064, 1583, 1437, 1261, 1150, 1030, 723, 634; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.12 (1H, d, *J* = 4.9 Hz), 8.68–8.62 (1H, m), 8.49–8.36 (2H, m), 8.08 (1H, d, *J* = 8.0 Hz), 7.97–7.85 (4H, m), 7.84–7.68 (12H, m), 7.37 (1H, ddd, *J* = 7.7, 4.8, 1.0 Hz); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 153.2 (d, *J* = 20.2 Hz), 151.6 (d, *J* = 2.0 Hz), 150.1, 148.6 (d, *J* = 10.8 Hz), 145.2 (d, *J* = 120.6 Hz), 137.9, 135.7 (d, *J* = 2.9 Hz), 134.5 (d, *J* = 10.1 Hz), 130.5 (d, *J* = 13.0 Hz), 128.7 (d, *J* = 25.8 Hz), 125.4 (d, *J* = 3.4 Hz), 125.0, 120.8 (q, *J* = 321.1 Hz), 116.9 (d, *J* = 89.0 Hz); Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.09; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 15.79; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 417.2, C₂₈H₂₂N₂P⁺ requires 417.2.


Triphenyl(3–(pyrimidin–5–yl)pyridin–4–yl)phosphonium trifluoromethanesulfonate (2t)

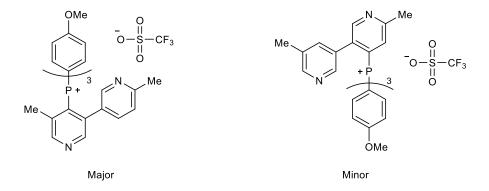
>20:1 (Major:2-position phosphonium isomer) Mixture of Isomers


Prepared according to general procedure D using 5–(pyridin–3–yl)pyrimidine (157 mg, 1.00 mmol), Tf₂O (169 µL, 1.00 mmol), PPh₃ (288 mg, 1.10 mmol), DBU (150 µL, 1.00 mmol) and EtOAc (10 mL). After the purification procedure, the title compound was isolated as a yellow amorphous solid (410 mg, 0.72 mmol, 72% combined yield). Both isomers, IR v_{max}/cm⁻¹ (film): 3061, 1551, 1439, 1261, 1149, 1102, 1029, 720, 636; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.07 (1H, dd, J = 5.2, 4.2 Hz), 8.88 (1H, s), 8.73 (1H, d, J = 6.8 Hz), 8.21 (2H, s), 7.89–7.79 (3H, m), 7.83–7.65 (12H, m), 7.59 (1H, dd, J = 15.2, 5.0 Hz); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 158.0, 156.0, 153.3 (d, J = 7.4 Hz), 151.6 (d, J = 10.2 Hz), 135.9 (d, J = 2.9 Hz), 134.4 (d, J = 10.4 Hz), 134.1 (d, J = 6.2 Hz), 130.9 (d, J = 13.1 Hz), 129.6 (d, J = 3.9 Hz), 128.9 (d, J = 9.1 Hz), 127.3 (d, J = 82.9 Hz), 120.6 (q, J = 321.1 Hz), 116.3 (d, J = 88.6 Hz); Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.18; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 15.75; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 418.2, C₂₇H₂₁N₃P⁺ requires 418.2.

Triphenyl(5–(pyridin–3–yl)pyrimidin–4–yl)phosphonium trifluoromethanesulfonate (2t)

7.7:1 (Major:2-position phosphonium isomer) Mixture of Isomers

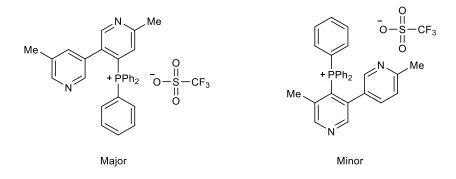
Prepared according to general procedure B (except that Tf₂O was added at -30 °C and stirred for 1 hour instead of at -78 °C for 1 hour) using 5–(pyridin–3–yl)pyrimidine (79 mg, 0.50 mmol), silver trifluormethanesulfonate (128 mg, 0.50 mmol), acetyl chloride (36 µL, 0.50 mmol), Tf₂O (85 µL, 0.50 mmol), PPh₃ (44 mg, 0.55 mmol), DBU (75 µL, 0.50 mmol) and EtOAc (5 mL). After the purification procedure, the title compound was isolated as a yellow solid (59 mg, 0.01 mmol, 21% combined yield. Both isomers, IR v_{max}/cm⁻¹ (film): 3093, 3011, 2976, 2946, 2843, 1591, 1567, 1502, 1259, 1184, 1105, 1029, 1018, 803, 636; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.52 (1H, s), 8.96 (1H, d, *J* = 8.9 Hz), 8.35 (1H, d, *J* = 3.9 Hz), 8.10 (1H,s), 8.00–7.47 (16H, m), 7.10–7.00 (1H, m); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 161.8 (d, *J* = 5.1 Hz), 157.7 (d, *J* = 16.8 Hz), 156.4 (d, *J* = 16.0 Hz), 150.4 (d, *J* = 10.2 Hz), 130.3 (d, *J* = 13.1 Hz), 123.6, 120.6 (q, *J* = 321.1 Hz), 116.6 (d, *J* = 88.5 Hz); Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.25; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 17.87; Other phosphonium isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 17.87; Other phosphonium isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 17.87; Other phosphonium



Triphenyl(5–(pyridin–3–yl)pyrimidin–4–yl)phosphonium trifluoromethanesulfonate (2t)

2:1 (Major:Minor) Mixture of Isomers

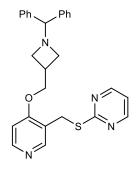
Prepared according to general procedure C using except that ¹H NMR and ³¹P NMR were run on the crude reaction mixture) using 5–(pyridin–3–yl)pyrimidine (16 mg, 0.10 mmol), Tf₂O (34 μ L, 0.20 mmol), PPh₃ (59 mg, 0.22 mmol), DBU (30 μ L, 0.20 mmol), 1,3,5-trimethoxybenzene as an internal standard (39 mg, 0.23 mmol), and EtOAc (1 mL) to afford the title compound (combined ¹H NMR yield: 19%). Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 9.42 (1H, s), 8.87 (1H, d, *J* = 8.9 Hz), 8.39-8.25 (1H, m), 7.97-7.12 (17H, m), 6.98 (1H, dd, *J* = 8.0, 4.9 Hz); Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 17.73; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.47; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 418.2, C₃₃H₂₂N₂O₃P⁺ requires 418.2.


(5,6'-dimethyl-[3,3'-bipyridin]-4-yl)tris(4-methoxyphenyl)phosphonium trifluoromethanesulfonate (2u)

14:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure D using 5,6'-dimethyl-3,3'-bipyridine (47 mg, 0.26 mmol), Tf₂O (43 µL, 0.26 mmol), tris(4-methoxyphenyl)phosphine (92 mg, 0.26 mmol), DBU (39 µL, 0.26 mmol) and CH₂Cl₂ (2.6 mL). After the purification procedure, the title compound was isolated as a brown solid (83 mg, 0.12 mmol, 48% combined yield). Both isomers, IR v_{max}/cm⁻¹ (film): 3095, 3014, 2973, 2947, 2843, 1591, 1566, 1501, 1261, 1183, 1102, 1029; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.73 (1H, app d, *J* = 5.9 Hz), 8.45 (1H, app d, *J* = 5.7 Hz), 7.87 (1H, s), 7.47–7.42 (6H, m), 7.26–7.25 (1H, m), 7.09–7.06 (6H, m), 6.75 (1H, d, *J* = 8.0 Hz), 3.90 (9H, s), 2.41 (3H, s), 1.93 (3H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 164.1 (d, *J* = 2.9 Hz), 158.4, 153.2 (d, *J* = 8.2 Hz), 151.9 (d, *J* = 7.5 Hz), 148.2, 139.6 (d, *J* = 7.6 Hz), 137.4 (d, *J* = 7.4 Hz), 136.3, 135.6 (d, *J* = 12.0 Hz), 129.2 (d, *J* = 4.7 Hz), 127.2 (d, *J* = 83.4 Hz), 122.9, 120.8 (q, *J* = 321.2 Hz) 116.3 (d, *J* = 14.3 Hz), 108.5 (d, *J* = 96.7 Hz), 55.9, 23.9, 21.3 (d, *J* = 5.4 Hz); Both isomers, ¹⁹F NMR (162 MHz, CDCl₃) δ : 19.68; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 535.3, C₃₃H₂₂N₂O₃P⁺ requires 535.2.

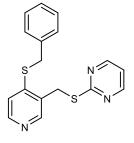
(5',6-dimethyl-[3,3'-bipyridin]-4-yl)triphenylphosphonium trifluoromethanesulfonate (2u)


10:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure A (except that 1.75 equivalent of PPh₃ and 2 equivalents of Tf₂O and DBU were used instead of 1 equivalent of each) using 5,6'–dimethyl–3,3'–bipyridine (37 mg, 0.20 mmol), Tf₂O (68 μ L, 0.40 mmol), PPh₃ (93 mg, 0.35 mmol), DBU (61 μ L, 0.40

mmol) and CH₂Cl₂ (2.0 mL). After the purification procedure, the title compound was isolated as a brown solid (60 mg, 0.10 mmol, 50% combined yield). Both isomers, IR v_{max}/cm^{-1} (film): 3060, 3026, 2923, 1572, 1438, 1260, 1151, 1103, 1029; Major isomer, ¹H NMR (400 MHz, CDCl₃) δ : 8.59 (1H, app d, J = 7.1 Hz), 8.12 (1H, s), 7.81–7.63 (16H, m), 7.27 (1H, d, J = 15.6 Hz), 6.90 (1H, s), 2.70 (3H, s), 1.98 (3H, s); Major isomer, ¹³C NMR (100 MHz, CDCl₃) δ : 160.6 (d, J =10.3 Hz), 153.0 (d, J = 8.3 Hz), 150.3, 146.0, 137.2, 135.4 (d, J = 3.0 Hz), 134.9 (d, J = 6.7 Hz), 134.3 (d, J = 10.2 Hz), 133.9 (d, J = 10.4 Hz), 130.8, 130.6 (d, J = 13.0 Hz), 127.9 (d, J = 9.4Hz), 127.0 (d, J = 82.9 Hz), 120.8 (q, J = 321.1 Hz), 116.8 (d, J = 88.7 Hz), 24.6, 17.8; Both isomers, ¹⁹F NMR (365 MHz, CDCl₃) δ : –78.15; Major isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 21.23; Minor isomer, ³¹P NMR (162 MHz, CDCl₃) δ : 18.78; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 445.3, C₃₀H₂₆N₂P⁺ requires 445.2.

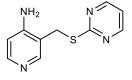
4. Preparation of Derivatized Polyazaarenes


2-(((4-((1-benzhydrylazetidin-3-yl)methoxy)pyridin-3-yl)methyl)thio)pyrimidine (3a)

An oven dried 8 mL vial with a stir bar and septa cap was charged with sodium hydride (60% dispersion in mineral oil, 15 mg, 1.5 equiv) and placed under a nitrogen atmosphere. THF (250 μ L) was added, the suspension was cooled to 0 °C and a solution of (1–benzhydrylazetidin–3– yl)methanol (95 mg, 0.38 mmol) in THF (250 μ L) was added dropwise over 5 minutes. The reaction was stirred for 30 minutes before the septa cap was briefly removed and triphenyl(3– ((pyrimidin–2–ylthio)methyl)pyridin–4–yl)phosphonium trifluoromethanesulfonate (153 mg, 0.25 mmol) was added in one portion. The reaction was subjected to three rapid cycles of

vacuum/nitrogen backfill^{**}, the ice bath removed and the reaction stirred for 12 hours while warming to room temperature. The reaction was quenched with H₂O (2.0 mL), the aqueous layer was separated and extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with a saturated aqueous solution of brine, dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography (neutralized silica gel: 70% EtOAc in hexanes) to afford the title compound as a yellow solid (64 mg, 0.14 mmol, 56% yield). mp 142–144 °C; IR v_{max}/cm⁻¹ (film): 3027, 2924, 2852, 1564, 1492, 1380, 1287, 1197, 705; ¹H NMR (400 MHz, CDCl₃) δ : 8.61 (1H, s), 8.51 (2H, d, *J* = 4.8 Hz), 8.38 (1H, d, *J* = 5.7 Hz), 7.49–7.12 (10H, m), 6.95 (1H, t, *J* = 4.8 Hz), 6.77 (1H, d, *J* = 5.7 Hz), 4.41 (3H, s), 4.20 (2H, d, *J* = 5.9 Hz), 3.34 (2H, t, *J* = 7.6 Hz), 3.13 (2H, t, *J* = 6.6 Hz), 3.04–2.88 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 171.9, 162.8, 157.2, 151.1, 150.6, 142.0, 128.4, 127.4, 127.1, 122.3, 116.5, 106.6, 77.9, 69.3, 55.6, 29.1, 27.4; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 455.2, C₂₇H₂₇N₄OS ⁺ requires 455.2.

2-(((4-(benzylthio)pyridin-3-yl)methyl)thio)pyrimidine (3b)

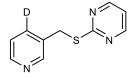


An oven dried 8 mL vial with a stir bar and septa cap was charged with sodium hydride (60% dispersion in mineral oil, 15 mg, 1.5 equiv) and placed under a nitrogen atmosphere. THF (1.0 mL) was added, the suspension was cooled to 0 °C and benzyl mercaptan (32 μ L, 0.38 mmol) was added dropwise over 5 minutes. The reaction was stirred for 30 minutes before the septa cap was briefly removed and triphenyl(3–((pyrimidin–2–ylthio)methyl)pyridin–4–yl)phosphonium trifluoromethanesulfonate (153 mg, 0.25 mmol) was added in one portion. The reaction was

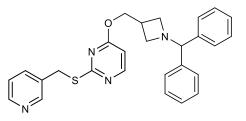
^{**} Vacuum was applied very briefly (less than a second) using a Schlenk manifold so that negligible solvent loss occurs.

subjected to three rapid cycles of vacuum/nitrogen backfill^{††}, the ice bath removed and the reaction stirred for 12 hours while warming to room temperature. The reaction was quenched with H₂O (2.0 mL), the aqueous layer was separated and extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with a saturated aqueous solution of brine, dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography (neutralized silica gel: 50% EtOAc in hexanes) followed by flash chromatography (silica gel, gradient elution: 50% EtOAc/hexanes with 1% AcOH to 100% EtOAc with 3% NEt₃) to afford the title compound as a yellow oil (43 mg, 0.13 mmol, 53% yield). IR v_{max}/cm^{-1} (film): 3029, 2924, 1563, 1547, 1378, 1193, 1181, 713; ¹H NMR (400 MHz, CDCl₃) δ : 8.56 (1H, br), 8.44 (2H, d, *J* = 4.8 Hz), 8.22 (1H, br), 7.39–7.15 (5H, m), 7.06 (1H, d, *J* = 5.0 Hz), 6.88 (1H, t, *J* = 4.8 Hz), 4.36 (2H, s), 4.16 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 171.4, 157.2, 149.9, 148.3, 148.1, 135.2, 130.5, 128.8, 128.7, 127.7, 119.9, 116.6, 36.3, 30.5; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 325.1, C₁₇H₁₆N₃S₂⁺ requires 326.1.

3-((pyrimidin-2-ylthio)methyl)pyridin-4-amine (3c)

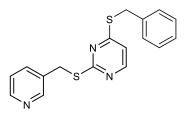


An oven dried 8 mL vial with a stir bar and septa cap was charged with triphenyl(3–((pyrimidin– 2–ylthio)methyl)pyridin–4–yl)phosphonium trifluoromethanesulfonate (153 mg, 0.25 mmol), sodium azide (20 mg, 0.31 mmol), and placed under a nitrogen atmosphere. DMSO (167 µL) was added, the cap was wrapped with parafilm and the reaction mixture was heated overnight at 120 °C. The reaction was cooled to room temperature, diluted with EtOAc (2 mL), and a saturated aqueous solution of NaHCO₃ (2 mL). The aqueous layer was extracted a further three times with EtOAc (2 mL) and the combined organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo* into an oven dried 8 mL vial equipped with a stir bar. The residue was subjected to three


^{††} Vacuum was applied very briefly (less than a second) using a Schlenk manifold so that negligible solvent loss occurs.

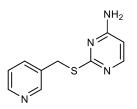
cycles of vacuum/nitrogen backfill before addition of a 9:1 solution of DMF and H₂O (250 µL). The reaction mixture was stirred at 100 °C overnight before being cooled to room temperature and concentrated *in vacuo*. The residue was purified by flash column chromatography (neutralized silica gel, gradient elution: 3% MeOH in CH₂Cl₂ to 7.5% MeOH in CH₂Cl₂) followed by filtration through a plug of basic alumina eluting with 100% EtOAc and then 10% MeOH in CH₂Cl₂ to afford the title compound as a yellow oil (31 mg, 0.14 mmol, 57% yield). IR v_{max}/cm^{-1} (film): 3339, 3207, 3034, 2927, 1598, 1584, 1548, 1379, 1183, 906, 727; ¹H NMR (400 MHz, CDCl₃) δ : 8.55 (2H, d, *J* = 4.8 Hz), 8.26 (1H, s), 8.11 (1H, d, *J* = 5.6 Hz), 7.01 (1H, t, *J* = 4.9 Hz), 6.50 (1H, d, *J* = 5.6 Hz), 4.89 (2H, br), 4.37 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 171.9, 157.3, 151.7, 150.9, 149.0, 116.8, 116.6, 109.9, 29.7; *m*/*z* LRMS (ESI + APCI) found [M + H]⁺ 219.1, C₁₀H₁₁N₄S⁺ requires 219.1.

2-(((pyridin-3-yl-4-d)methyl)thio)pyrimidine (3d)

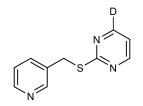

An oven–dried 8 mL vial equipped with a stir bar was charged with the triphenyl(3–((pyrimidin– 2–ylthio)methyl)pyridin–4–yl)phosphonium trifluoromethanesulfonate (153 mg, 0.25 mmol), K₂CO₃ (52 mg, 0.38 mmol), and placed under a nitrogen atmosphere. CD₃OD:D₂O 9:1 (750 µL) was added at room temperature and the reaction was stirred for 12 hours. The reaction mixture was diluted with CH₂Cl₂ (2 mL) and the mixture was dried (MgSO4), filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography (silica gel, gradient elution: 50% EtOAc in hexanes with 1% AcOH to 75% EtOAc in hexanes with 3% NEt₃) to afford the title compound as a colorless oil (38 mg, 0.19 mmol, 75% yield). IR v_{max}/cm⁻¹ (film): 3659, 3589, 3034, 2956, 2921, 1564, 1548, 1381, 1203, 651; ¹H NMR (400 MHz, CDCl₃) δ : 8.73 (1H, br), 8.60–8.43 (3H, m), 7.33–7.18 (1H, m), 6.99 (1H, t, *J* = 4.9 Hz), 4.41–4.35 (0.58H, m); ¹³C NMR (100 MHz, CDCl₃) δ : 171.3, 157.3, 150.3, 148.4, 136.1 (t, *J* = 25.3 Hz), 133.8, 123.3, 116.8, 32.2; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 207.1, C₁₀H₂DN₃S⁺ requires 205.1 4-((1-benzhydrylazetidin-3-yl)methoxy)-2-((pyridin-3-ylmethyl)thio)pyrimidine (4a)

An oven dried 8 mL vial with a stir bar and septa cap was charged with sodium hydride (60% dispersion in mineral oil, 1.5 equiv) and placed under a nitrogen atmosphere. THF (250 µL) was added, the suspension was cooled to 0 °C and a solution of (1-benzhydrylazetidin-3-yl)methanol (95 mg, 0.38 mmol) in THF (250 µL) was added dropwise over 5 minutes. The reaction was stirred for 30 minutes before the septa cap was briefly removed and triphenyl(2-((pyridin-3vlmethyl)thio)pyrimidin-4-yl)phosphonium trifluoromethanesulfonate (153 mg, 0.25 mmol) was added in one portion. The reaction was subjected to three rapid cycles of vacuum/nitrogen backfill^{‡‡}, the ice bath removed, and the reaction stirred for 12 hours while warming to room temperature. The reaction was quenched with H₂O (2.0 mL), the aqueous layer was separated and extracted with Et₂O (3 x 10 mL). The combined organic extracts were washed with a saturated aqueous solution of brine, dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (neutralized silica gel: 50% EtOAc in Hexanes to 60% EtOAc in hexanes) to provide title compound as a yellow oil (77 mg, 0.17 mmol, 68% yield); IR v_{max}/cm⁻¹ (film): 3058, 3026, 2951, 2831, 1710, 1551, 1440, 1316, 1230; ¹H NMR (400 MHz, CDCl₃) δ: 8.69–8.68 (1H, d, *J* = 1.7 Hz), 8.49 (1H, dd *J* = 4.7, 1.2 Hz), 8.21 (1H, d, *J* = 5.7 Hz), 7.77 (1H, dt, J = 7.8, 3.7 Hz), 7.41–7.39 (4H, m), 7.28–7.16 (7H, m), 6.37 (1H, d, J = 5.7 Hz), 4.46 (2H, d, J = 7.0 Hz), 4.37–4.34 (3H, m), 3.29 (2H, t, J = 7.5 Hz), 2.97 (2H, t, J = 13.1 Hz), 2.87-2.79 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ: 170.2, 168.6, 157.1, 150.0, 148.3, 141.9, 136.2, 133.8, 128.3, 127.3, 127.0, 123.2, 104.2, 77.8, 68.6, 56.0, 32.2, 28.7; *m/z* LRMS (ESI + APCI) found $[M + H]^+$ 455.2, $C_{27}H_{27}N_4OS^+$ requires 455.2.

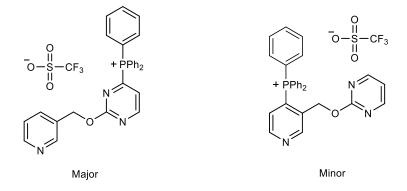
^{‡‡} Vacuum was applied very briefly (less than a second) using a Schlenk manifold so that negligible solvent loss occurs.


4-(benzylthio)-2-((pyridin-3-ylmethyl)thio)pyrimidine (4b)

An oven dried 8 mL vial with a stir bar and septa cap was charged with sodium hydride (60% dispersion in mineral oil, 1.1 eq) and placed under a nitrogen atmosphere. THF (1.0 mL) was added, the suspension was cooled to 0 °C and benzyl mercaptan (32 µL, 0.28 mmol) was added dropwise over 5 minutes. The reaction was stirred for 30 minutes before the septa cap was briefly triphenyl(2-((pyridin-3-ylmethyl)thio)pyrimidin-4-yl)phosphonium removed and trifluoromethanesulfonate (153 mg, 0.25 mmol) was added in one portion. The reaction was subjected to three rapid cycles of vacuum/nitrogen backfill^{§§}, the ice bath was removed and the reaction stirred for 12 hours while warming to room temperature. The reaction was quenched with H_2O (2.0 mL), the aqueous layer was separated and extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with a saturated aqueous solution of brine (10 mL), dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel: 50% EtOAc in Hexanes) to provide title compound as a yellow oil (66 mg, 0.20 mmol, 81% yield). IR v_{max}/cm⁻¹ (film): 3031, 2929, 1548, 1516, 1314, 904; ¹H NMR (400 MHz, CDCl₃) δ: 8.66 (1H, s), 8.48 (1H, d *J* = 3.7 Hz), 8.14 (1H, d, *J* = 5.4 Hz), 7.74–7.72 (1H, m), 7.36–7.21 (6H, m), 6.82 (1H, d, J = 3.7 Hz), 4.38 (2H, s), 4.36 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ: 170.5, 169.9, 154.5, 150.1, 148.5, 136.5, 136.3, 133.5, 128.8, 128.6, 127.4, 123.3, 114.4, 33.5, 32.2; m/z LRMS (ESI + APCI) found $[M + H]^+$ 326.1, $C_{17}H_{16}N_3S_2^+$ requires 326.1.


^{§§} Vacuum was applied very briefly (less than a second) using a Schlenk manifold so that negligible solvent loss occurs.

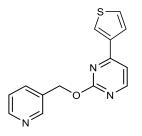
4-((1-benzhydrylazetidin-3-yl)methoxy)-2-((pyridin-3-ylmethyl)thio)pyrimidine (4c)


An oven dried 8 mL vial with a stir bar and septa cap was charged with triphenyl(2-((pyridin-3vlmethyl)thio)pyrimidin-4-yl)phosphonium trifluoromethanesulfonate (153 mg, 0.25 mmol) and sodium azide (13 mg, 0.31 mmol), and placed under a nitrogen atmosphere. DMSO (167 µL) was added, the cap was wrapped with parafilm and the reaction mixture was heated overnight at 120 °C. The reaction was cooled to room temperature, diluted with EtOAc (2 mL), and quenched with a saturated aqueous solution of NaHCO₃ (2 mL). The aqueous layer was extracted a further three times with EtOAc (2 mL) and the combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuo into an oven dried 8 mL vial equipped with a stir bar. The residue was subjected to three cycles of vacuum/nitrogen backfill before addition of a 9:1 solution of DMF and H₂O (250 µL). The reaction mixture was stirred at 100 °C for 44 hours before being cooled to room temperature and concentrated *in vacuo*. The solution was purified by flash chromatography (silica gel: 6% MeOH in CH₂Cl₂) to provide title compound as a white solid (36 mg, 0.16 mmol, 66% yield). mp 114–116 °C; IR v_{max}/cm⁻¹ (film): 3303, 3147, 3029, 1641, 1580, 1540, 1478, 1354, 904; ¹H NMR (400 MHz, CDCl3) δ : 8.67 (1H, s), 8.46 (1H, d, J = 3.6 Hz), 8.04 (1H, d, J = 5.8 Hz), 7.75 (1H, dt, J = 7.9, 3.7 Hz), 7.22 (1H, dd, J = 7.8, 4.8 Hz), 6.12 (1H, d, J = 5.8 Hz), 4.93 (2H, br), 4.33 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ: 170.2, 162.4, 156.0, 150.2, 148.2, 136.4, 134.3, 123.3, 101.2, 32.0; m/z LRMS (ESI + APCI) found $[M + H]^+$ 219.1, $C_{10}H_{11}N_4S^+$ requires 219.1.

2-((pyridin-3-ylmethyl)thio)pyrimidine-4-d (4d)

An oven dried 8 mL vial was charged with K₂CO₃ (52 mg, 0.38 mmol) and triphenyl(2–((pyridin– 3–ylmethyl)thio)pyrimidin–4–yl)phosphonium trifluoromethanesulfonate (153 mg, 0.25 mmol) and subjected to three rapid vacuum/nitrogen backfills. CD₃OD:D₂O 9:1 (750 µL) was added at room temperature and the reaction was stirred for 12 hours. The solution was then diluted with CH₂Cl₂ (2 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was purified by flash chromatography (neutralized silica gel: 50% EtOAc in Hexanes) to provide title compound as a yellow oil (37.6 mg, 0.19 mmol, 74% yield); IR v_{max}/cm⁻¹ (film): 3385, 3029, 2923, 1730, 1534, 1403, 1329, 1205; ¹H NMR (400 MHz, CDCl₃) δ : 8.71 (1H, s), 8.53 (1H, d, *J* = 4.8 Hz), 8.47 (1H, d, *J* = 4.2 Hz), 7.77 (1H, d, *J* = 7.8 Hz), 7.23 (1H, dd, *J* = 7.8, 4.8 Hz), 6.98 (1H, d, *J* = 4.8 Hz), 4.38 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 171.2, 157.2, 159.9 (t, *J* = 27.9 Hz), 150.3, 148.3, 136.3, 133.7, 123.2, 116.6, 32.2; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 205.1, C₁₀H₉DN₃S⁺ requires 205.1.

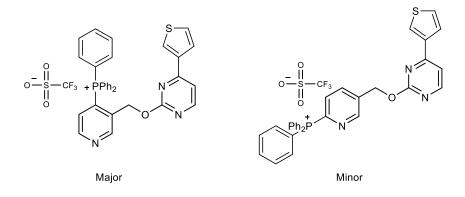
Triphenyl(2–(pyridin–3–ylmethoxy)pyrimidin–4–yl)phosphonium trifluoromethanesulfonate (2v)



>20:1 (Major:Minor) Mixture of Isomers

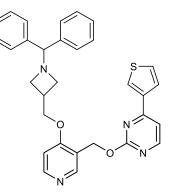
Prepared according to general procedure C using 2–(pyridin–3–ylmethoxy)pyrimidine (190 mg, 1.01 mmol), Tf₂O (342 μ L, 2.02 mmol), PPh₃ (531 mg, 2.02 mmol), Et₃N (282 μ L, 2.02 mmol) and CH₂Cl₂ (10.1 mL). After the purification procedure, the title compound was isolated as a red amorphous solid (388 mg, 0.65 mmol, 64% yield); IR v_{max}/cm⁻¹ (film): 3063, 1559, 1545, 1437, 1420, 1356, 1259, 1149, 1029, 726, 634; ¹H NMR (400 MHz, CDCl₃) δ : 9.05 (1H, dd, *J* = 7.8, 5.0

Hz), 8.60–8.59 (2H, m), 7.91–7.67 (17H, m), 7.31 (1H, dd, J = 7.8, 4.7 Hz), 5.45 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 164.7 (d, J = 19.5 Hz), 163.5 (d, J = 8.5 Hz), 156.5, 155.4, 149.2, 136.2, 136.1 (d, J = 3.0 Hz), 134.7 (d, J = 10.4 Hz), 130.7 (d, J = 13.1 Hz), 123.6, 122.0 (d, J = 20.5 Hz), 120.7 (q, J = 321.1 Hz), 115.1 (d, J = 89.1 Hz), 67.8; ¹⁹F NMR (365 MHz, CDCl₃) δ : – 78.21; ³¹P NMR (162 MHz, CDCl₃) δ : 16.31; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 448.2, C₂₈H₂₃N₃OP⁺ requires 448.2.


2-(pyridin-3-ylmethoxy)-4-(thiophen-3-yl)pyrimidine

An oven dried 8 mL vial was charged with triphenyl(2–((pyridin–3–ylmethyl)thio)pyrimidin–4– yl)phosphonium trifluoromethanesulfonate (152.0 mg, 0.25 mmol) and 3-thienylboronic acid (65.1 mg, 0.508 mmol) and added to a glovebox. Bis(1,5-cyclooctadiene)nickel(0) (7.0 mg, 0.025 mmol), SiPRHCl (11.0 mg, 0.025 mmol), sodium tertbutoxide (2.5 mg, 0.025 mmol), potassium phosphate tribasic (107.8 mg, 0.508 mmol) and 4A molecular sieves (170.5 mg) were added to the vial and sealed. The sealed vial was taken out of the glove box and THF (2.5 mL) was added. The solution stirred at room temperature for 20 min before being heated to 70°C for 24 hours. The solution was cooled to room temperature and quench with water. The organic layer was separated from the aqueous and the aqueous was extracted three times with CH₂Cl₂. The organic layers were combined, washed with brine once, dried (MgSO₄), filtered and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel: 100% EtOAc) followed by flash chromatography (silica gel: 90% EtOAc in Hexanes with 1% AcOH) to provide title compound as a yellow oil (33.6 mg, 0.12 mmol, 50% yield); IR v_{max}/cm^{-1} (film): 3090, 2954, 2923, 1574, 1448, 1429, 1409, 1347, 1314, 1262, 1021, 786, 711; ¹H NMR (400 MHz, CDCl₃) δ: 8.78 (1H, s), 8.57 (1H, d, J = 4.8 Hz), 8.51 (1H, d, J = 5.2 Hz), 8.13 (1H, dd, J = 2.3, 1.2 Hz), 7.89 (1H, d, J = 7.8 Hz), 7.67 (1H, dd, J = 5.1, 1.1 Hz), 7.41–7.40 (1H, m), 7.32 (1H, dd, J = 7.8, 4.9 Hz), 7.22–7.21

(1H, m), 5.52 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ: 164.9, 162.1, 159.8, 149.7, 149.4, 139.5, 136.0, 132.3, 127.4, 126.9, 126.0, 123.4, 111.0, 66.4; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 270.1, C₁₄H₁₂N₃OS requires 270.1.


triphenyl(3-(((4-(thiophen-3-yl)pyrimidin-2-yl)oxy)methyl)pyridin-4-yl)phosphonium trifluoromethanesulfonate (2va)

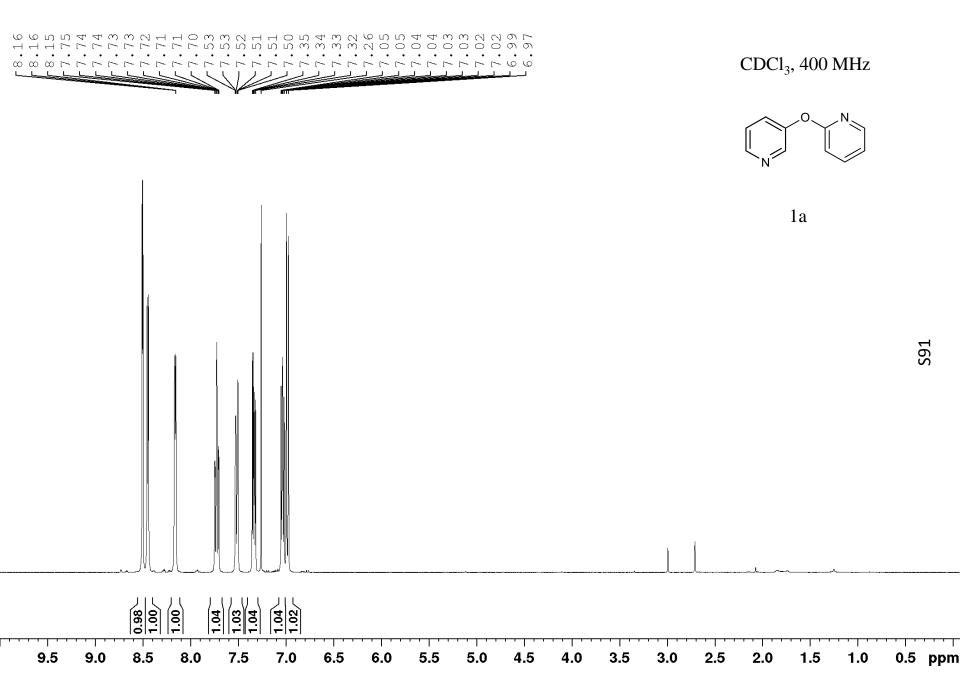
20:1 (Major:Minor) Mixture of Isomers

Prepared according to general procedure D (except that the reaction was stirred at -50 °C) using 2–(pyridine–3–ylmethoxy)–4–(thiophen–3–yl)pyrimidine (195.7 mg, 0.73 mmol), Tf₂O (123 µL, 0.73 mmol), PPh₃ (209.6 mg, 0.80 mmol), DBU (109 µL, 0.73 mmol) and CH₂Cl₂ (7.3 mL). After the purification procedure, the title compound was isolated as white solid (445 mg, 0.66 mmol, 90% yield); IR v_{max}/cm⁻¹ (film): 3090, 3061, 1576, 1558, 1438, 1417, 1260, 1222, 1149, 1105, 1029, 721, 636; ¹H NMR (400 MHz, CDCl₃) δ : 9.14 (1H, app d, *J* = 6.6 Hz), 8.91 (1H, app t, *J* = 4.6 Hz), 8.23 (1H, d, *J* = 5.2 Hz), 7.86 (1H, d, *J* = 1.5 Hz), 7.81–7.64 (15H, m), 7.40–7.35 (2H, m), 7.28 (1H, dd, *J* = 15.5, 5.0 Hz), 7.19 (1H, d, *J* = 5.2 Hz), 5.02 (2H, s); ¹³C NMR (100 MHz, CDCl₃) δ : 163.0, 161.6, 159.4, 152.9 (d, *J* = 7.7 Hz), 151.6 (d, *J* = 10.5 Hz), 138.7, 135.7 (d, *J* = 3.0 Hz), 134.7 (d, *J* = 5.6 Hz), 134.2 (d, *J* = 10.5 Hz), 130.6 (d, *J* = 13.1 Hz), 128.7 (d, *J* = 9.3 Hz), 127.6, 126.9, 126.5 (d, *J* = 81.4 Hz), 125.7, 120.7 (q, *J* = 321.2 Hz), 116.1 (d, *J* = 89.2 Hz), 111.6, 64.6 (d, *J* = 4.2 Hz); ¹⁹F NMR (365 MHz, CDCl₃) δ : -78.04; ³¹P NMR (162 MHz, CDCl₃) δ : 22.73; *m/z* LRMS (ESI + APCI) found [M – OTf]⁺ 530.2, C₂₇H₂₅NP⁺ requires 530.1.

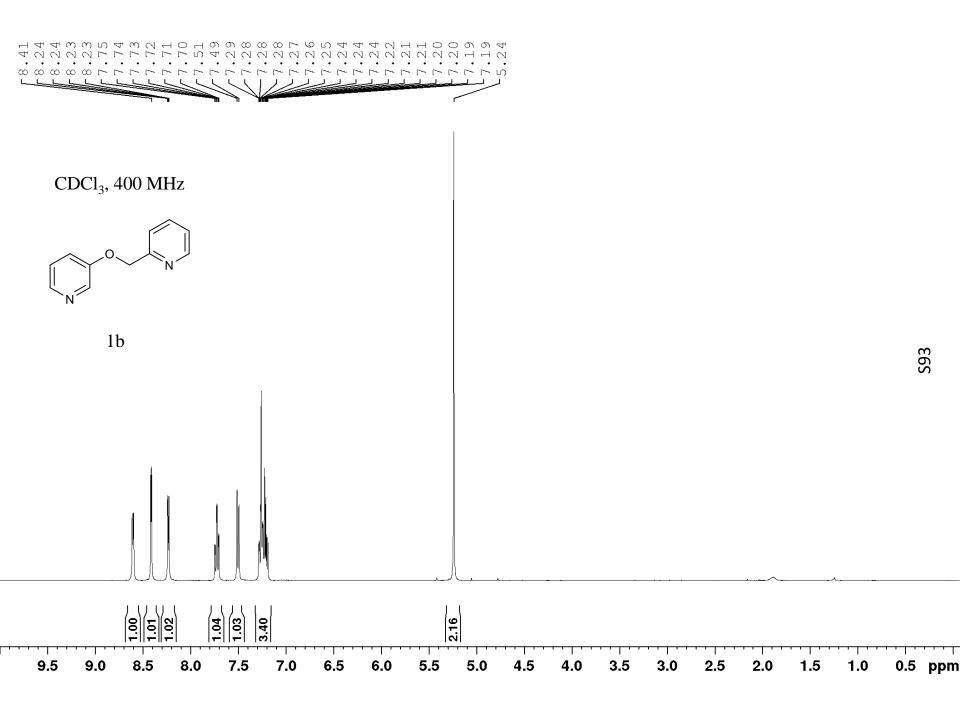
2-((4-((1-benzhydrylazetidin-3-yl)methoxy)pyridin-3-yl)methoxy)-4-(thiophen-3-yl)pyrimidine (6)

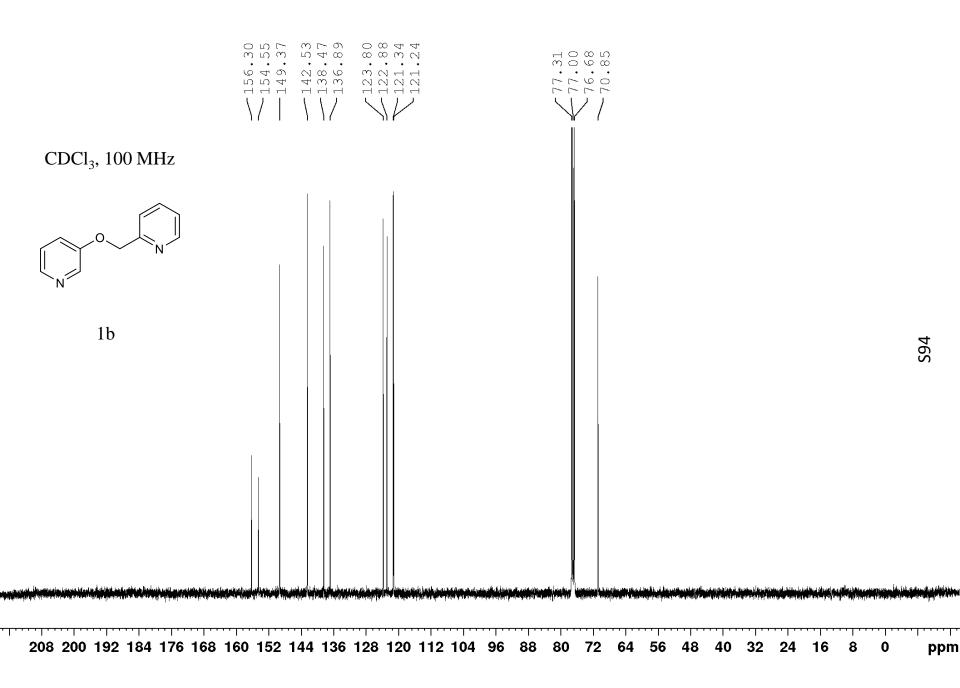
An oven dried 8 mL vial with a stir bar and septa cap was charged with sodium hydride (60% dispersion in mineral oil, 1.5 eq.) and placed under a nitrogen atmosphere. THF (375 µL) was added, the suspension was cooled to 0 °C and a solution of (1-benzhydrylazetidin-3-yl)methanol (57 mg, 0.255 mmol) in THF (375 µL) was added dropwise over 5 minutes. The reaction was stirred for 30 minutes before the septa cap was briefly removed and triphenyl(3-(((4-(thiophen-3-yl)pyrimidin-2-yl)oxy)methyl)pyridin-4-yl)phosphonium trifluoromethanesulfonate (102 mg, 0.15 mmol) was added in one portion. The reaction was subjected to three rapid cycles of vacuum/nitrogen backfill^{***}, the ice bath removed, and the reaction stirred for 12 hours at 40°C. The reaction was quenched with H₂O (2.0 mL), the aqueous layer was separated and extracted with Et₂O (10 mL x 3). The combined organic extracts were washed with a saturated aqueous solution of brine, dried (MgSO₄), filtered and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel: 90% EtOAc in Hexanes) to provide the title compound as a white solid (39 mg, 0.08 mmol, 50% yield); IR v_{max}/cm^{-1} (film): 3027, 2952, 2839, 1594, 1576, 1412, 1341, 1269, 906, 727, 704; ¹H NMR (400 MHz, CDCl₃) δ: 8.61 (1H, s), 8.47– 8.46 (2H, m), 8.12 (1H, dd, J = 2.9, 1.2 Hz), 7.67 (1H, dd, J = 5.1, 1.2 Hz), 7.39–7.32 (5 H, m), 7.23–7.12 (7H, m), 6.81 (1H, d, J = 5.7 Hz), 5.55 (2H, s), 4.28 (1H, s), 4.18 (2H, d, J = 6.0 Hz), 3.26 (2H, t, J = 7.8 Hz), 3.05 (2H, t, J = 7.8 Hz), 2.88 (1H, m);¹³C NMR (100 MHz, CDCl₃) δ: 165.2, 163.2, 162.0, 159.6, 151.6, 151.1, 141.9, 139.6, 128.3, 127.4, 127.3, 127.0, 126.7, 126.0,

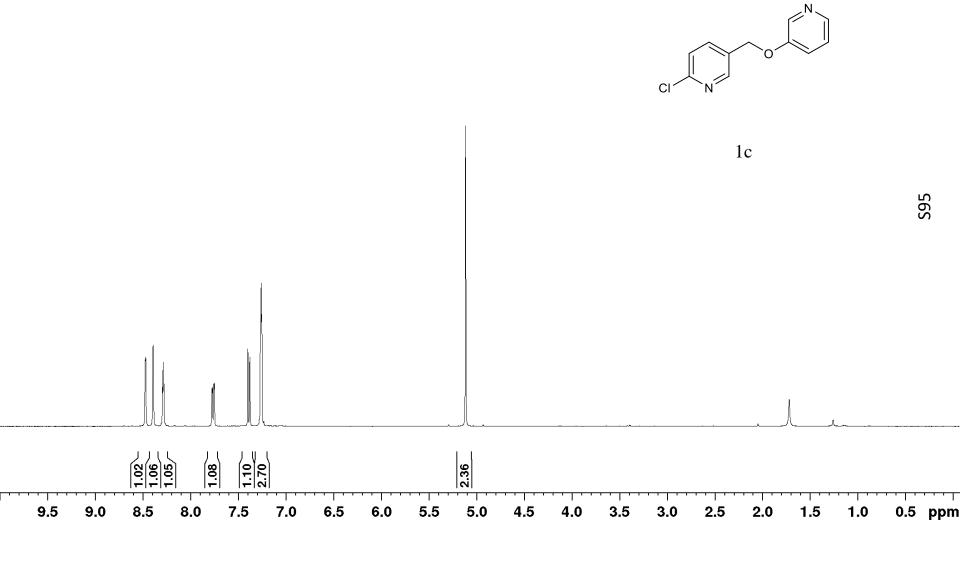
^{***} Vacuum was applied very briefly (less than a second) using a Schlenk manifold so that negligible solvent loss occurs.

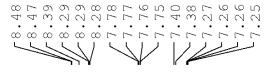

120.8, 110.8, 106.6, 77.9, 69.3, 62.4, 55.5, 29.0; *m/z* LRMS (ESI + APCI) found [M + H]⁺ 521.3, C₃₁H₂₉N₄O₂S⁺ requires 520.2.

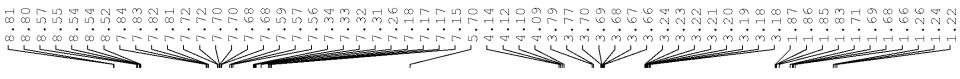
8. References


S1. D. D. Perrin, W. L. F. Amarego, Purification of Laboratory Chemicals (Pergamon, Press, Oxford. ed. 3, 1988).

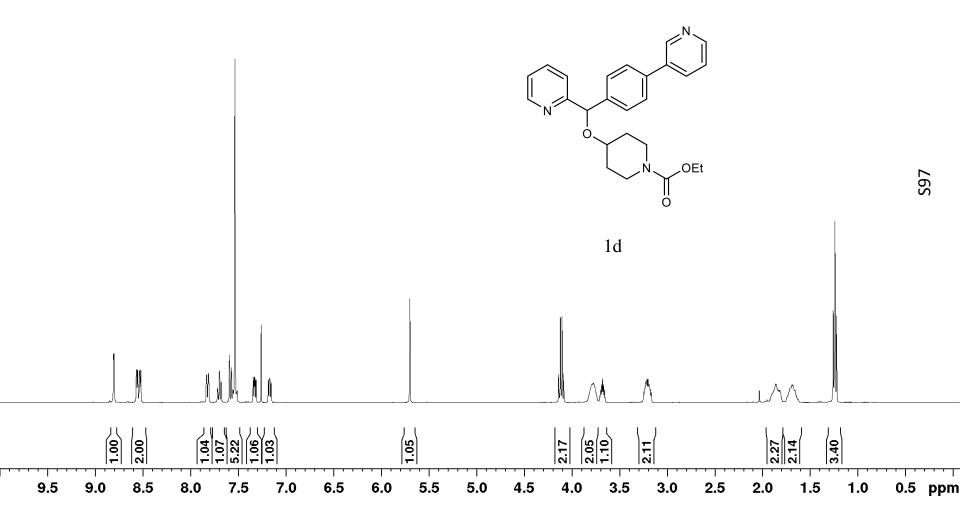

S2. Kundu, D.; Tripathy, M.; Maity, P.; Ranu, B. C. Cobalt–Catalyzed Intermolecular C(sp²)–O Cross–Coupling. *Chem. Eur. J.* 2015, 21, pp. 8727–8732.


S3. Gao, M.; Wang, M.; Zheng, Q–H. Synthesis of [¹¹C]MK–1064 as a new PET radioligand for imaging of orexin–2 receptor. *Bioorg. Med. Chem. Lett.* 2016, 26, 3694–3699.

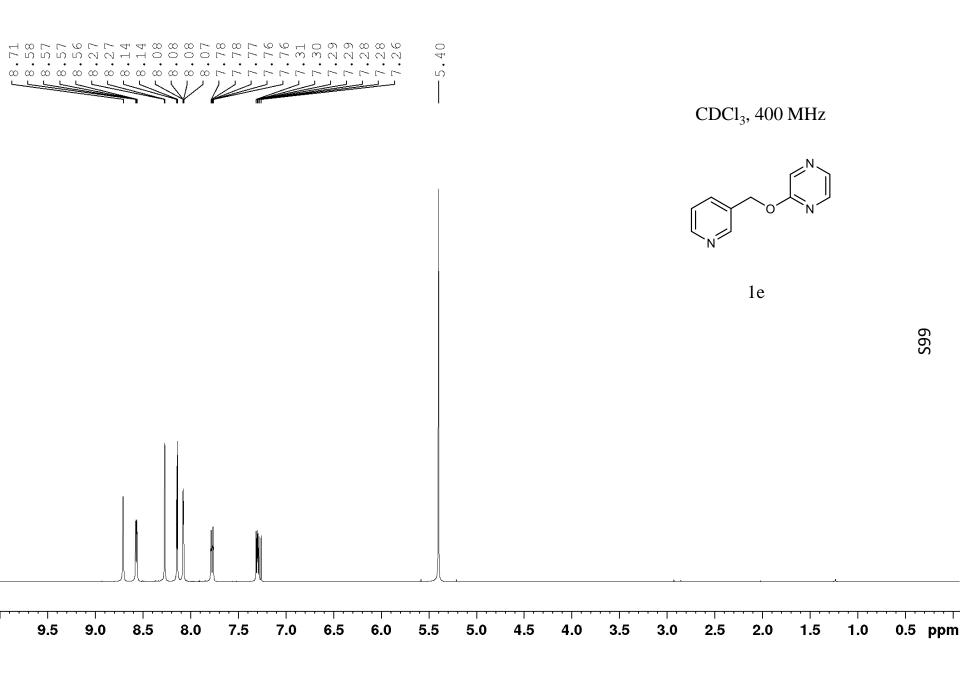

	150.35 147.18 145.40 145.40 139.51	128.37 - 123.69 - 118.90 - 111.55	$\overbrace{76.68}^{77.31}$	$CDCl_3$, 100 MHz
			١	1a 65
				L
200 192 184 176 168 160	152 144 136	128 120 112 104	96 88 80 72 64	56 48 40 32 24 16 8 pp

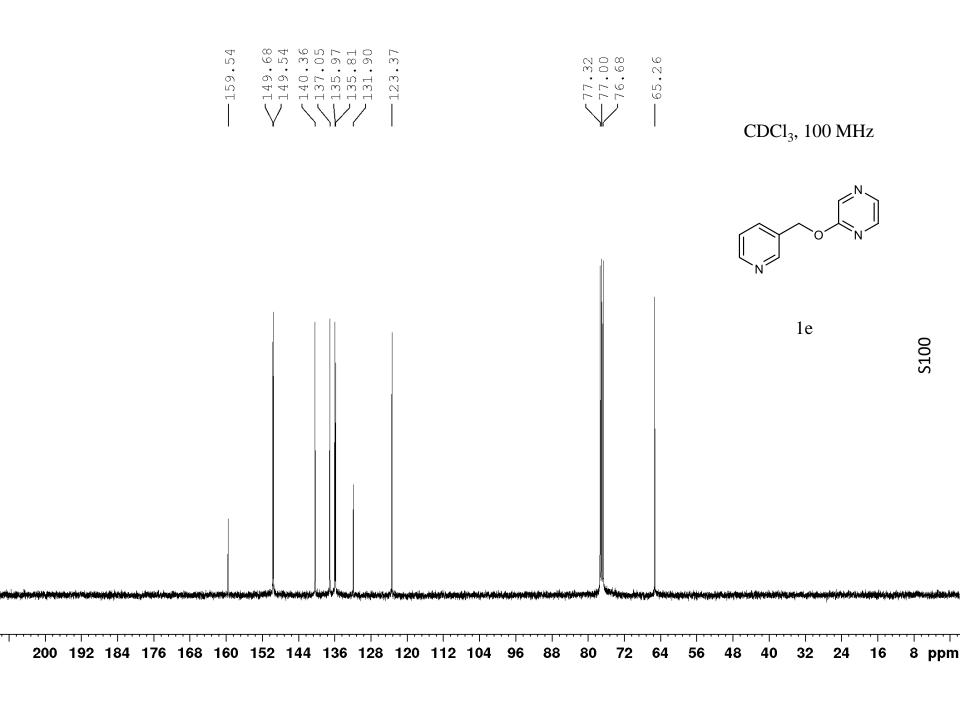


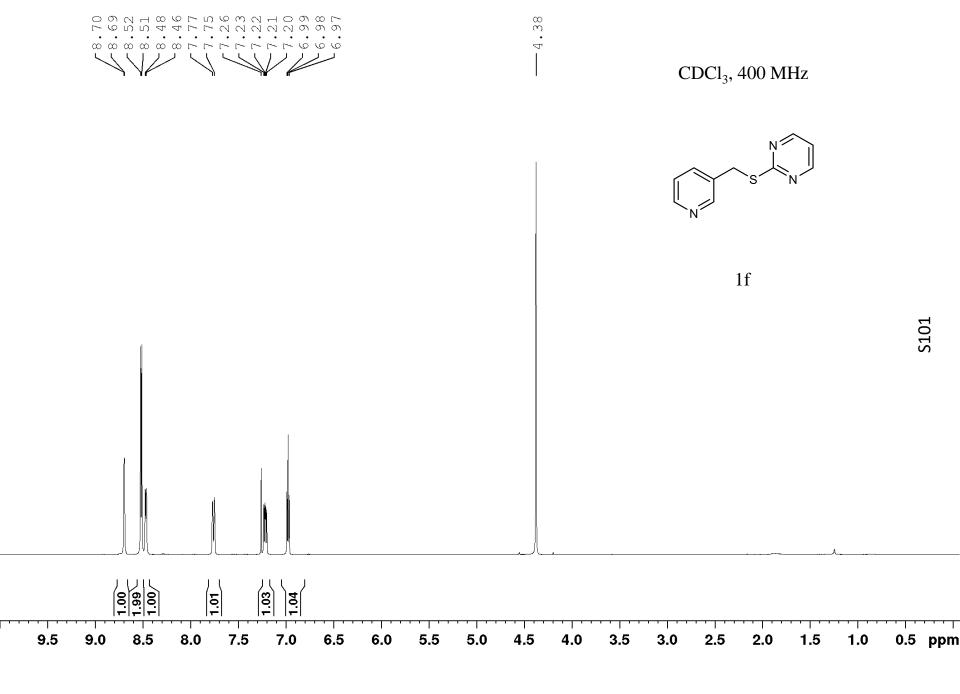
-5.11

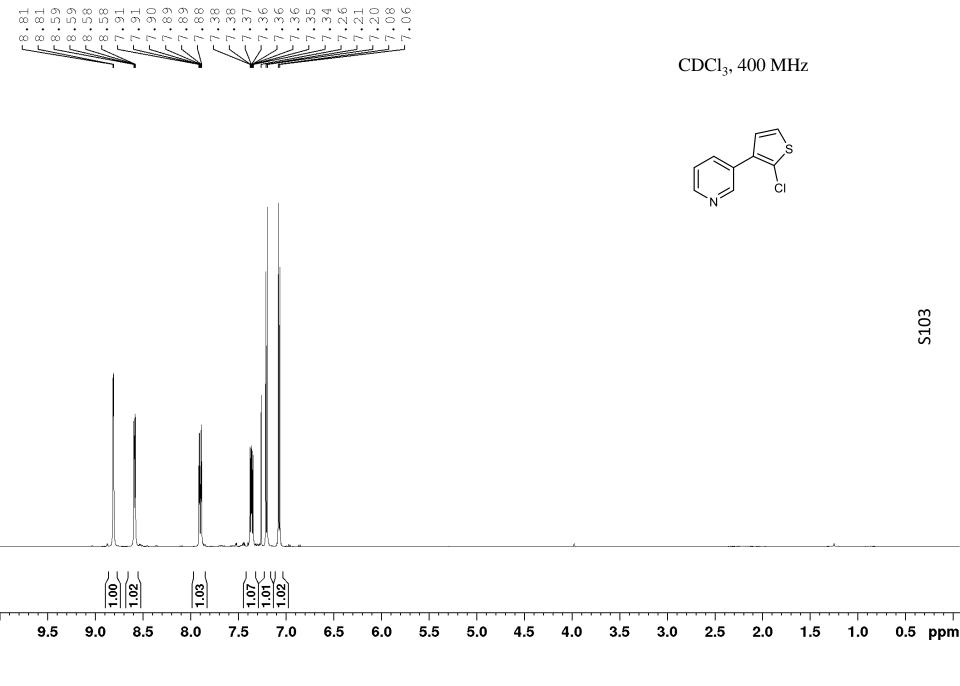


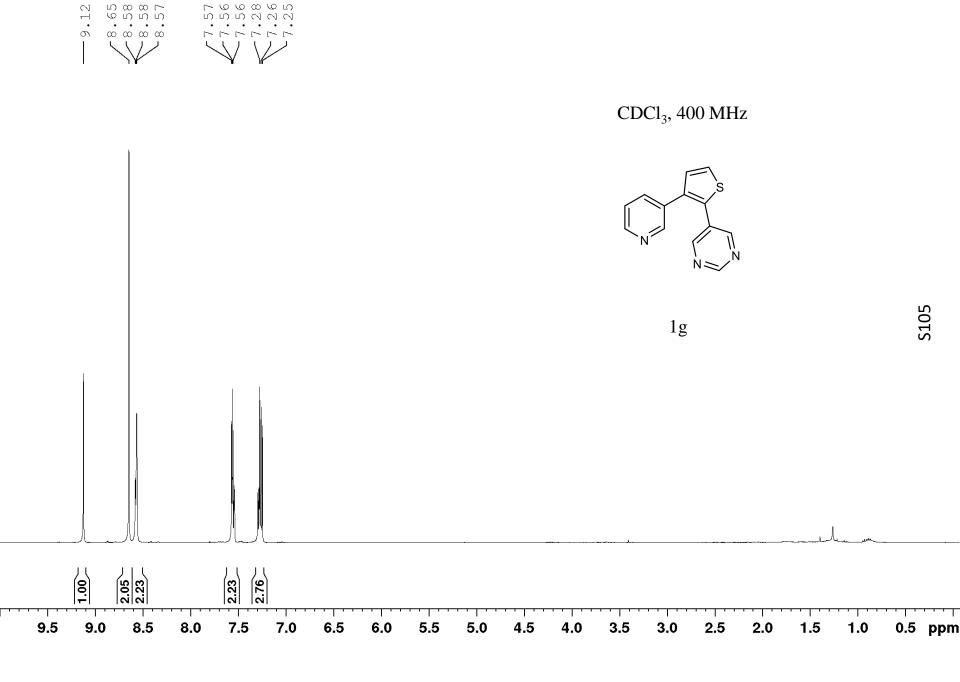
CDCl₃, 400 MHz

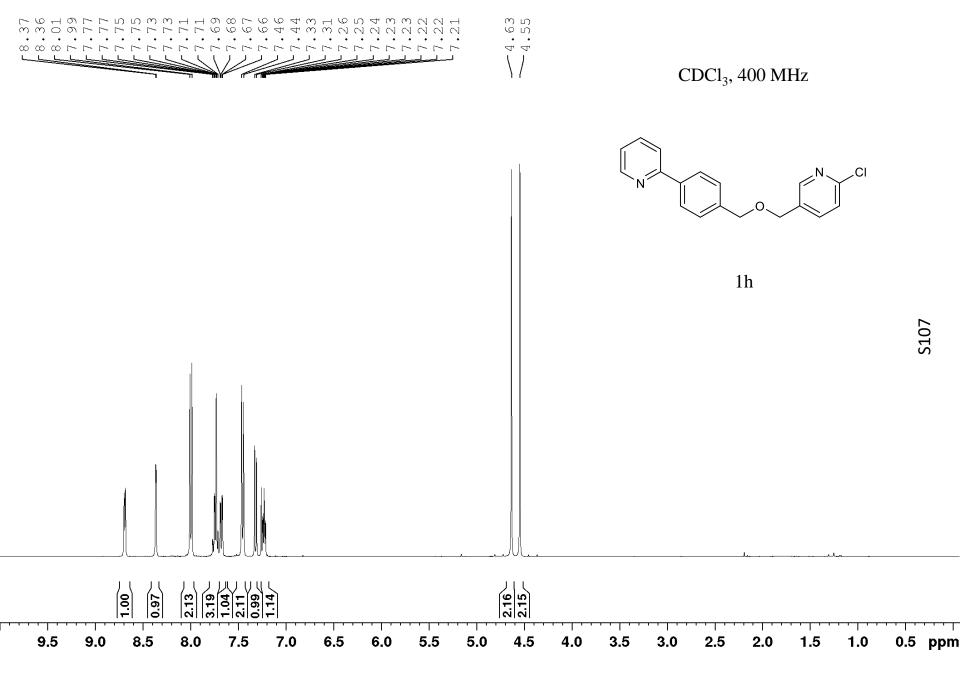

	$ - 130.70 \\ 124.34 \\ 123.91 \\ 121.51 $	$\overbrace{76.68}^{77.32}$		
			CDCl ₃ , 100 MHz	
			1c	296

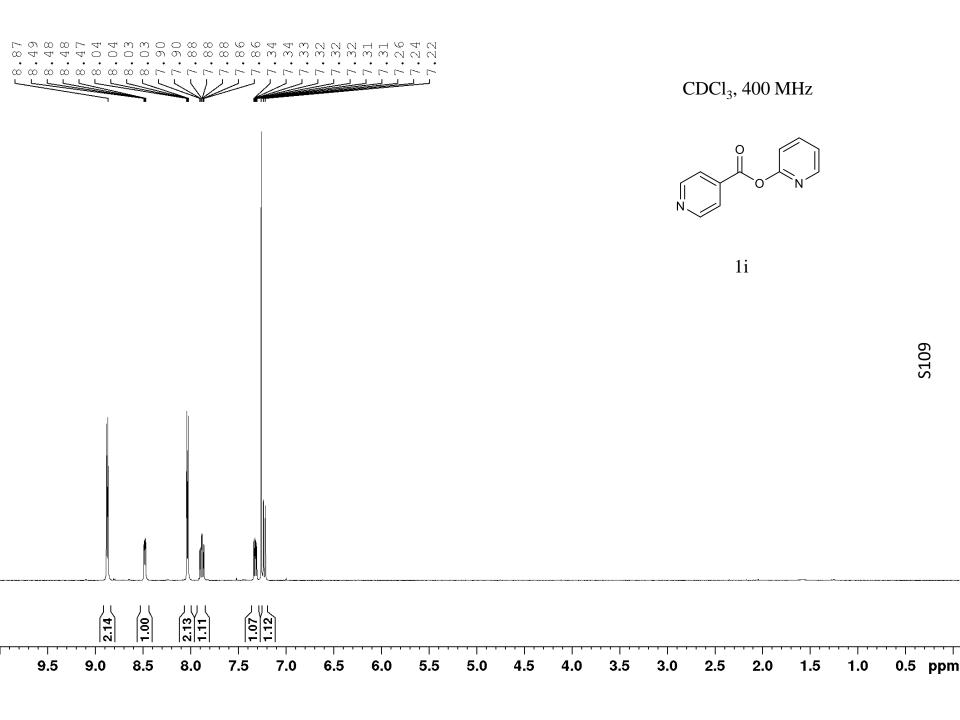


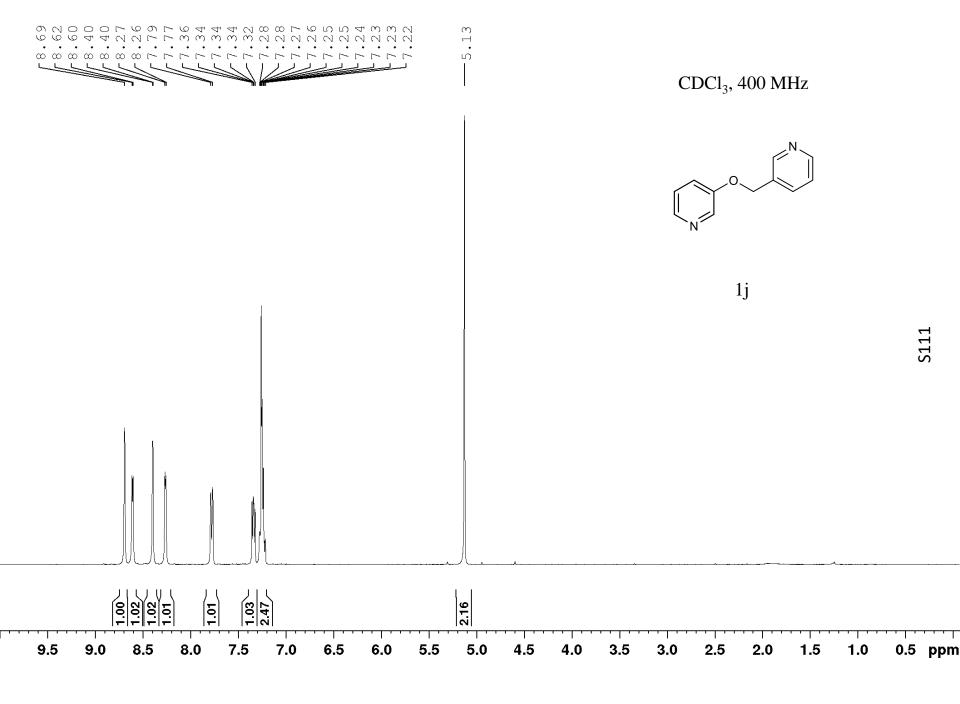

 $CDCl_3$, 400 MHz

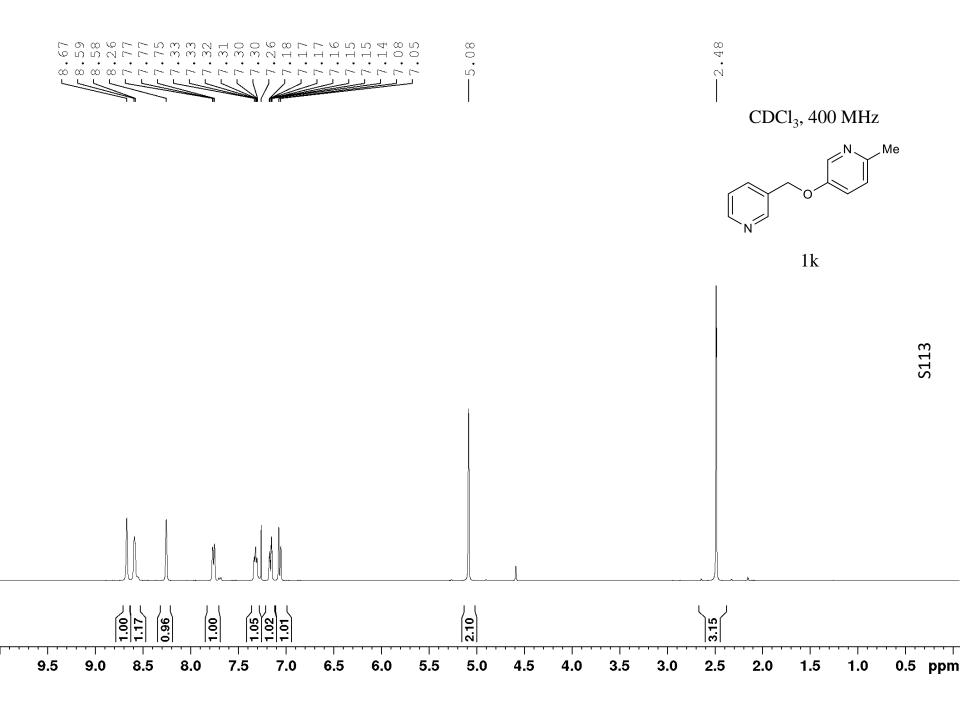

$CDCl_{3}, 100 \text{ MHz}$		$\begin{array}{c} 161.97\\ 155.45\\ 148.90\\ 148.90\\ 148.60\\ 148.20\\ 148.20\\ 136.87\\ 134.14\\ 136.87\\ 136.87\\ 134.14\\ 127.14\\ 127.14\\ 127.14\\ 127.14\\ 122.43\\ 120.58\end{array}$	$ \begin{array}{c} 81.28 \\ 77.31 \\ 77.31 \\ 76.68 \\ 72.49 \\ 72.49 \\ 61.17 \end{array} $	< 41.01 40.97 - 31.01	
⁶ ^N ^O ^O ^{Et}	CDCl ₃ , 100 MHz				
1d		OEt			S98
	1d				

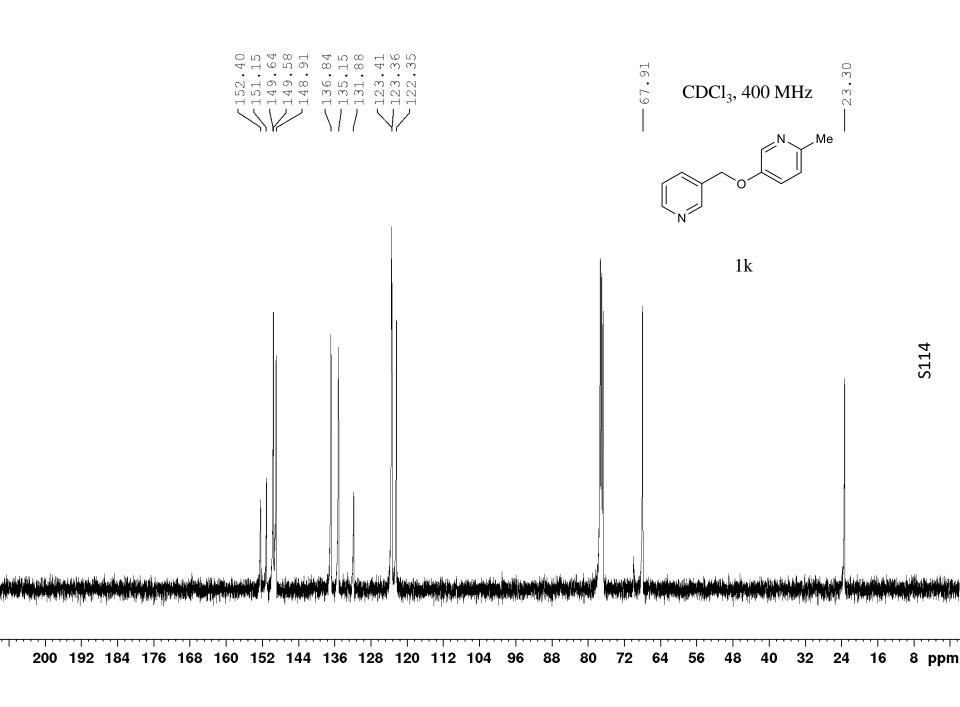


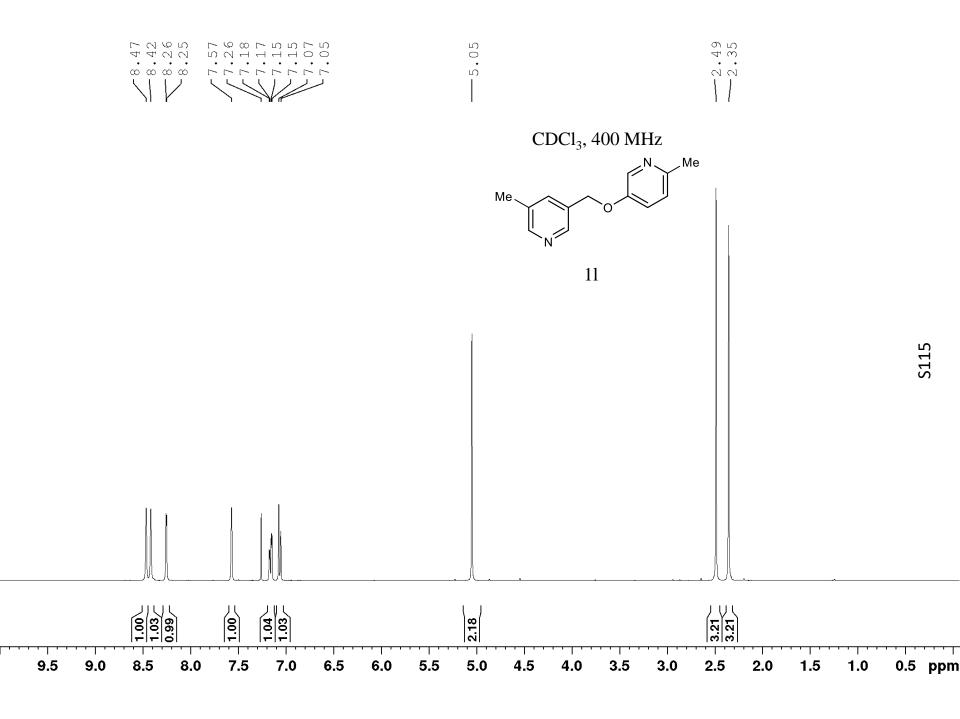

$CDCI_{3}, 100 \text{ MHz}$	 	123.27 116.78 77.31 77.31 $77.6.68$	32.21
			CDCl ₃ , 100 MHz
f و و و و و و و و و و و و و و و و و و و			S N N
			1f

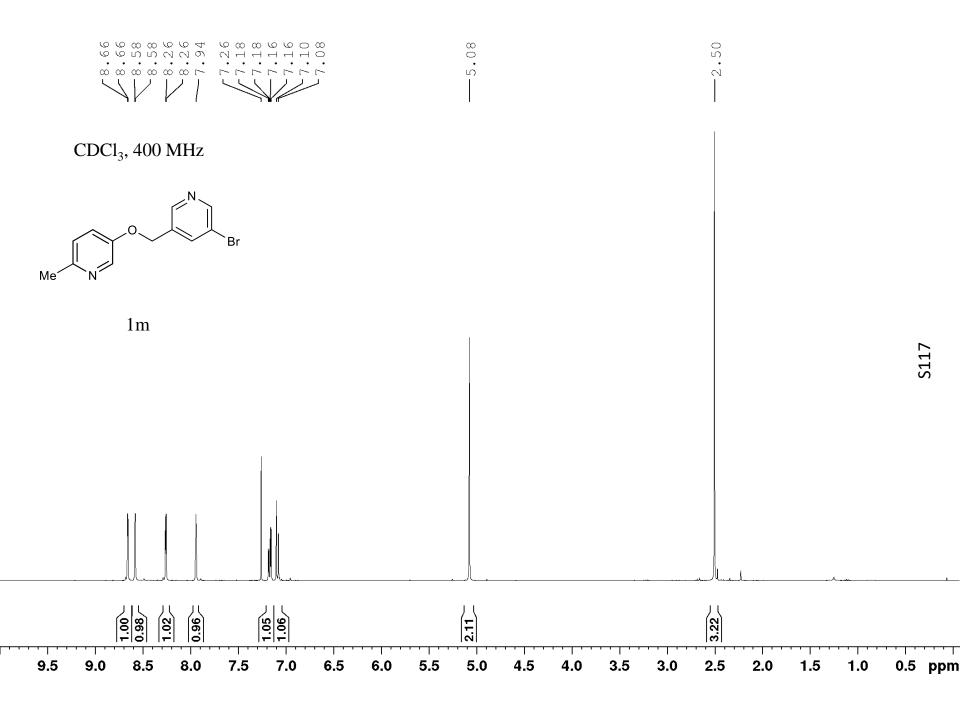

$ \begin{array}{c} & 149.29 \\ & 148.59 \\ & 134.78 \\ & 134.78 \\ & 127.82 \\ & 123.20 \\ & 123.20 \end{array} $	$\stackrel{66}{\sim} \stackrel{.}{}_{2} $	
	$CDCI_3, 100 MHZ$	
		S104

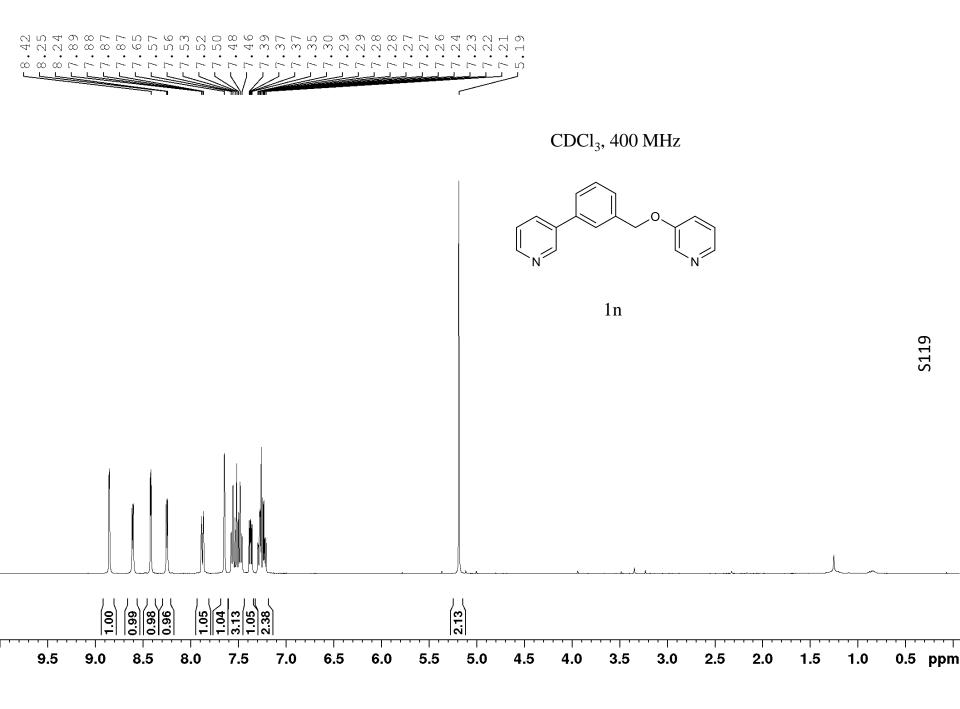

✓ 157.37 156.26	149.66 148.82 137.01 131.59 131.59 131.10 131.10 128.37 128.37 127.17] • • •	77.31 76.99 76.68	CDCl ₃ , 100) MHz	
					S N	
				1g		S106
200 192 184 176 168 160 1	52 144 136 128 120	112 104 96	······································	2 64 56 48		16 8 ppn

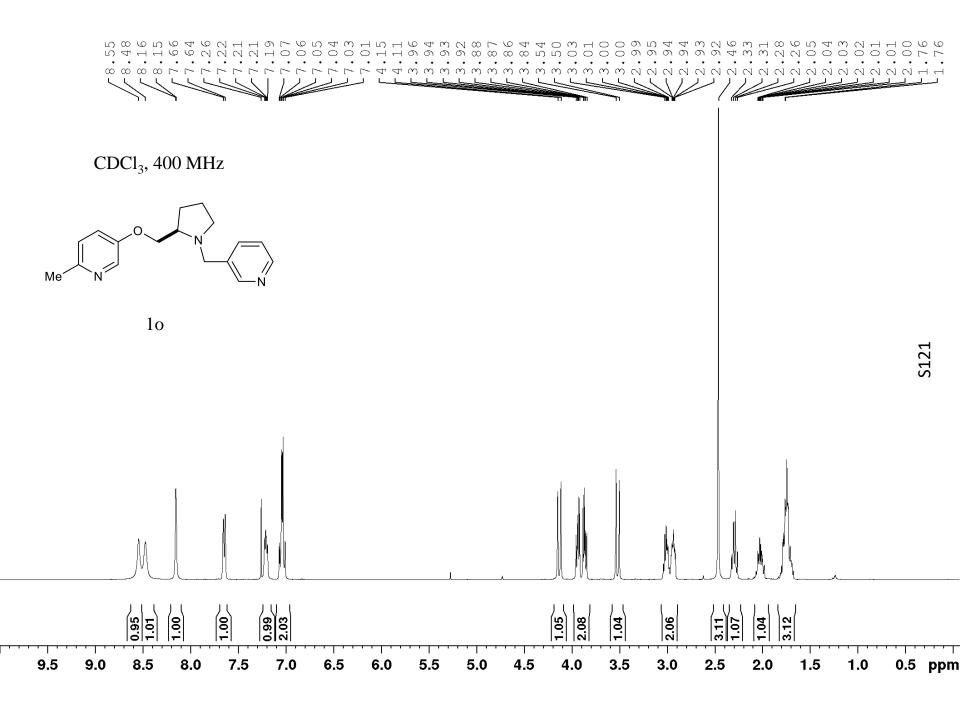

	156.94 150.72 149.65 148.85 139.06 138.24	1 - 0 0 0	124 · 0 122 · 0	120.4		76.68	89						
								CI	DCl ₃ ,	100 1	MHz		
										0	N	CI	
										1h			S108
200 192 184 176 168	160 152 144 1		 		 , , , , , , , , , , , , , , , , , , ,	 72		··· ₁ 56	 48			 16	••••••••••••••••••••••••••••••••••••••

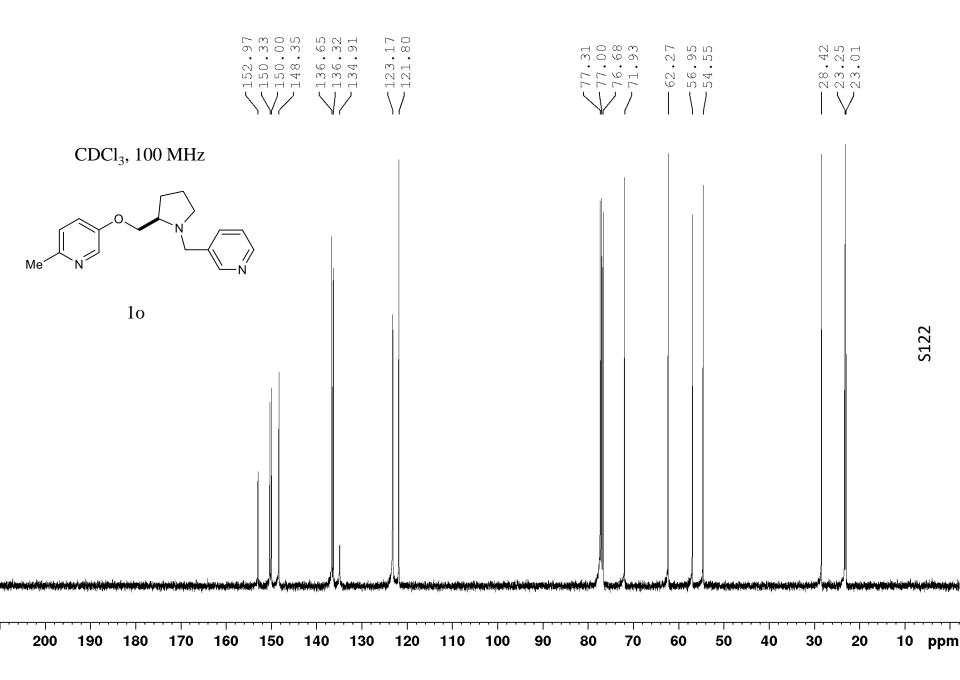


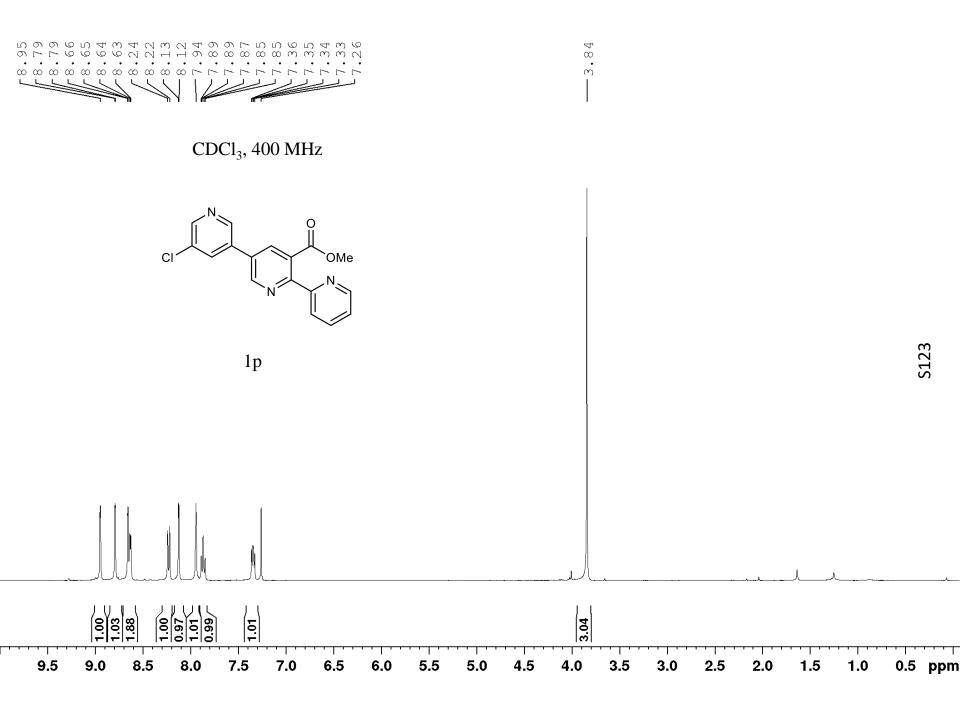

															S110	
63.	57.	150.7	• 0 0 •	 - C - L - L - L - L - L - L - L - L - L			$\swarrow^{77.31}$	76.68	 	CDC	Cl ₃ , 1 0 1i	00 M	IHz			

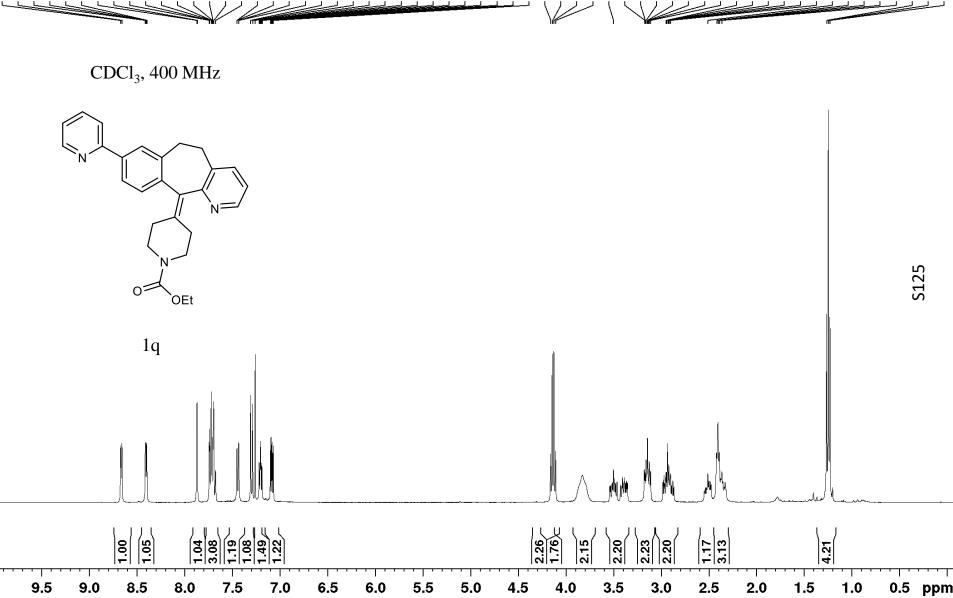

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overbrace{\begin{subarray}{c} 77\\ 76\\ 68\\ 68\\ 68\\ 78\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$
	1j
200 192 184 176 168 160 152 144 136 128 120 112	104 96 88 80 72 64 56 48 40 32 24 16 8 ppm

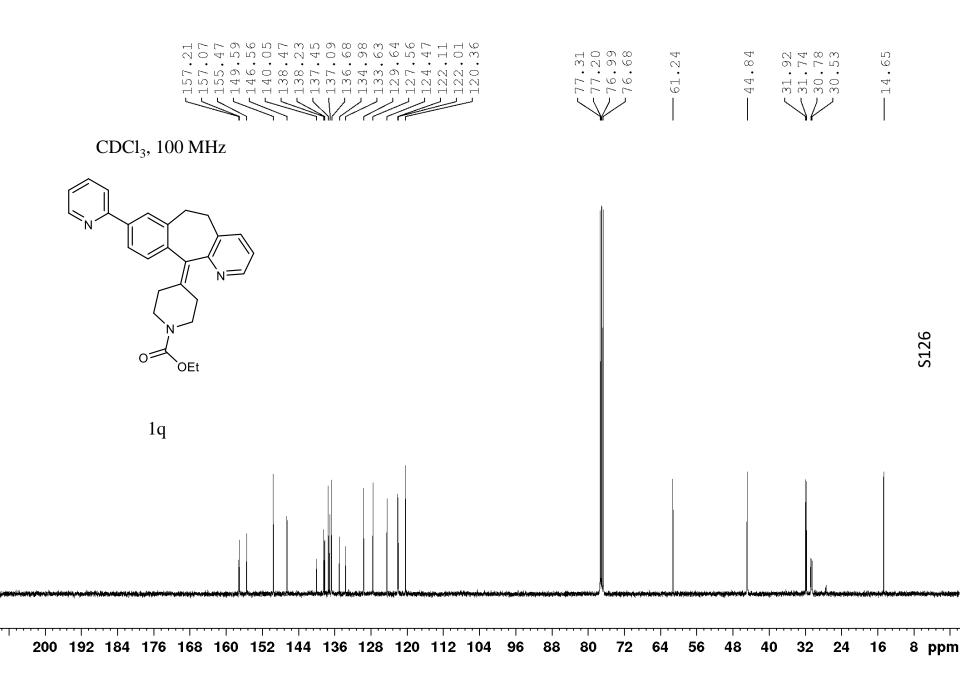


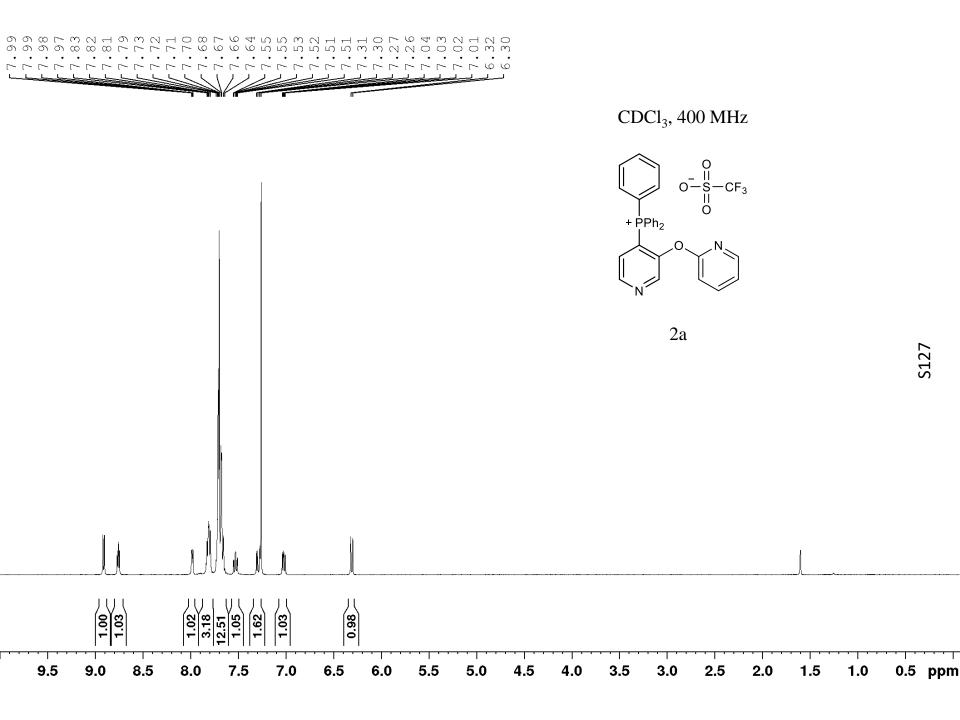

CDCl ₃ , 100 MHz) M	77.31 76.68 67.95	
			S116
200 192 184 176 168 1	 120 112 104 96 88	80 72 64 56 48 40 32	2 24 16 8 ppm




CDCl ₃ , 100 MHz	152.2 151.5 151.5 146.7 136.7 133.6 133.6	123.47	$\overbrace{77.31}{77.31}$	
Me N Br				
1m				S118
200 192 184 176 168 16	\$0 152 144 136 12 8	8 120 112 104 96 88	80 72 64 56 48 40 32	24 16 8 ppm

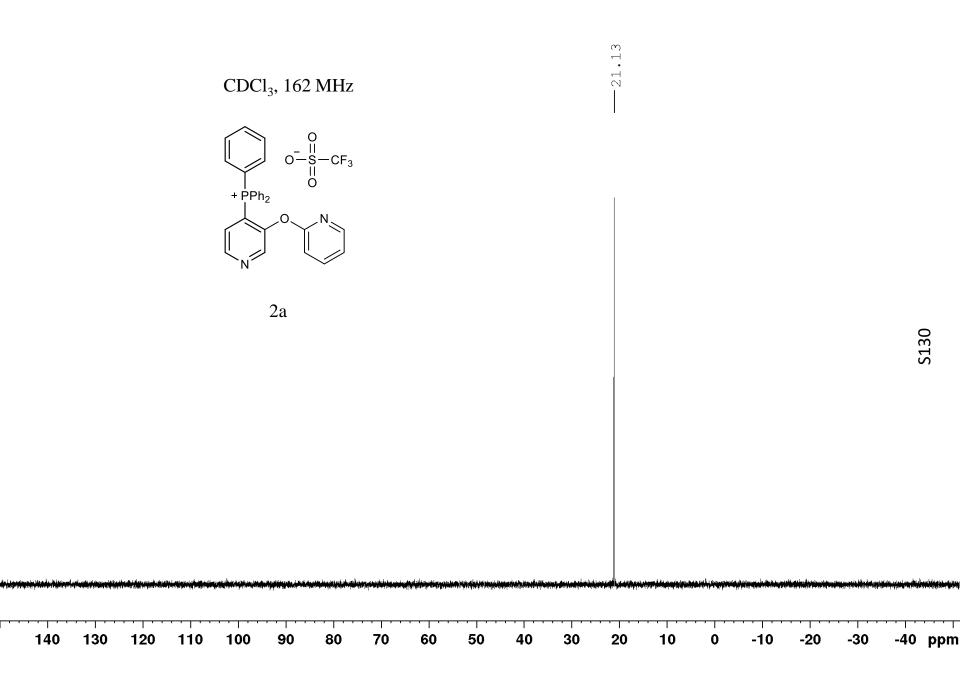

م بر ۱ ۱	124.63 148.59 148.59 148.59 148.19 148.19 138.25 128.25 12	$ \begin{array}{c} 77.31 \\ 77.00 \\ 76.68 \\ 69.92 \end{array} $	CDCl ₃ , 100 MHz
			<text></text>
200 192 184 176 168 1	60 152 144 136 128 120 112 104	96 88 80 72 64	56 48 40 32 24 16 8 ppn

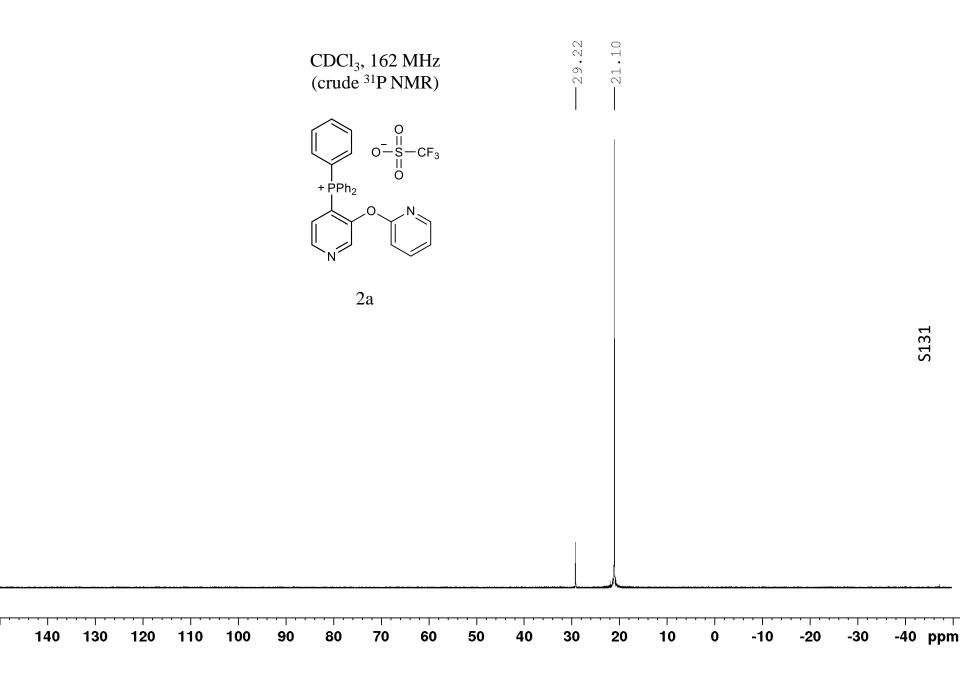


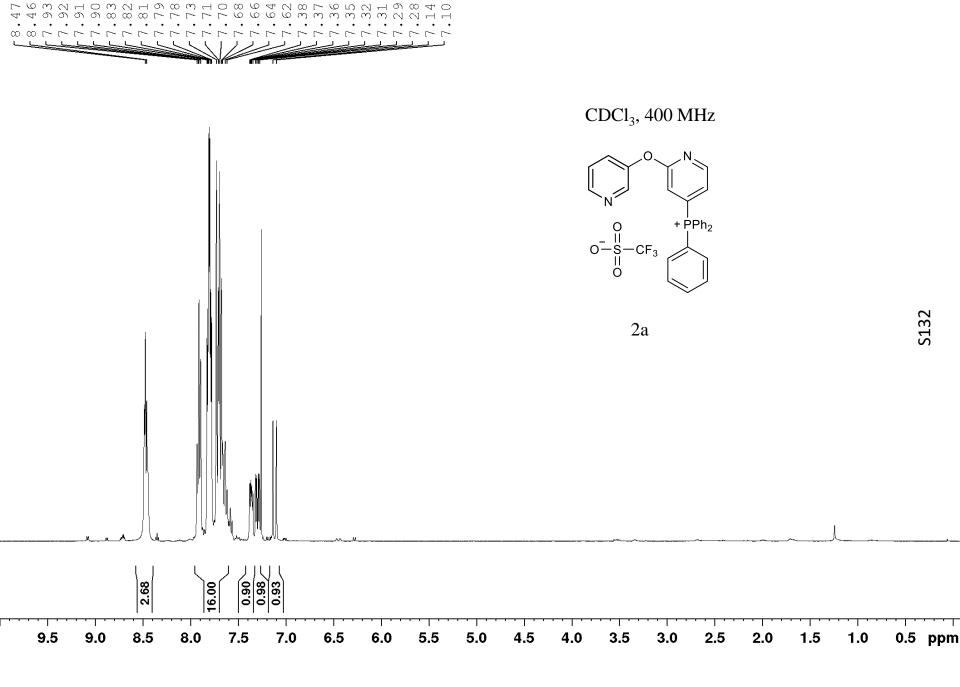


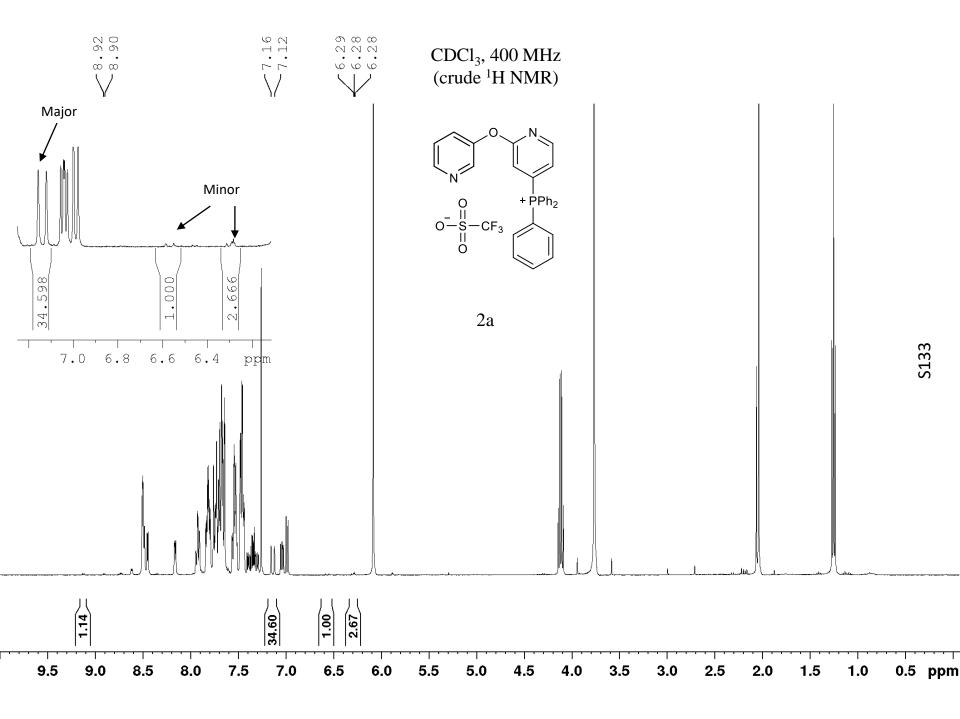
	145.75 136.84 135.20 134.00 133.41 132.56 132.56 128.78 122.68	77.31 77.20 76.68	
			CDCl ₃ , 100 MHz
			S124
			1p
200 192 184 176 168 160 152	144 136 128 120 112 104	96 88 80 72 64 5	

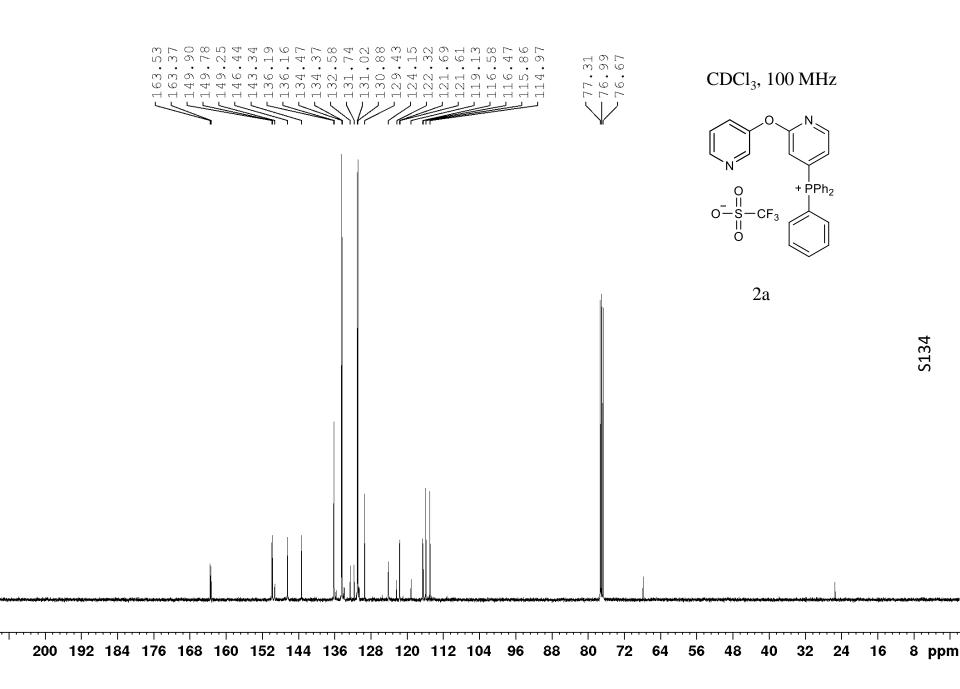
L M M U U 16 14 13 25 23 0 4 4 \sim $^{\circ}$ ∞ $\overline{}$ \sim \circ σ ∞ ∞ d. m ιO 5 \triangleleft Δ \triangleleft ∞ $\infty \infty$ ∞ \sim \neg \neg \neg ∞

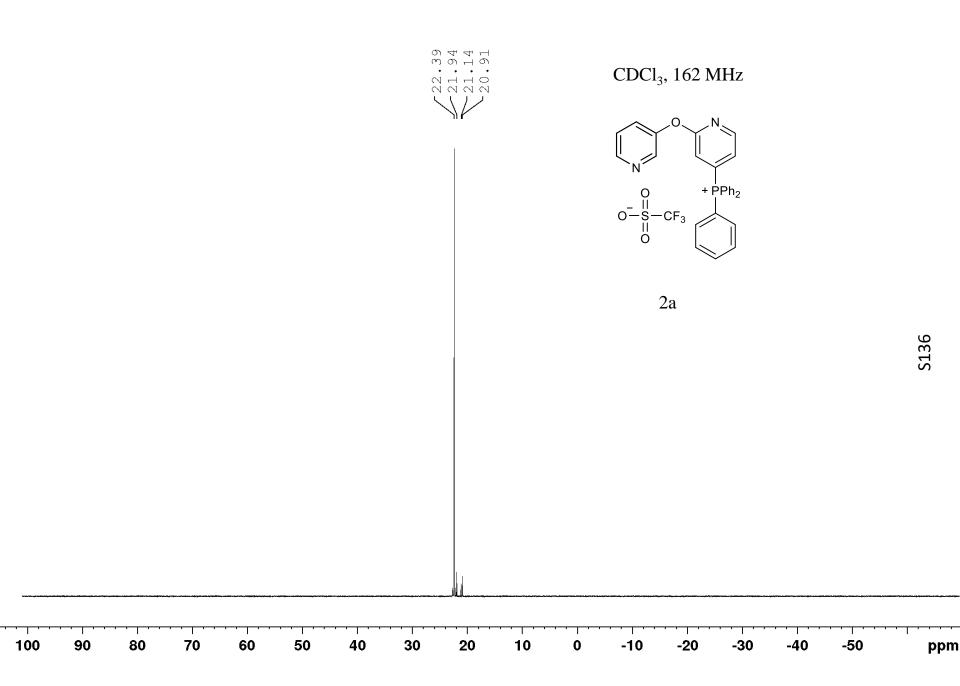


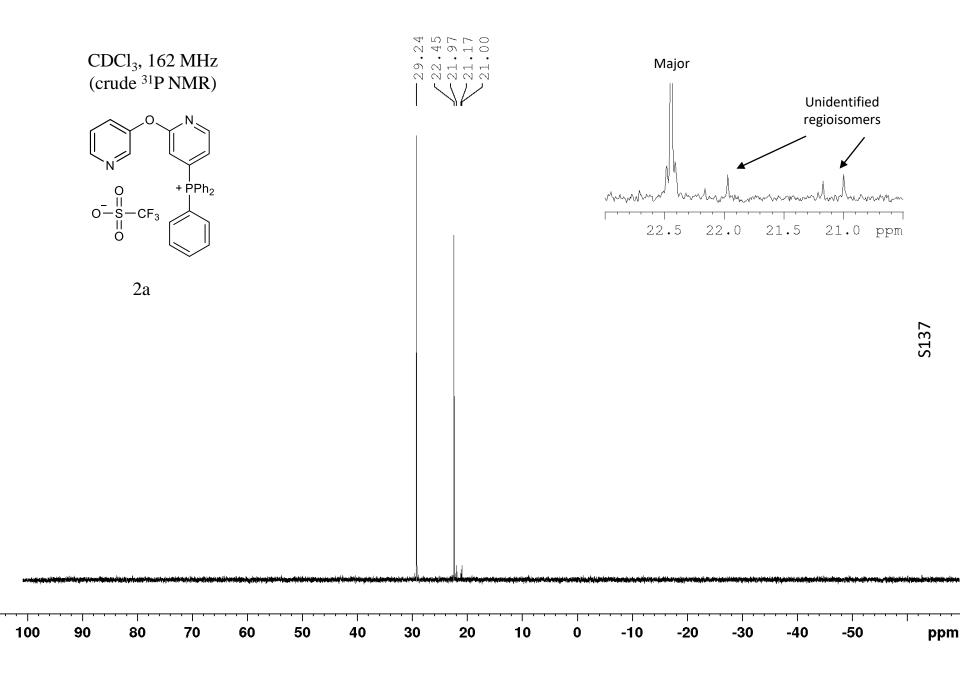


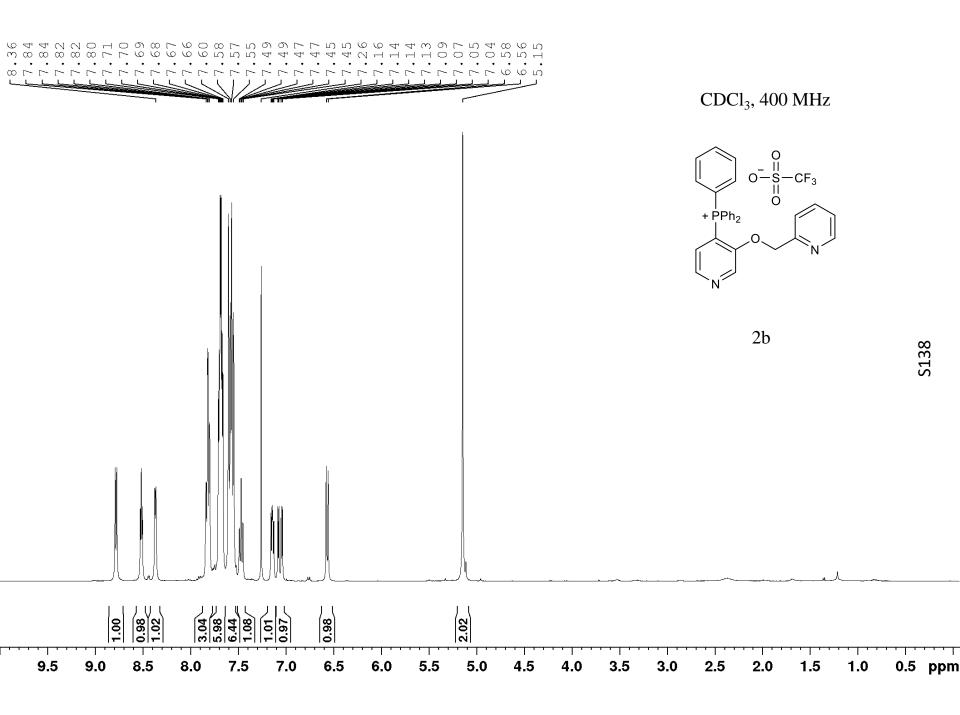

CDCl ₃ , 100 MHz	
$ \begin{array}{c} $	
2a	S128


CDCl ₃ , 365 MHz	-78.12
$ \begin{array}{c} & O \\ & O \\ & - S \\ & $	
2a	


.

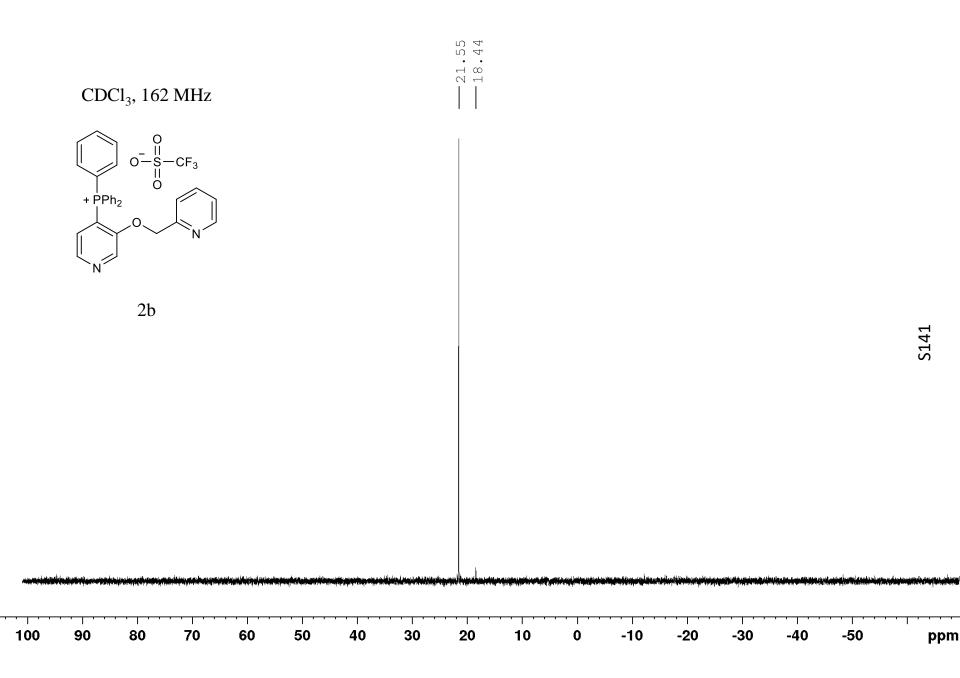


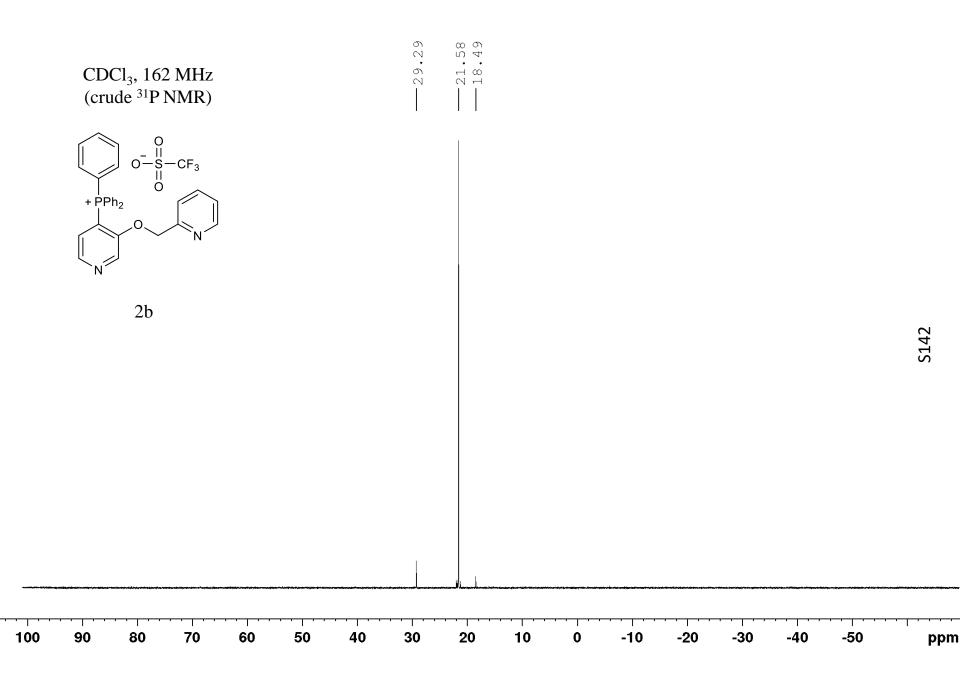


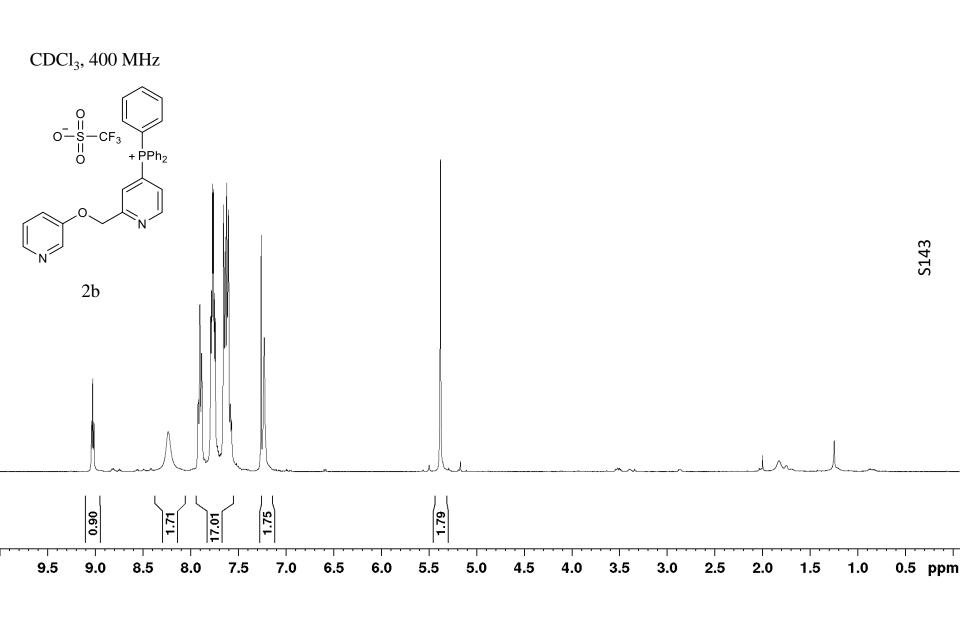


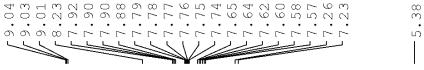
-78.12	CDCl ₃ , 365 MHz	
	$O = H = CF_3$	
	2a	

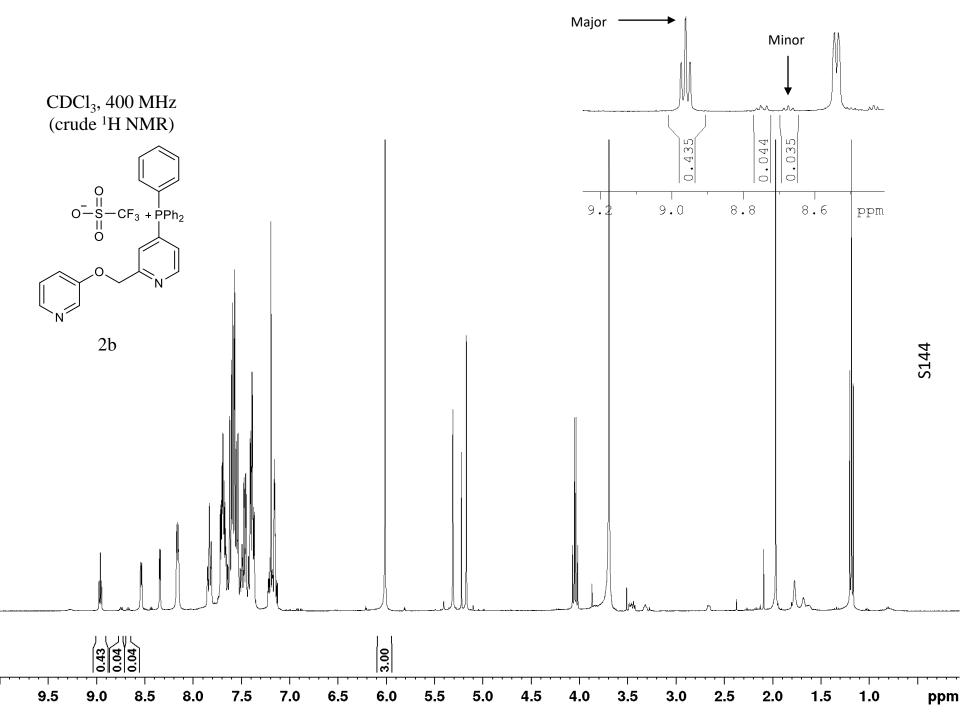
.

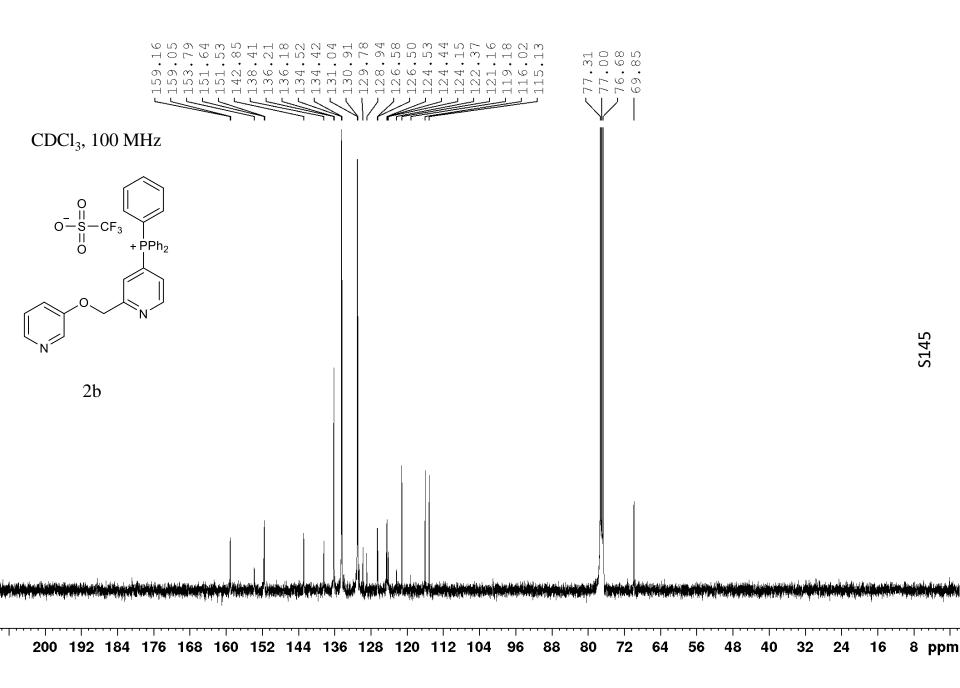


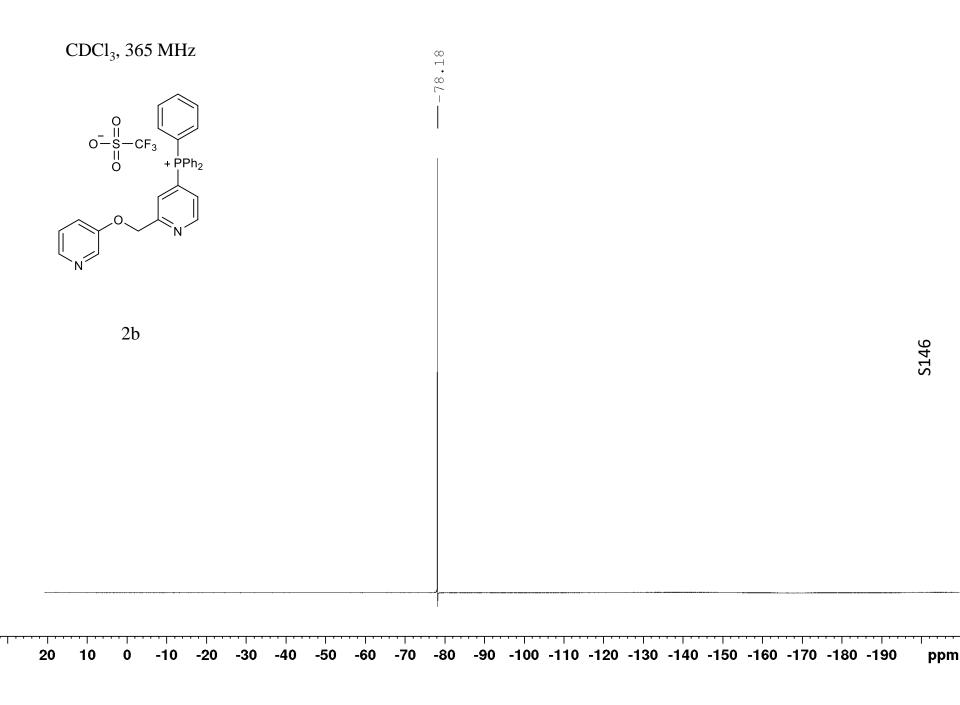


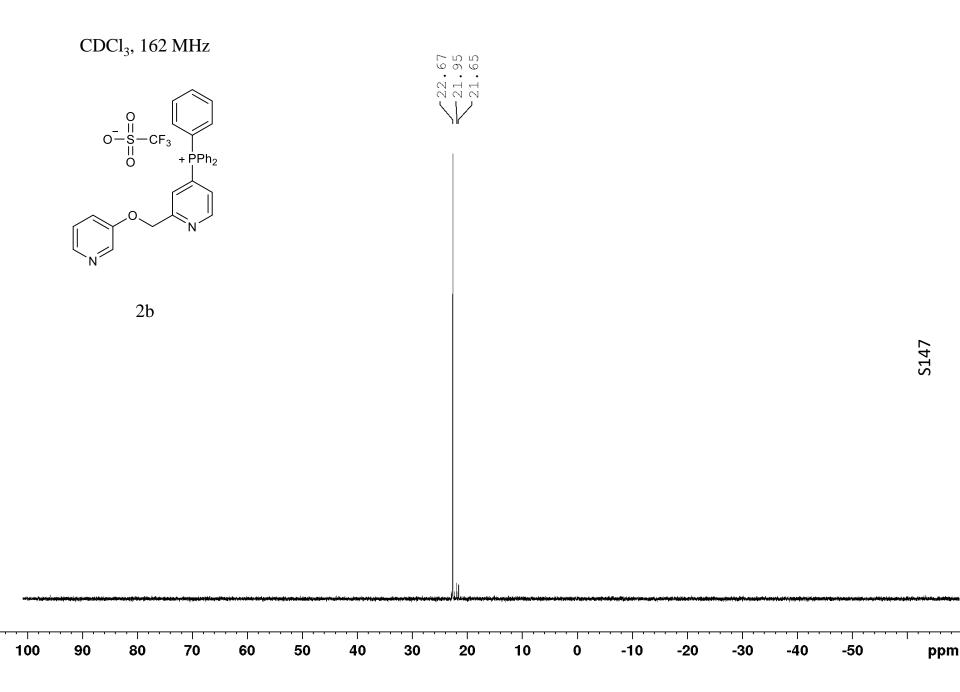

154.89 152.93 152.93 143.93 143.93 137.06 137.10 135.48 133.45 133.45 133.71 133.71 133.71 133.71 133.71	4004000040	77.32 77.00 76.68 72.34		
CDCl ₃ , 100 MHz	י ור ר וחד	nic (
$ \begin{array}{c} $				S139
			an galan fan fan an de fan de fan generale de seneren y dy senere y	May was to be a state of the
200 192 184 176 168 160 152 144 136 12	8 120 112 104 96 88	80 72 64 56 48	40 32 24 16	8 ppm

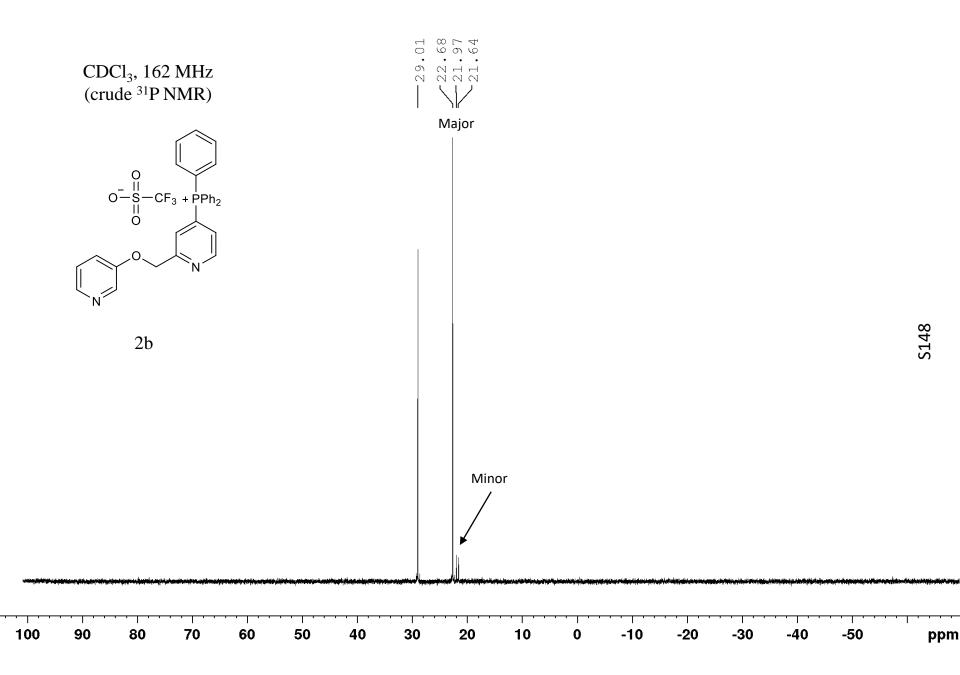

CDCl ₃ , 365 MHz								
$ \begin{array}{c} $								
2b								S140
						Nicholas - Constant - C	10	والمركز
0 10 0 -10 -20 -30	-40 -50 -60 -7	70 -80 -90	0 -100 -110	-120 -130 -14	40 -150 -160	-170 -180	-190	p

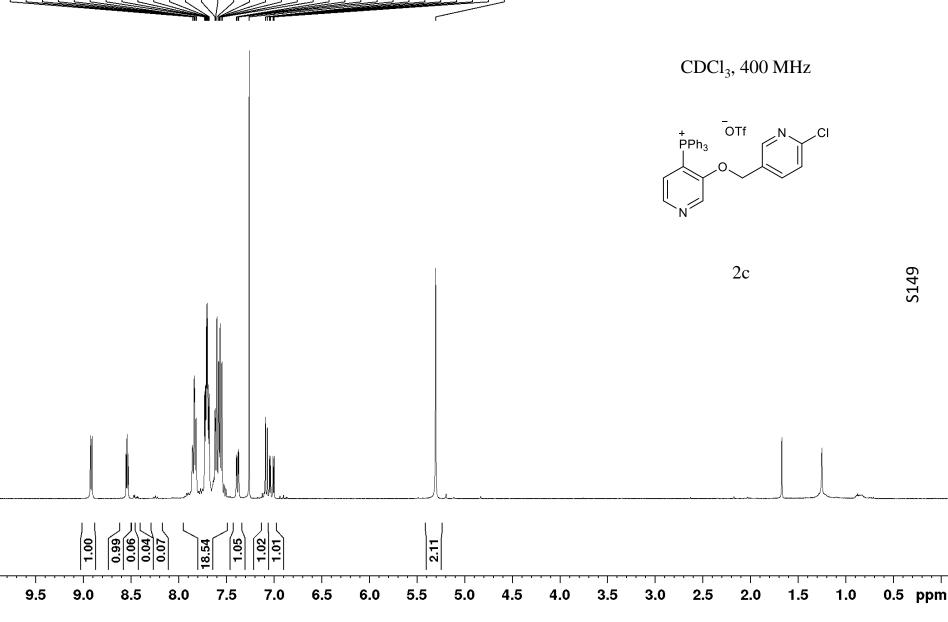

. .

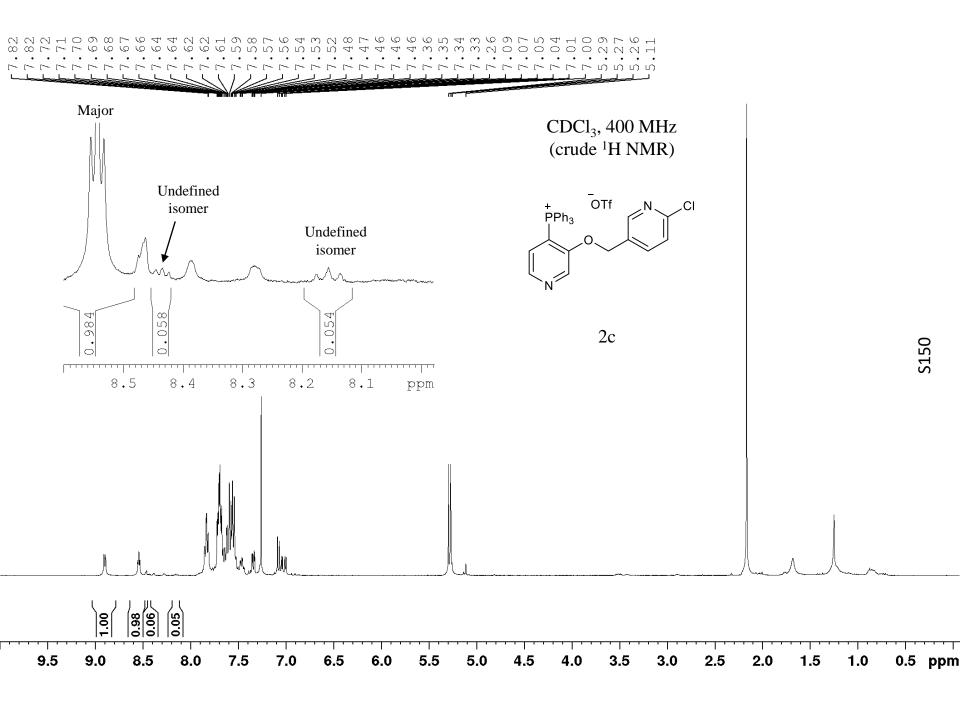


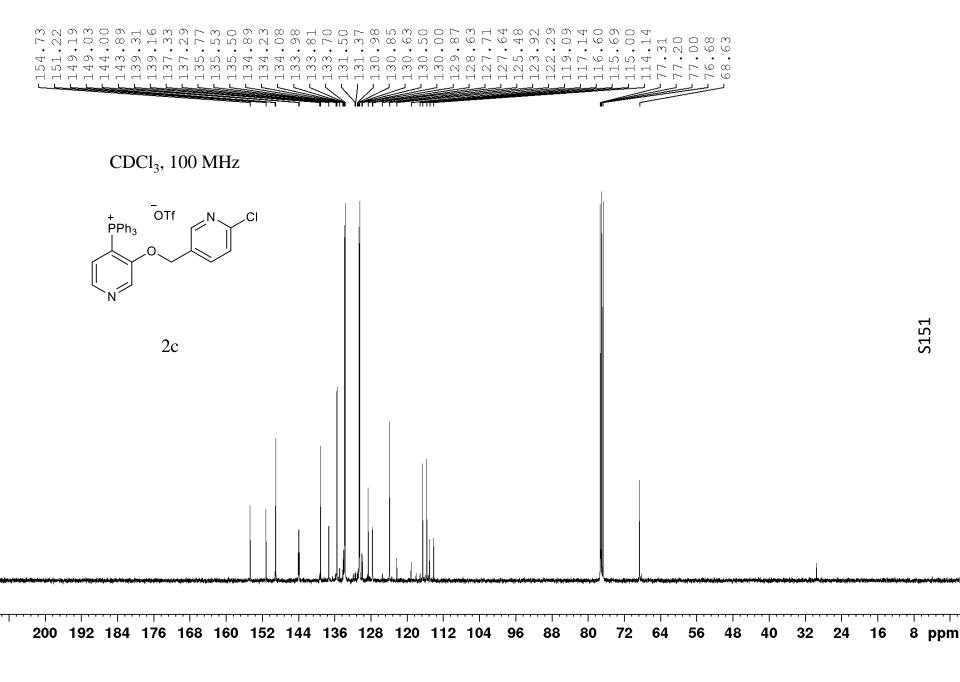


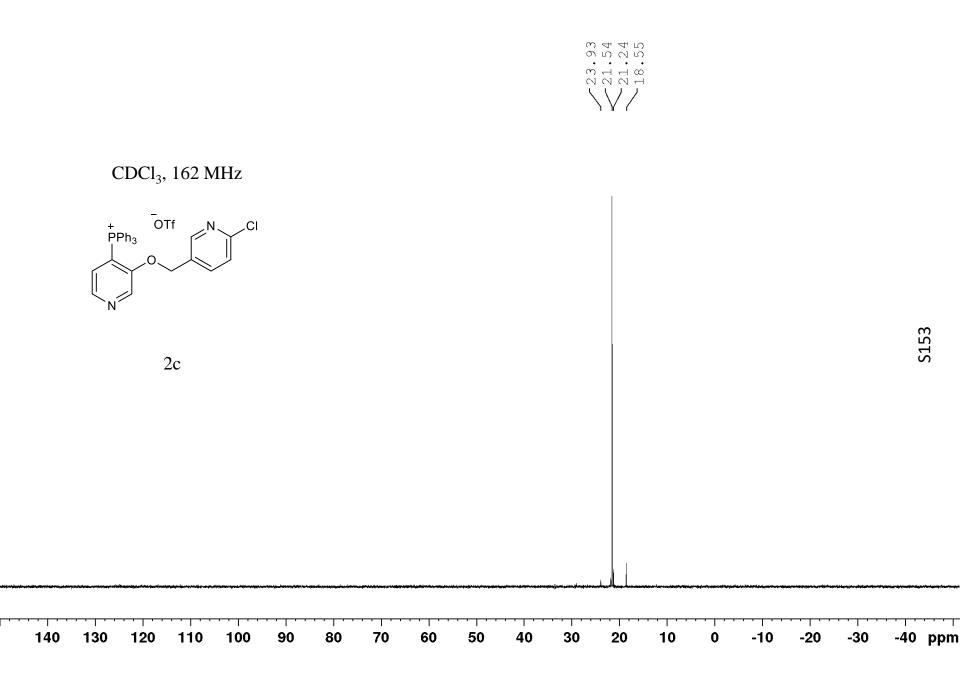


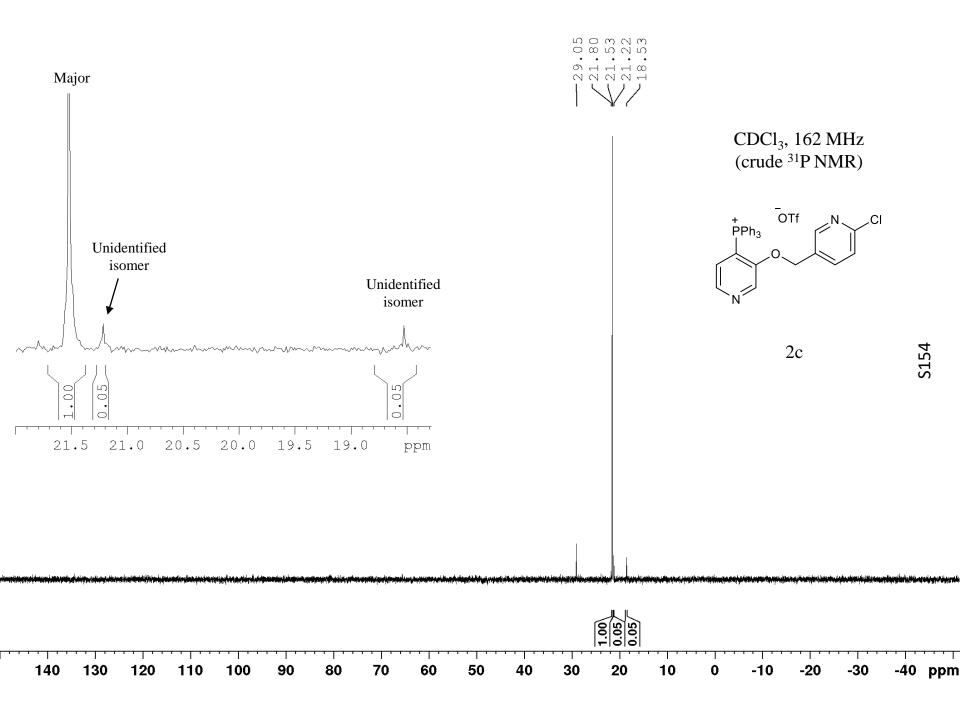


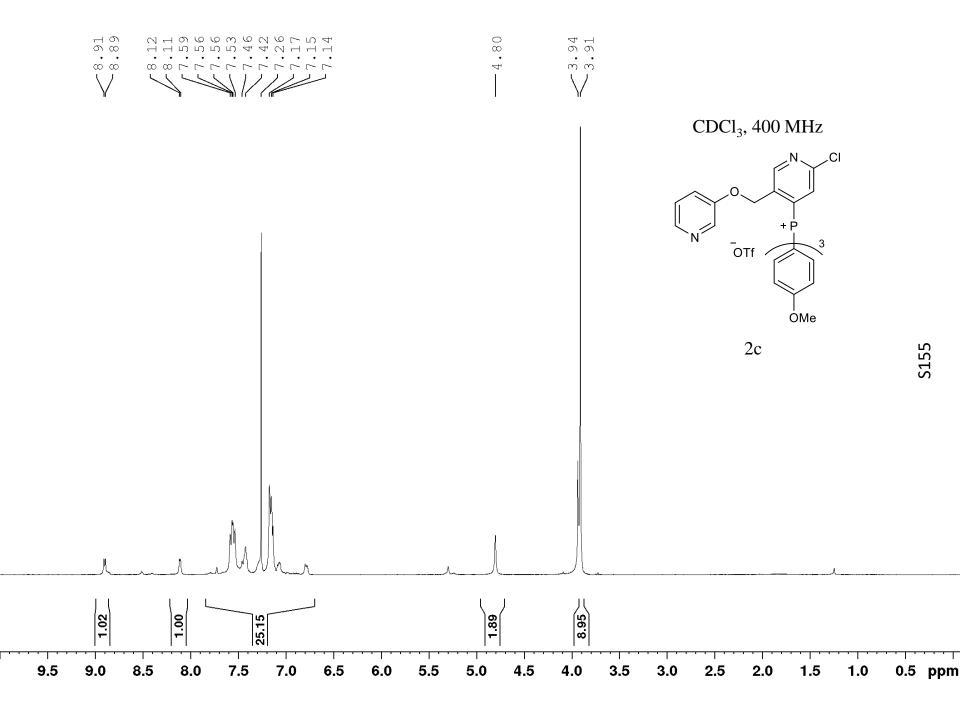


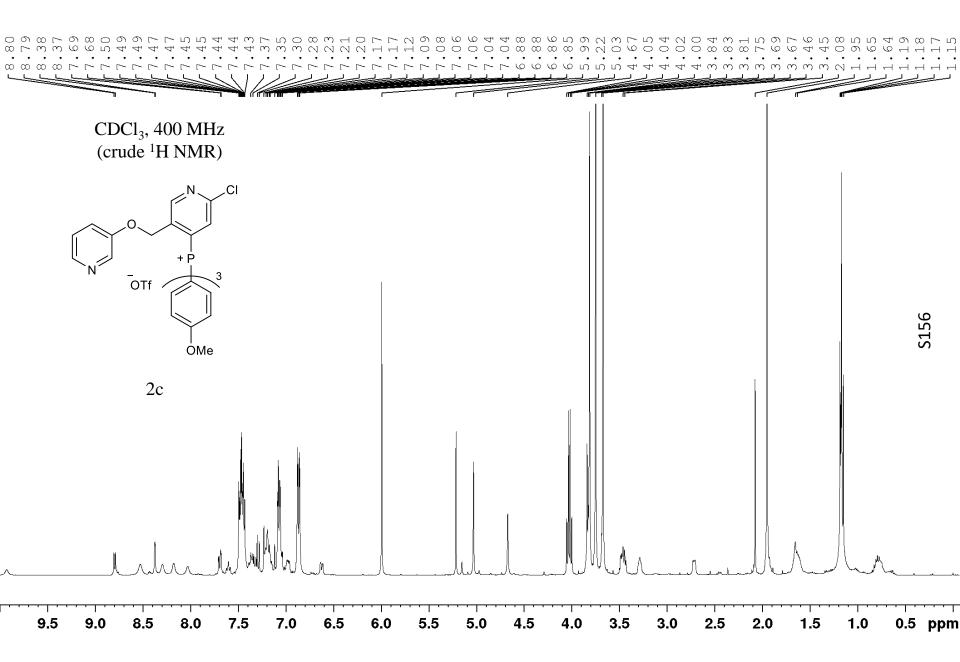


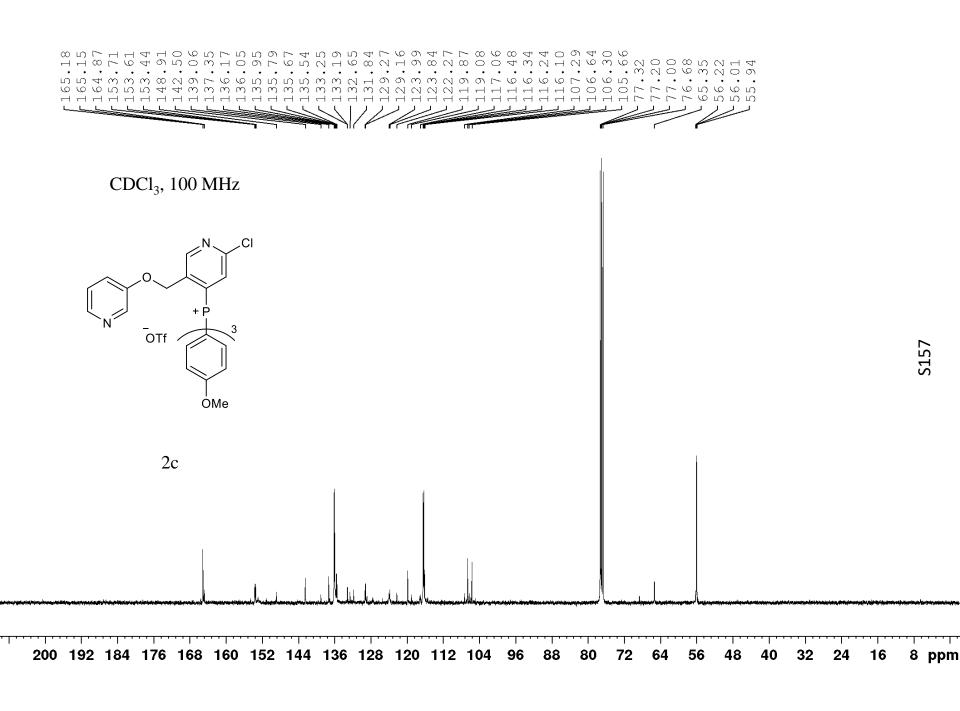


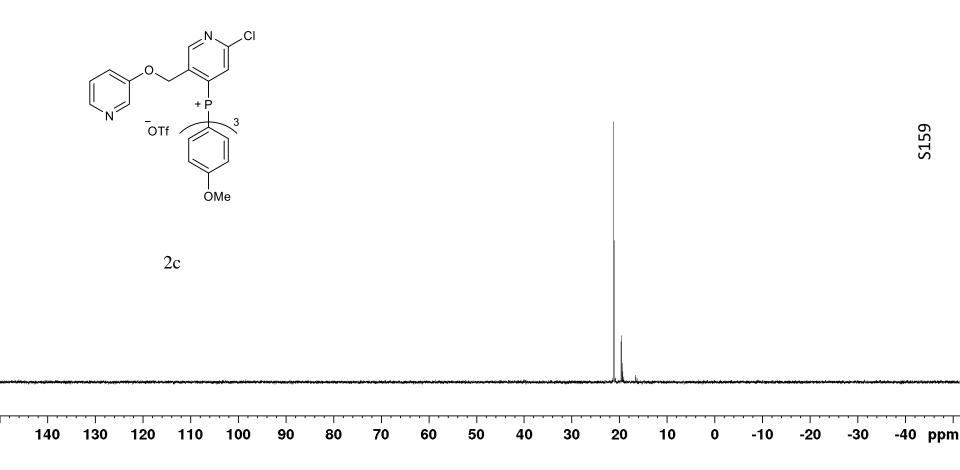


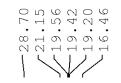

845
 847
 847
 847
 847
 847
 847
 848
 848
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 849
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 847
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 846
 847
 847
 846
 847
 847
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848
 848



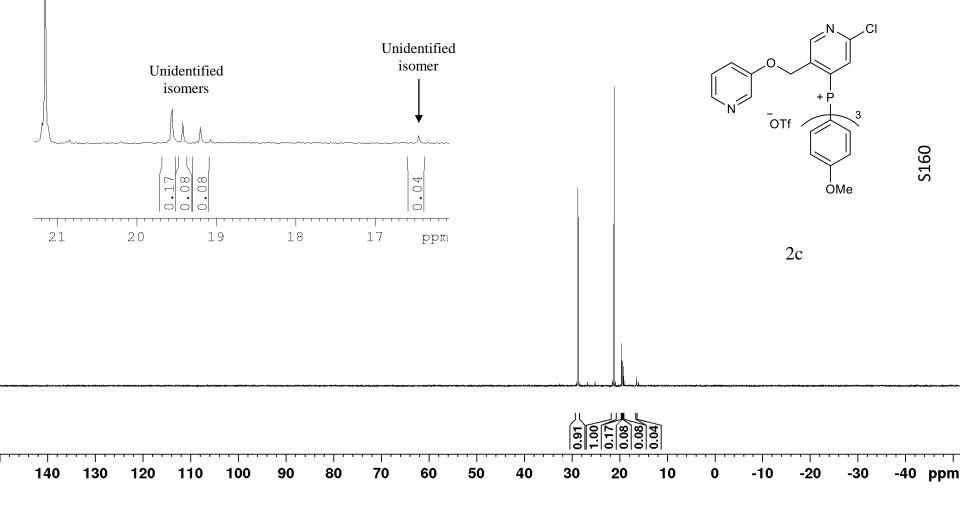



	CDCl ₃ , 365 MHz	
	PPh ₃ OTf N Cl	
	2c	

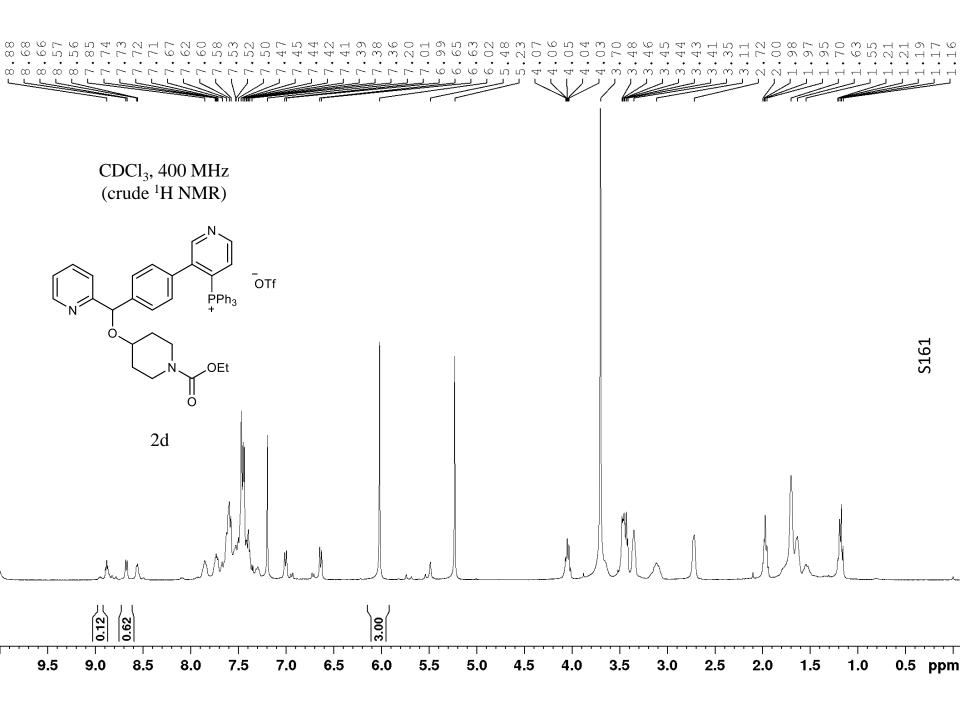


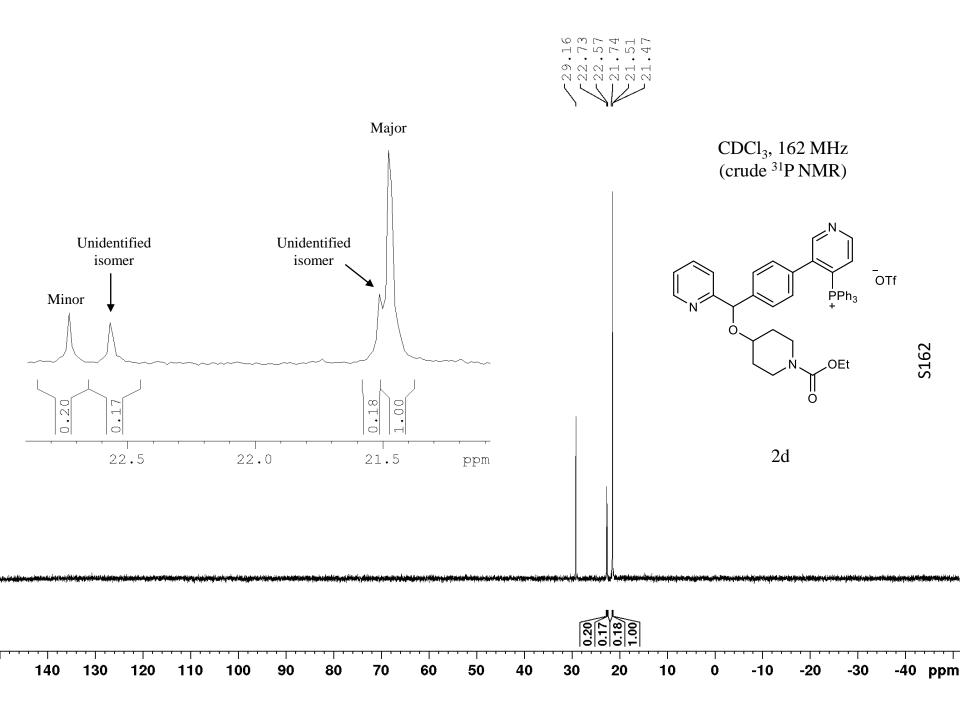


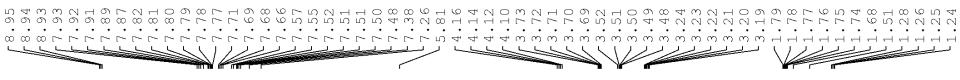
-78.19	$CDCl_3$, 365 MHz	
	O N OTf 3	
	ÒМе 2с	

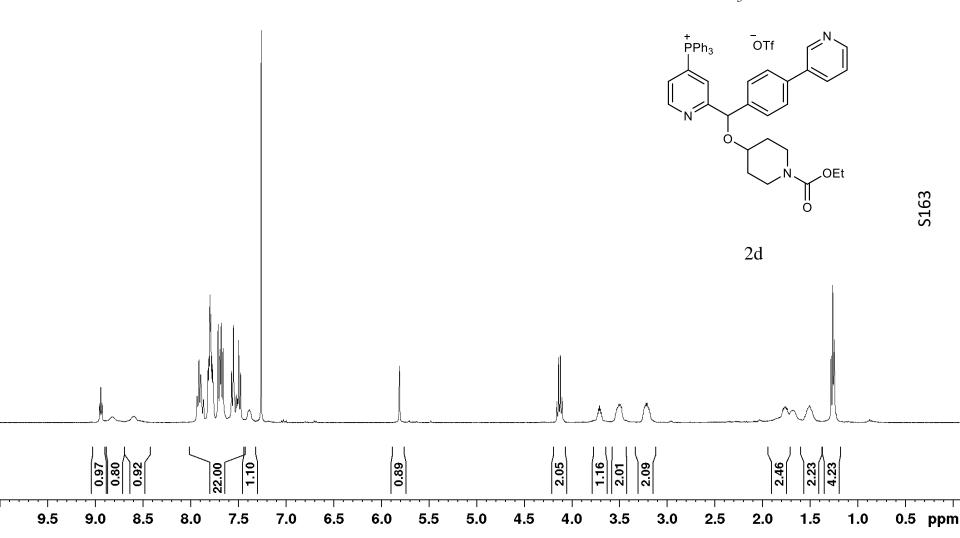


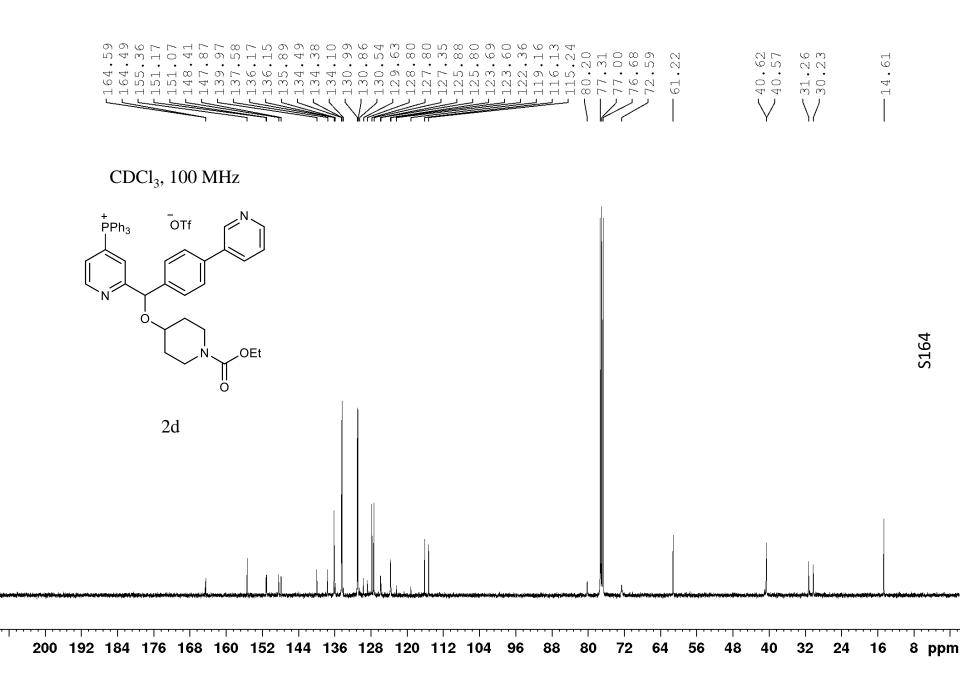
CDCl₃, 162 MHz

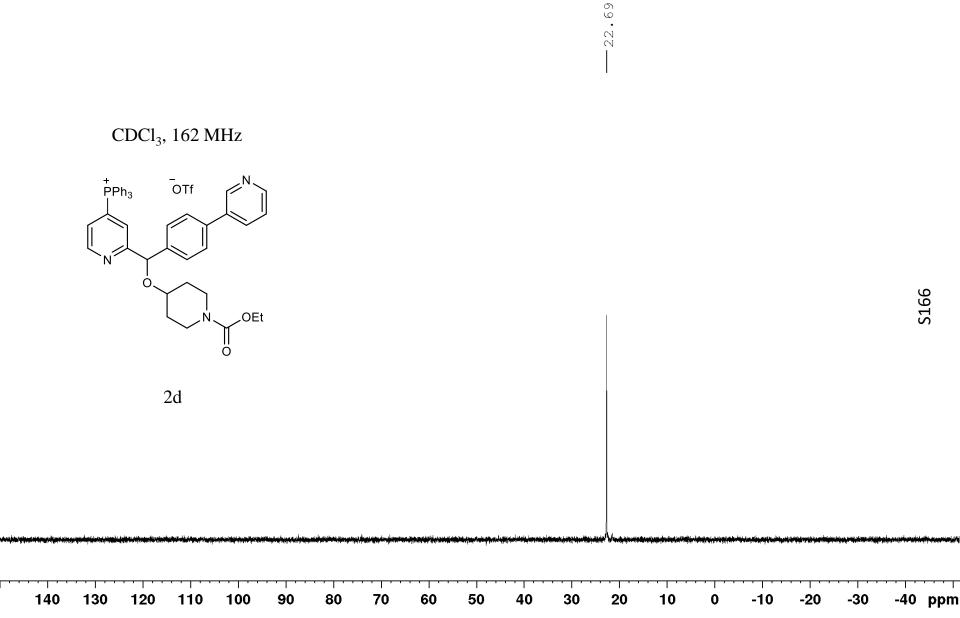


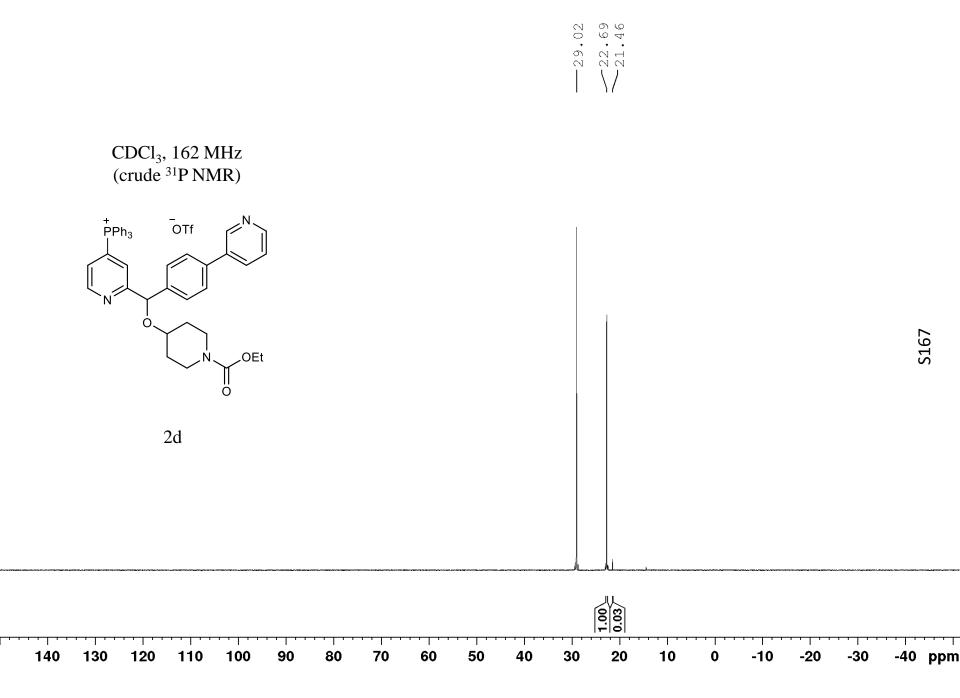


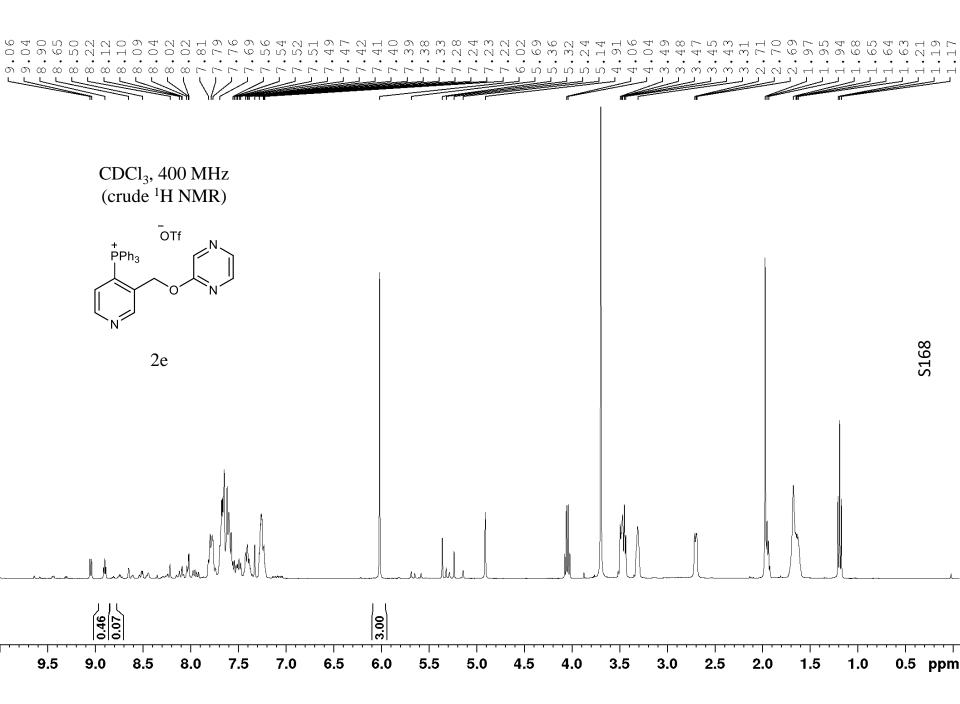

CDCl₃, 162 MHz (crude ³¹P NMR)

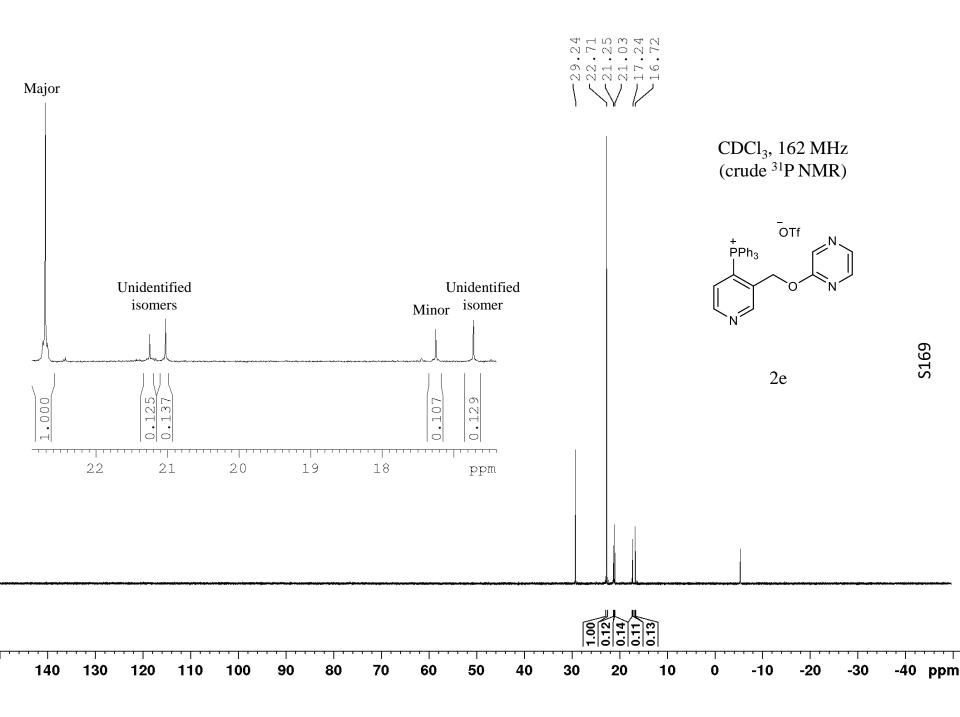

Major

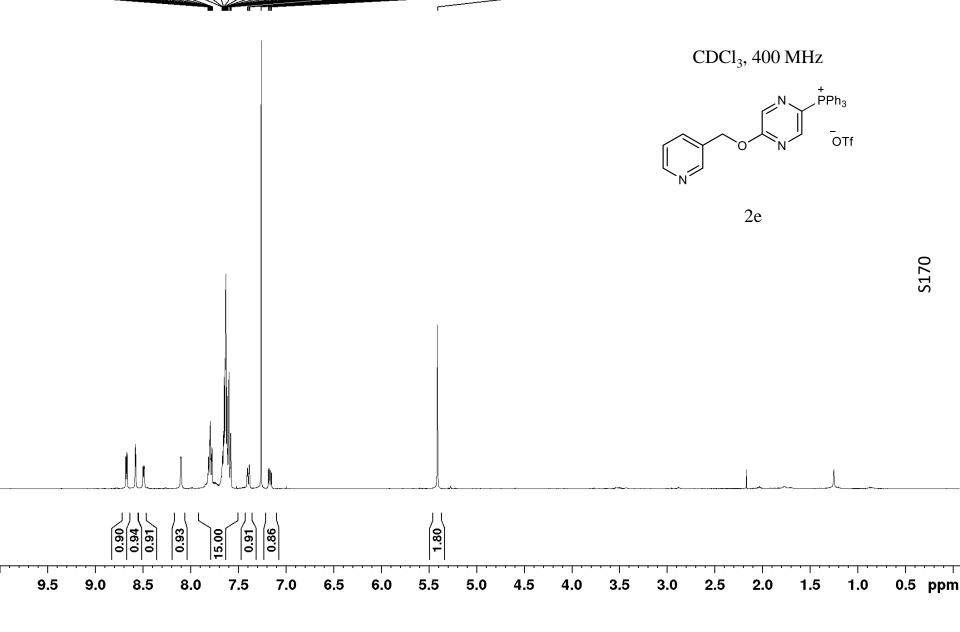


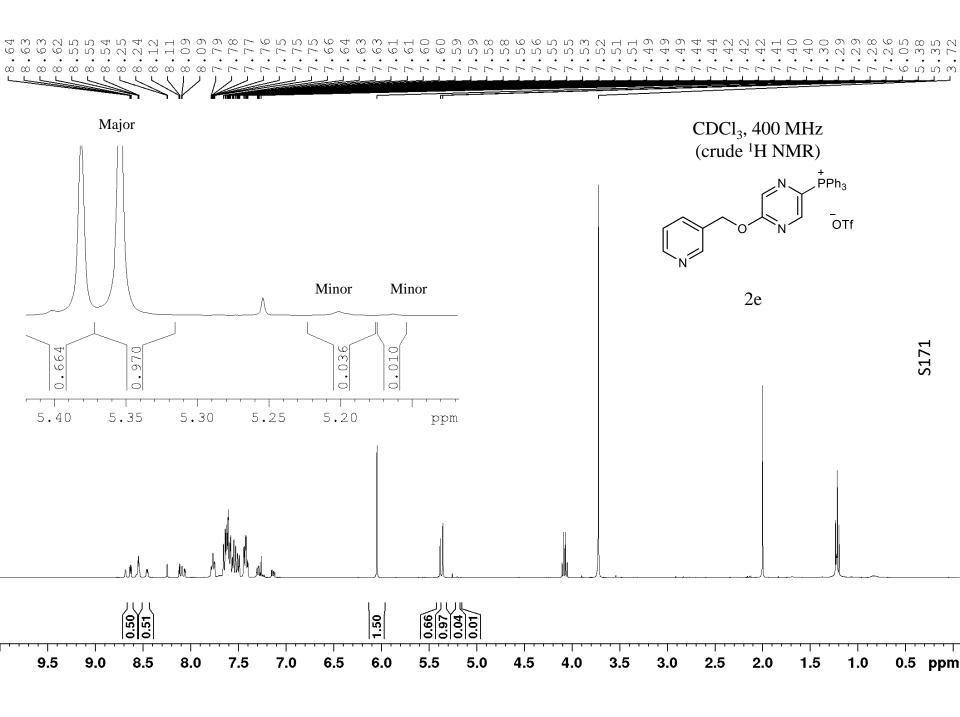


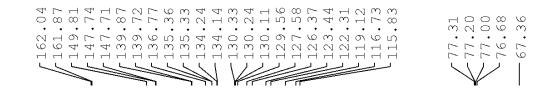

CDCl₃, 400 MHz

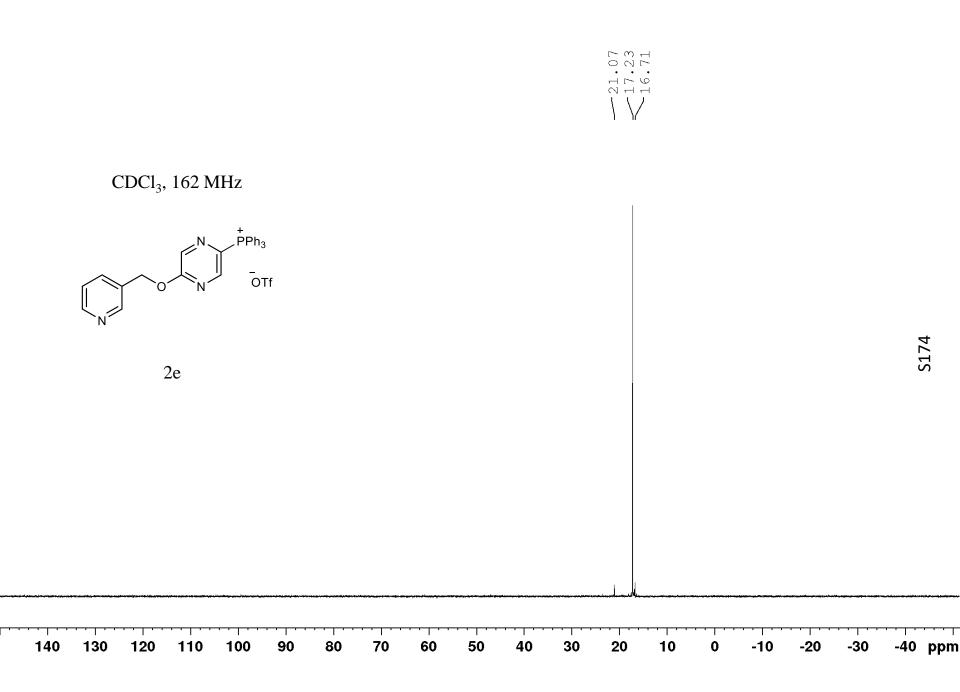


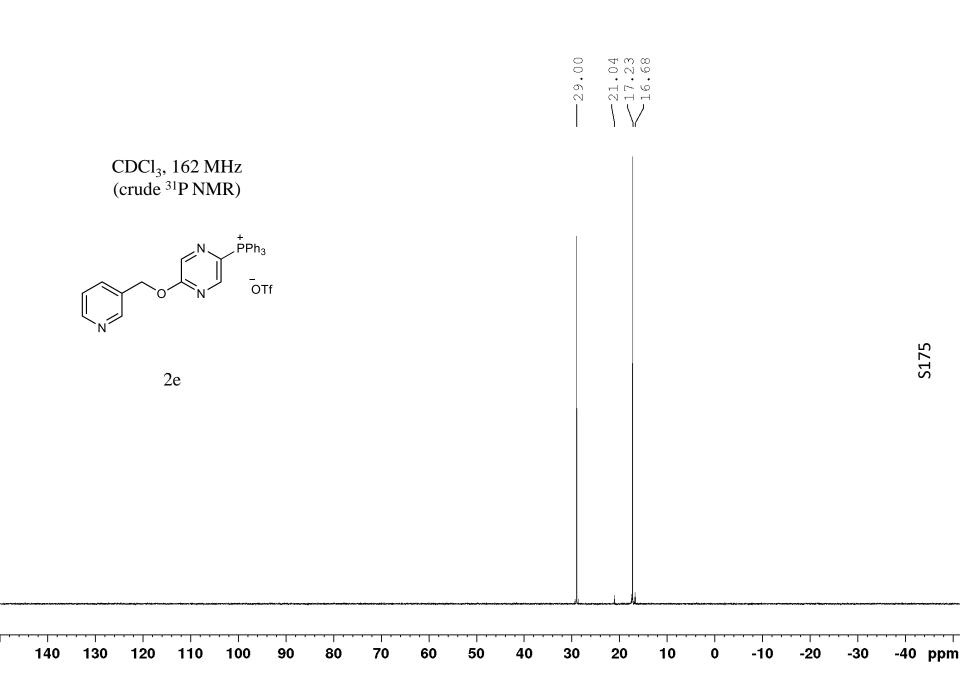


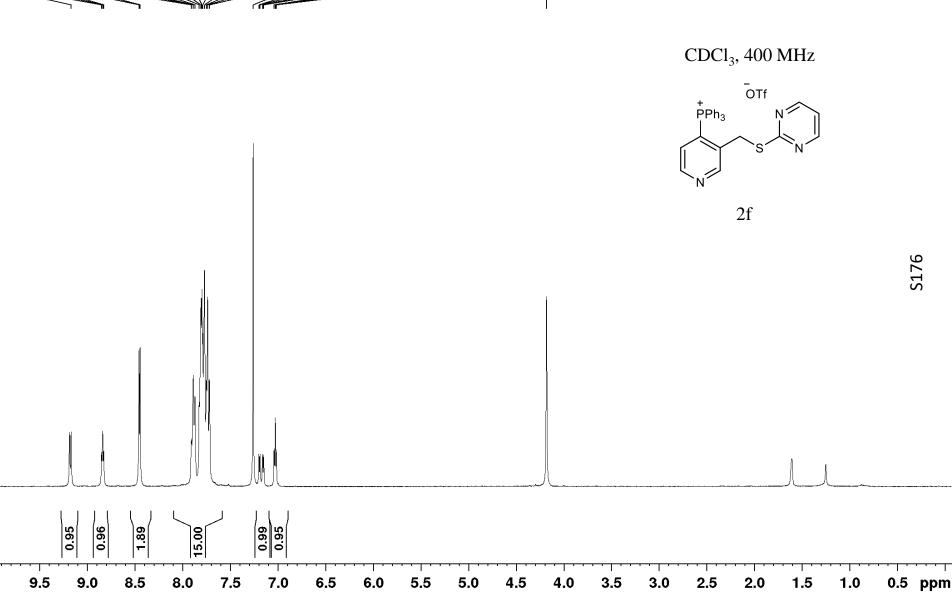

	PPh ₃ OTf
	2d



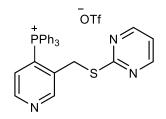







CDCl ₃ , 100 MHz		
$u = \frac{1}{2}e^{N + \frac{1}{2}Ph_3}$	S172	

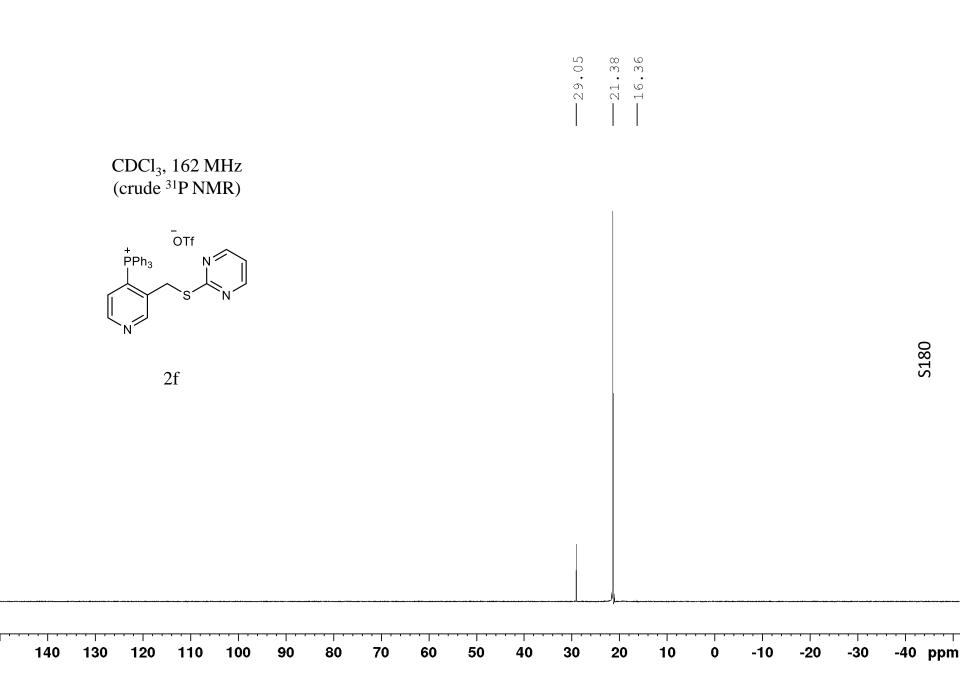
	CDCl ₃ , 365 MHz
	O N OTf
	2e

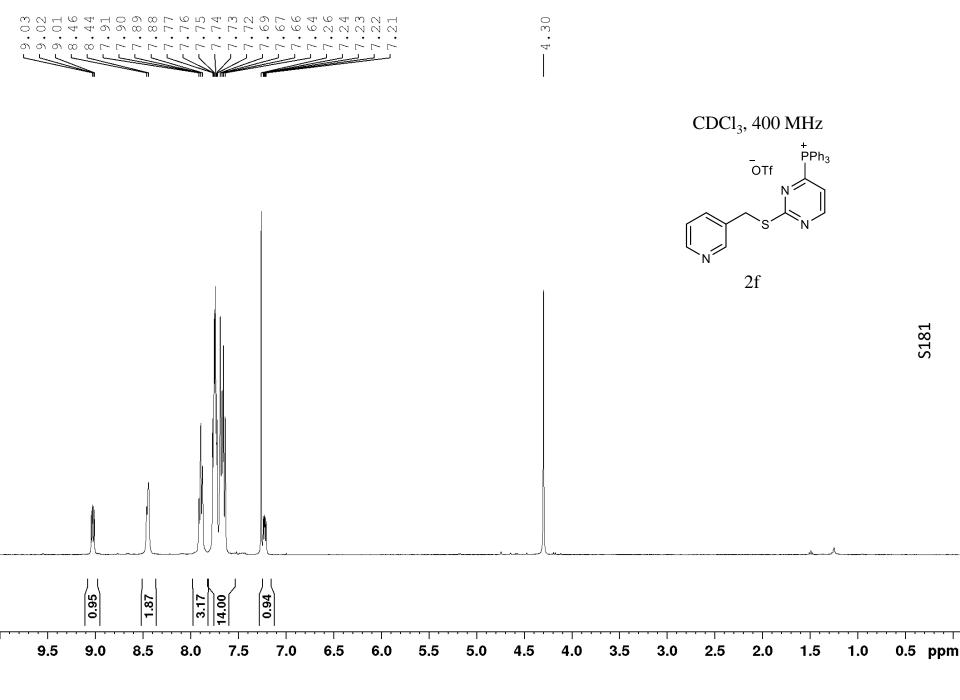

 \sim \sim ∞ ∞ r-000 ~ ~ ~ [~____ [

4.18

	157 1157 1157 1153	1010 1010 1010	136. 136. 134. 134. 134. 134.	131. 128. 128. 128. 125. 125.	110 110 110	77.31 77.20 77.00 76.68	31,69	31.6	
CDO	Cl ₃ , 100 M	Hz							
PPI N	OTf D3 N S 2f								7772

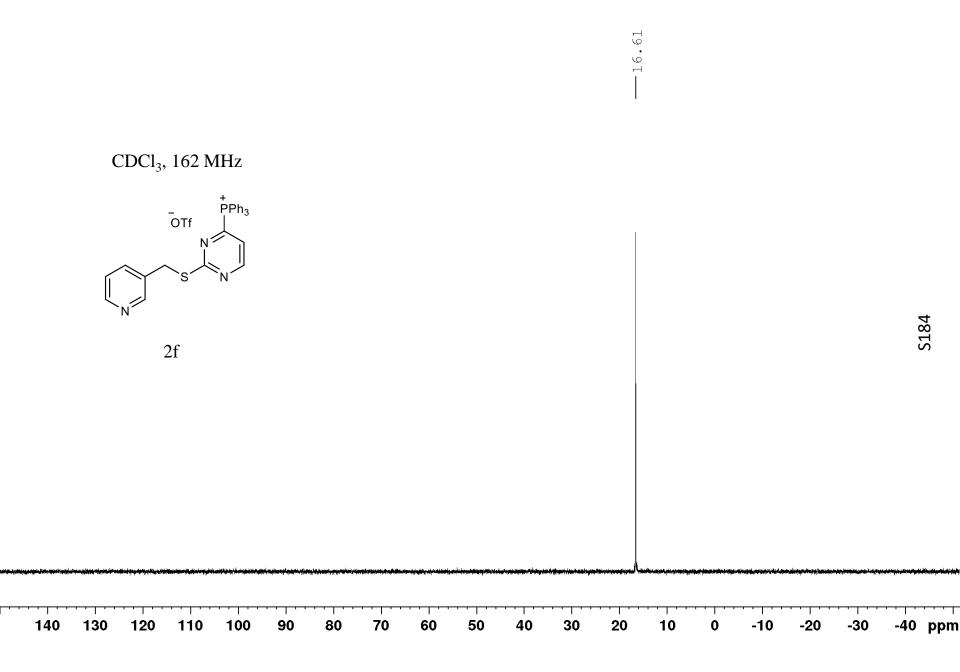
78.10	CDCl ₃ , 365 MHz	
	OTf PPh ₃ N S N	
	2f	S178
		S1

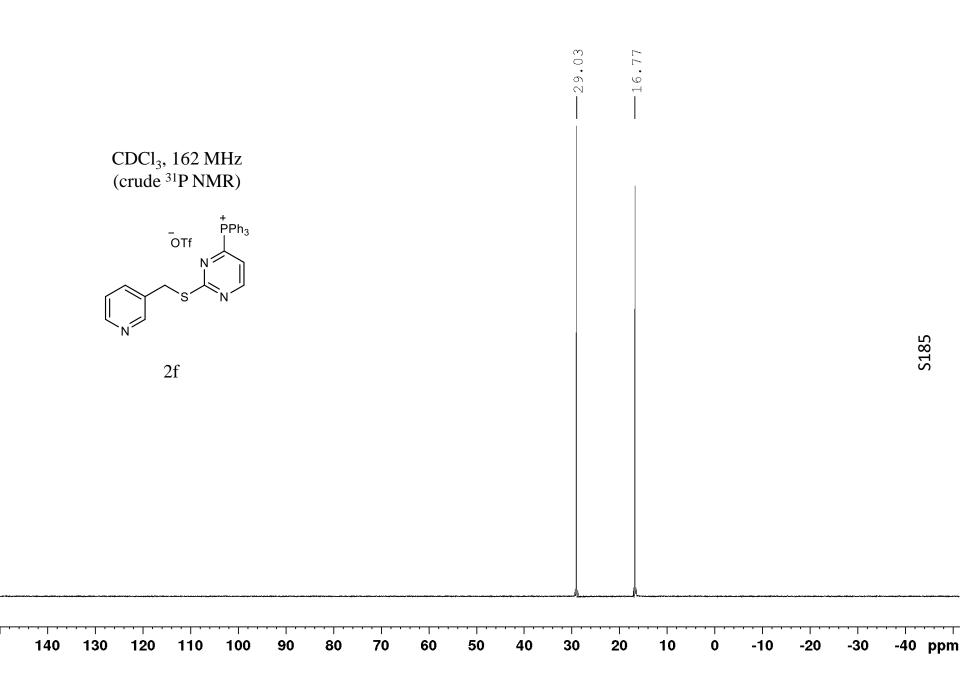


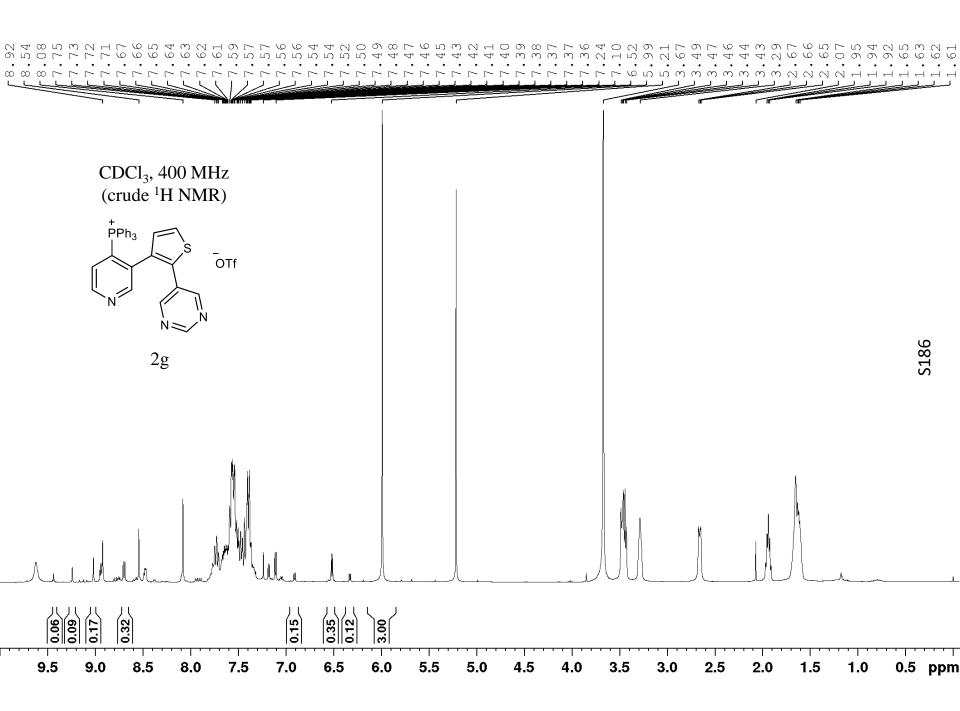


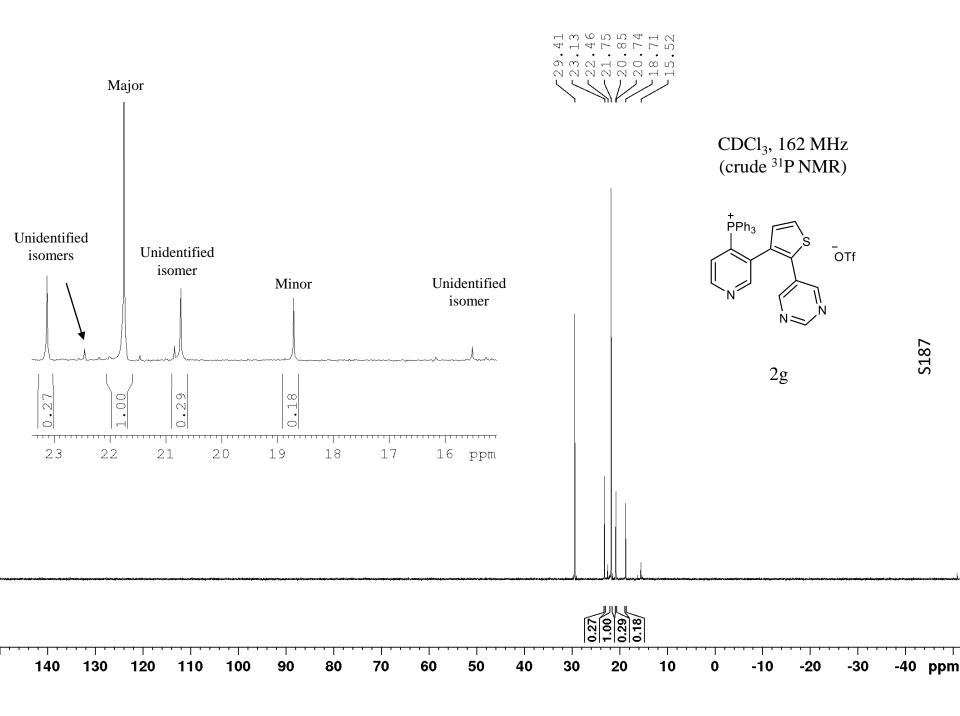
2f

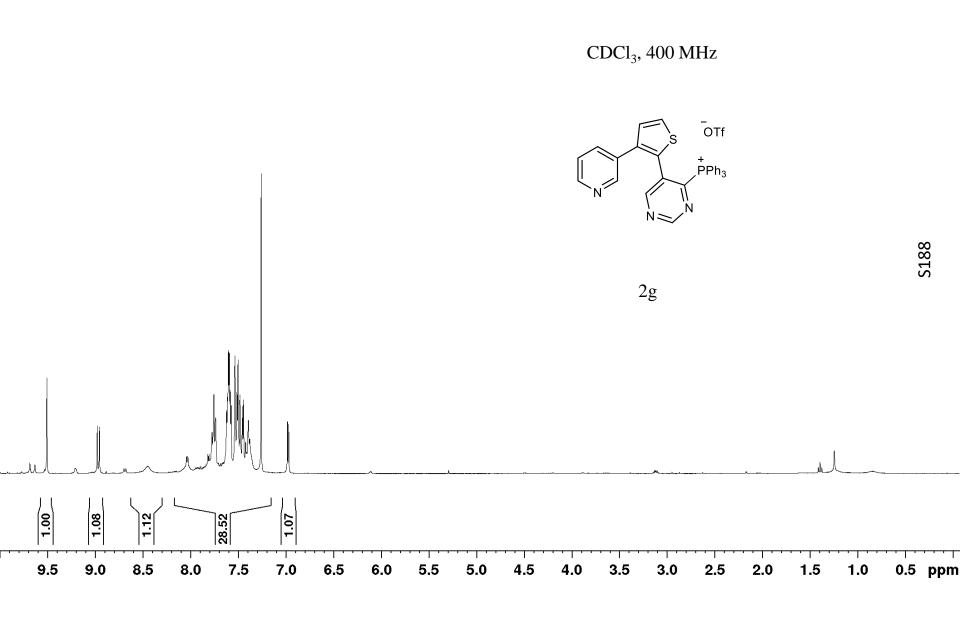
S179

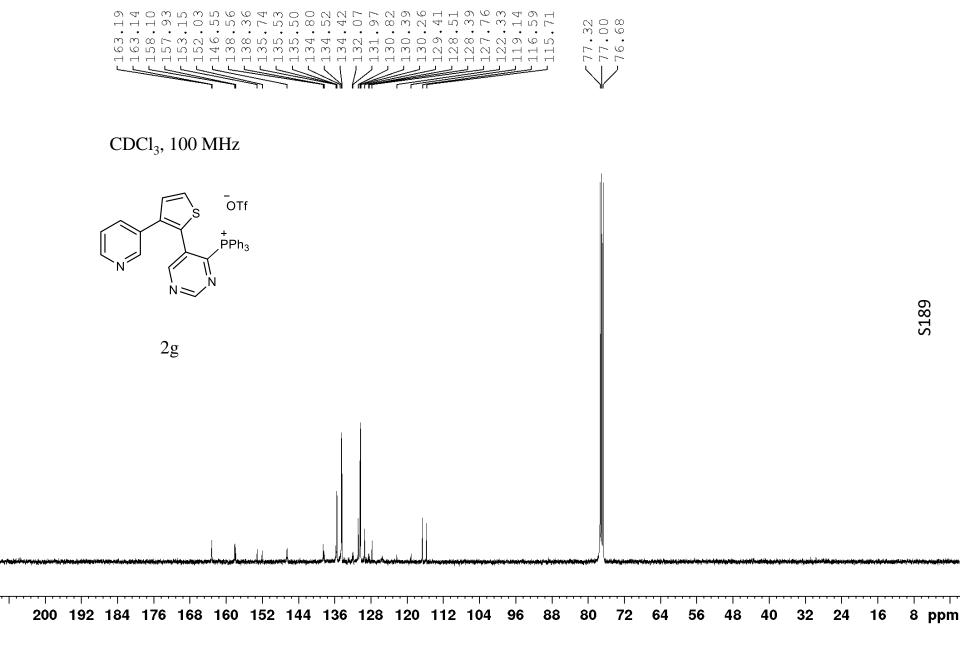

		21																
	Augrenettalle Valuetage Valueta and Augrenettal (National Science Valueta)	pipelesen in alle stational and station in the	<u></u>	***	*******************************		**************************************	****			lemaniseise		-			an a		
140	130 1:	20 110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	ppm






173.81 173.81 160.59 160.51 149.55.16 136.30 136.31 132.227 1332.227 132.227 132.227 123.21 123.21 123.21 123.21 123.21 123.23 114.50 125.38	₹77.32 77.00 76.68	
$CDCl_{3}, 100 \text{ MHz}$ $\int_{OTF} \int_{V} \int_$		
200 192 184 176 168 160 152 144 136 128 120 112 104 96 88	80 72 64 56 48 40	32 24 16 8 ppm


-78.23	CDCl ₃ , 365 MHz	
	OTF N S N	
	2f	~
		5183



	CDCl ₃ , 365 MHz
	2g
	č

-18.70

30

40

20

10

0

-10

-20

-30

CDCl₃, 162 MHz

N N N N N

2g

120

140

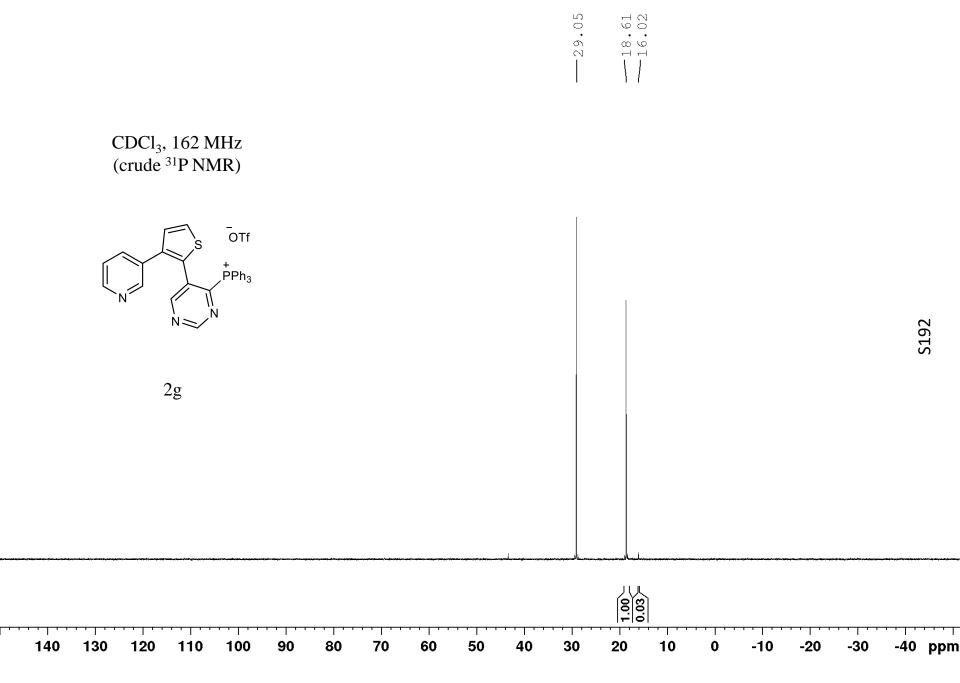
130

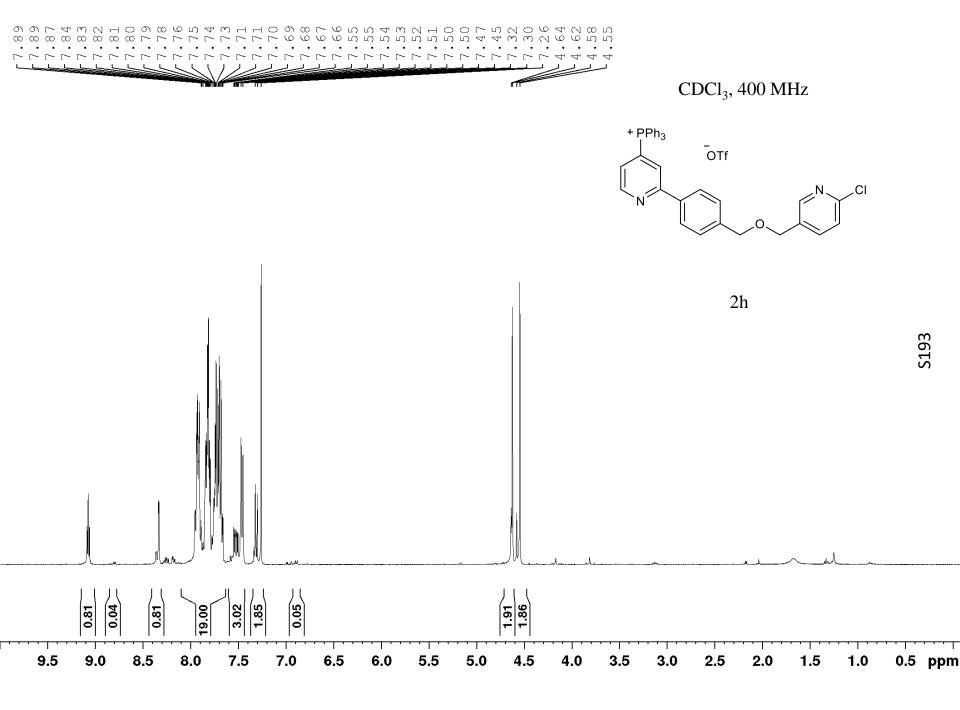
110

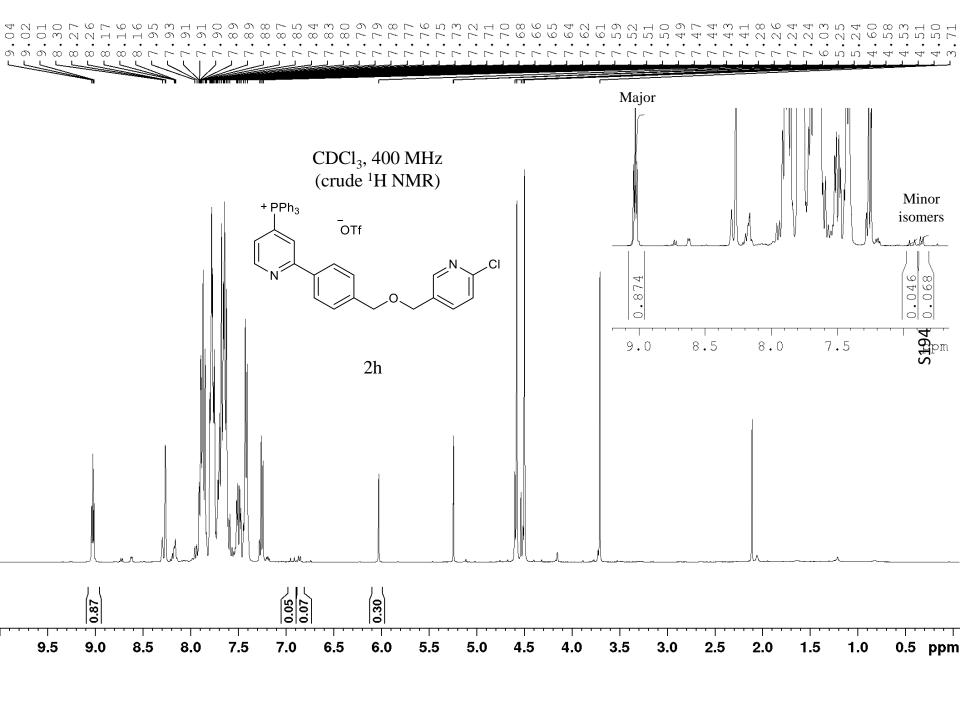
90

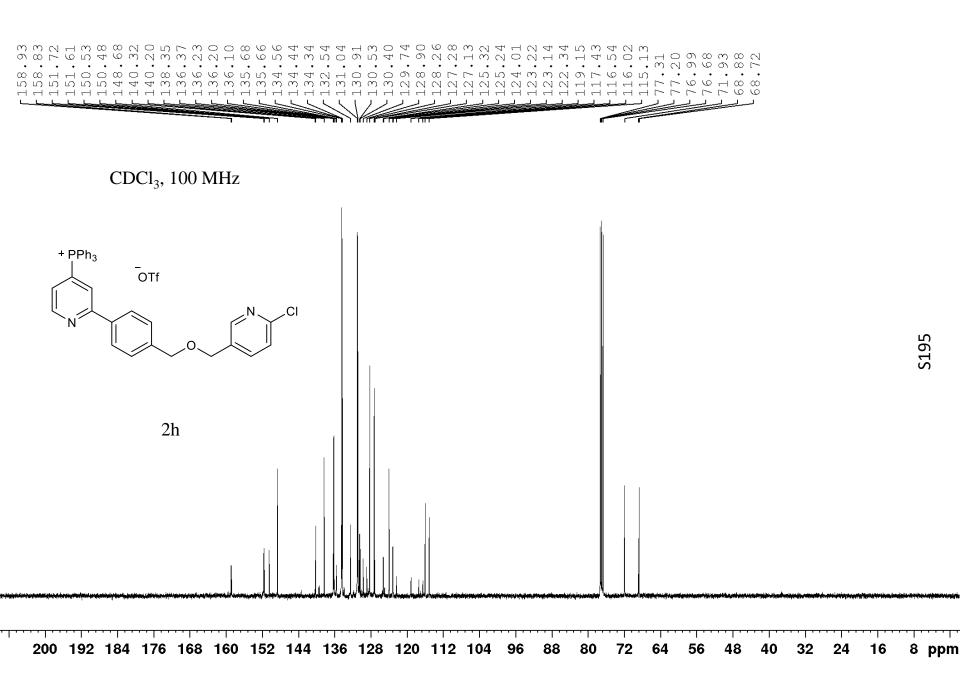
80

70

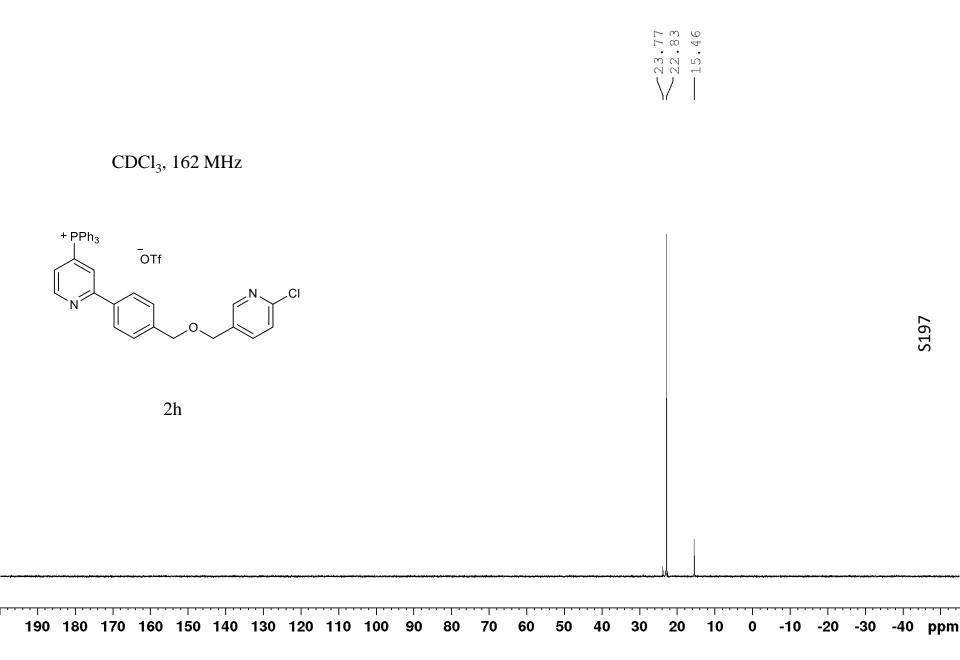

100

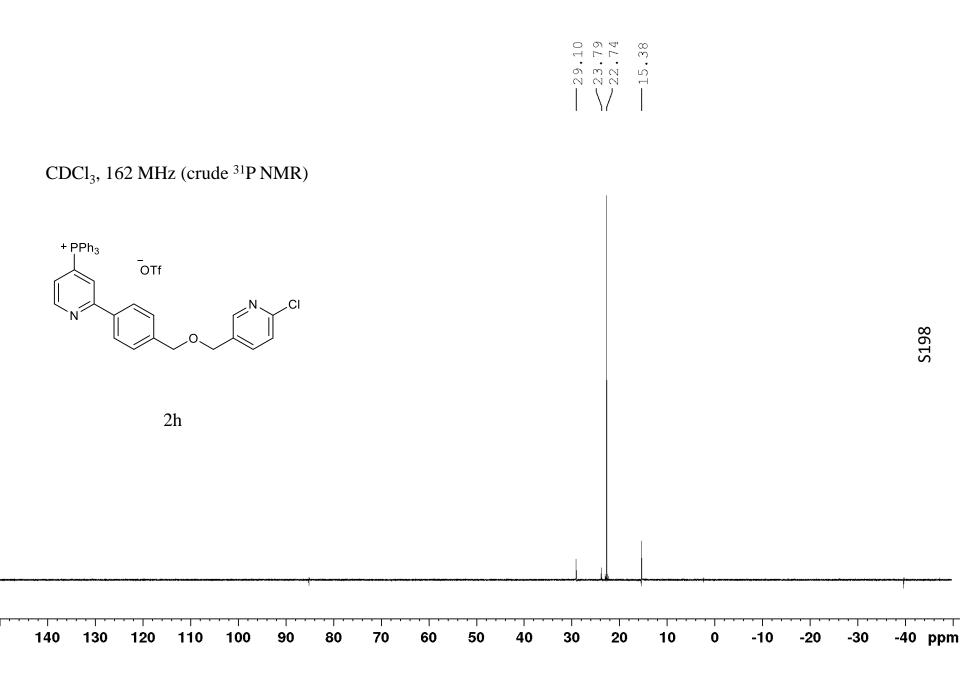

60

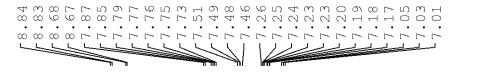

50

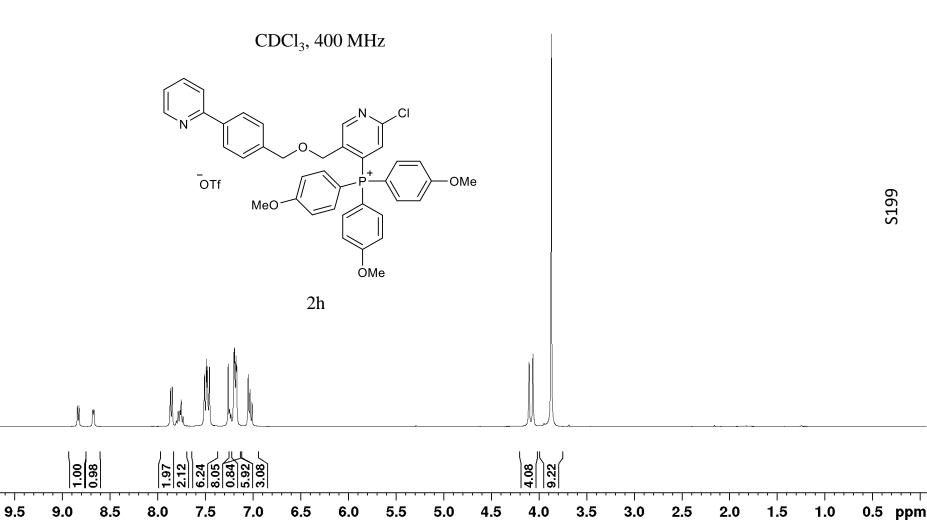

S191

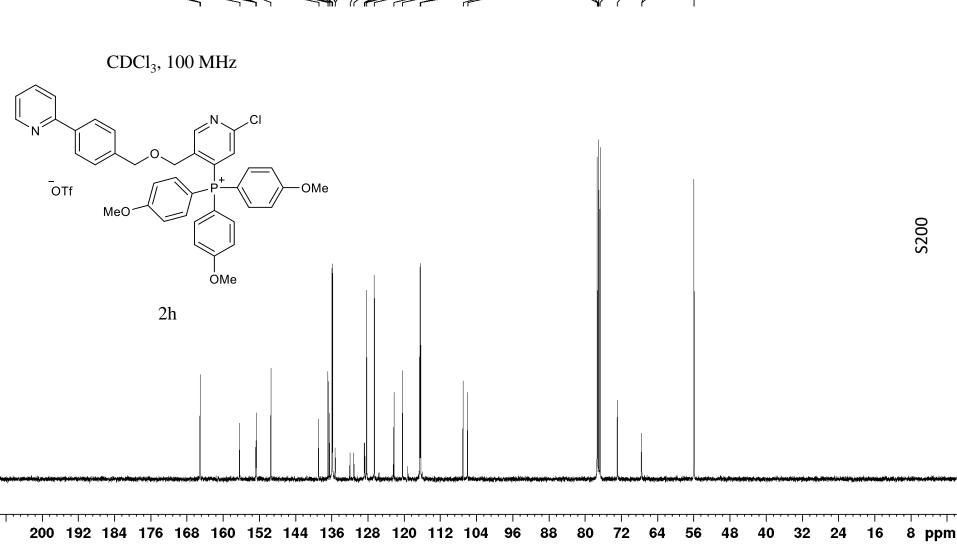
-40 ppm

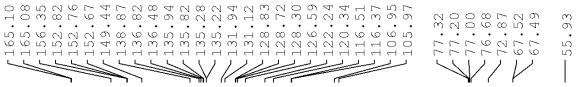


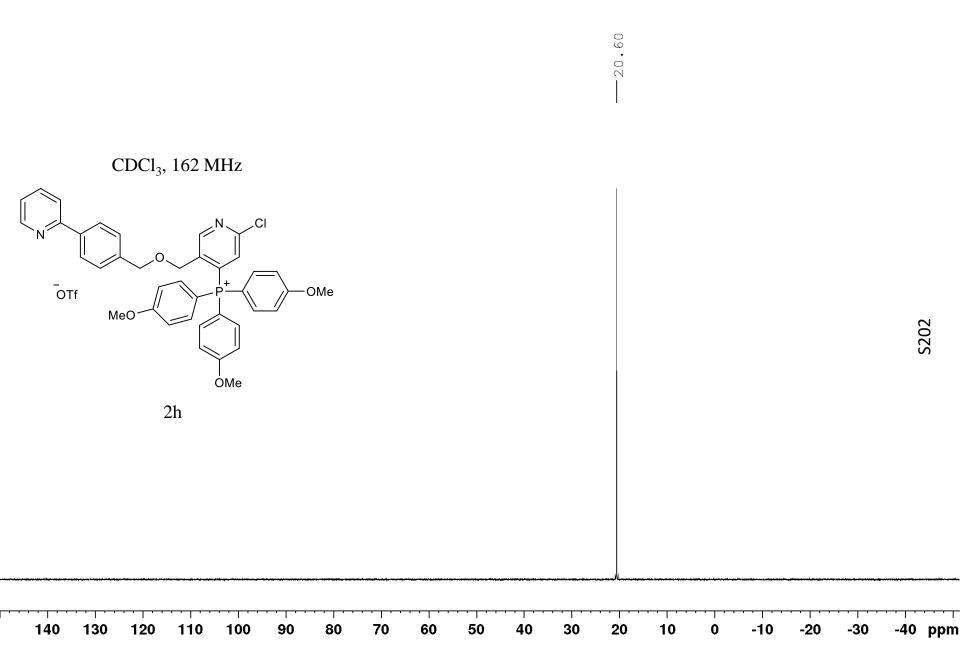


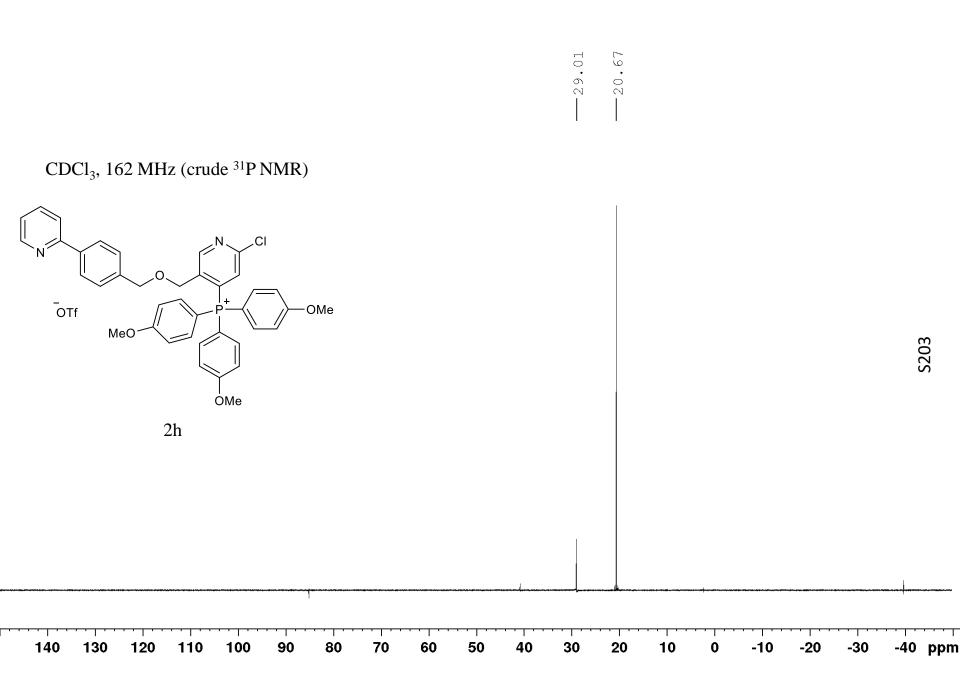


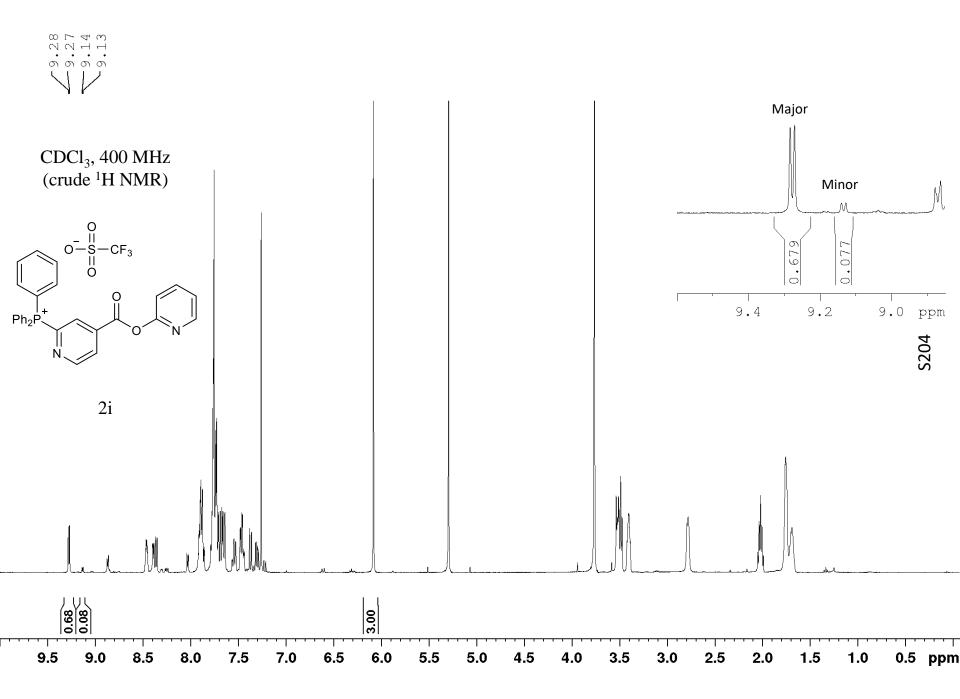

	CDCl ₃ , 365 MHz	
	OTF	
	2h	

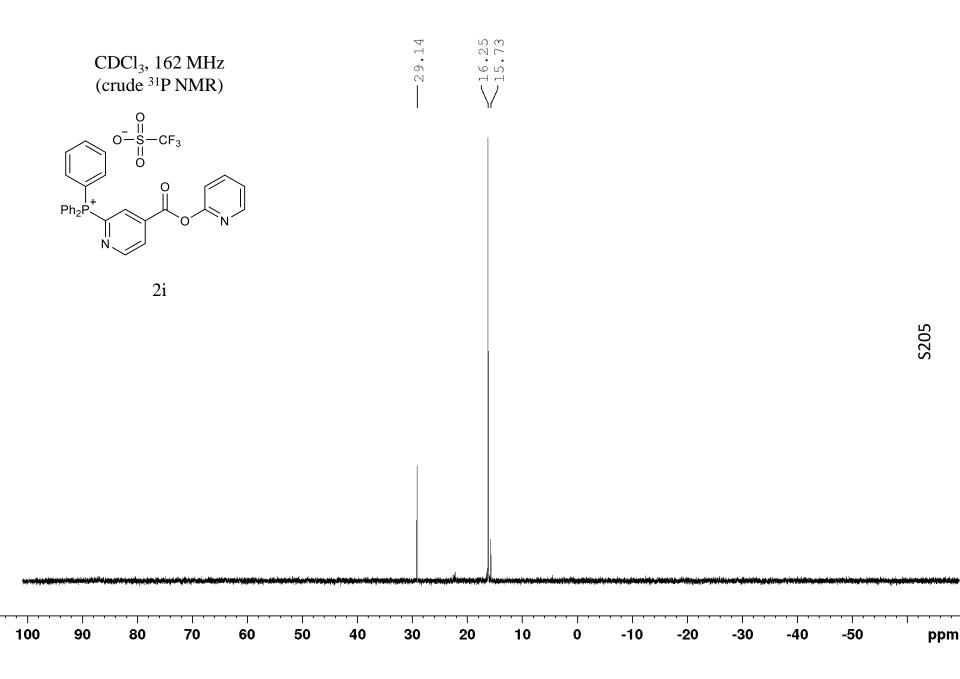


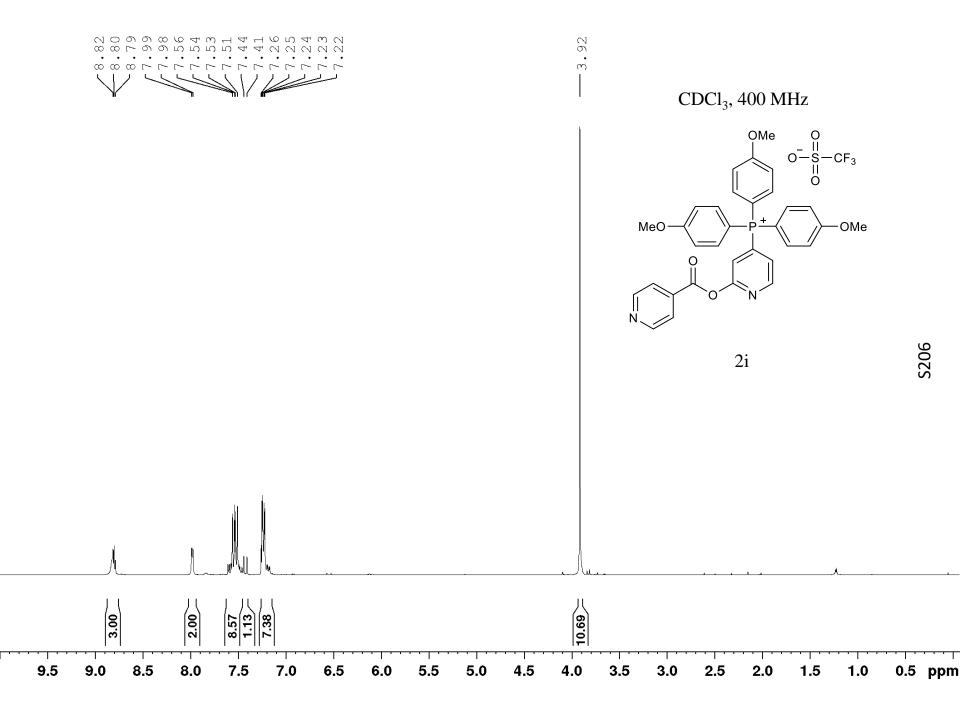


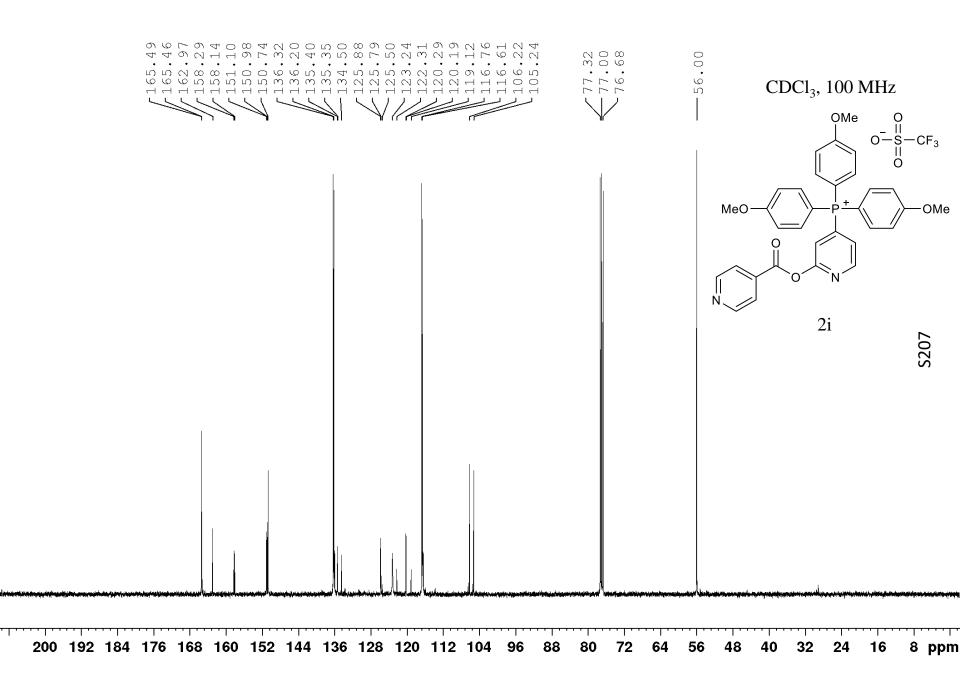


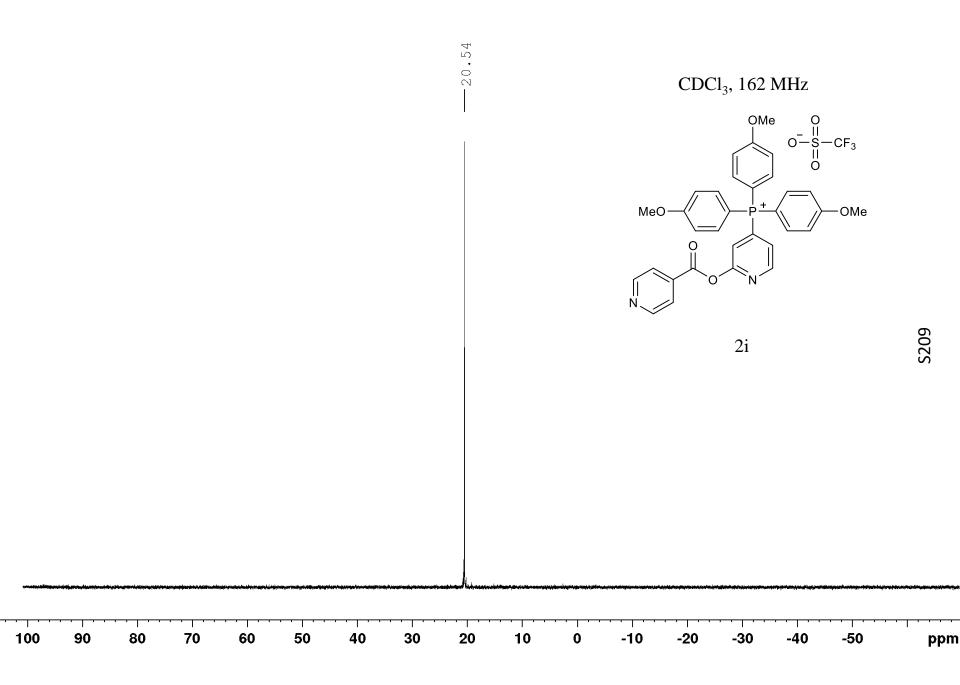


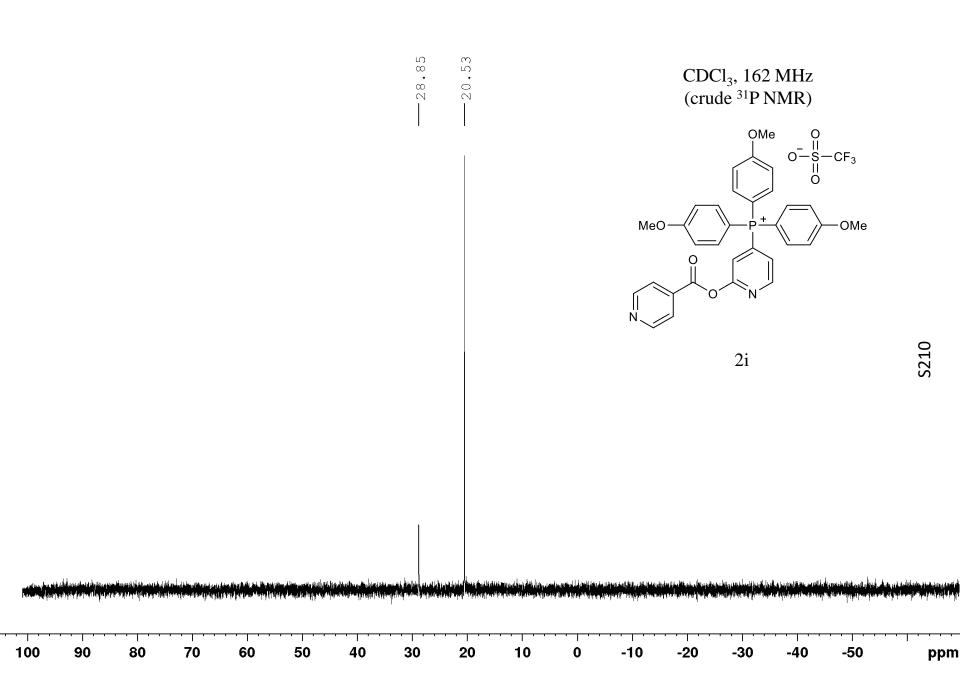


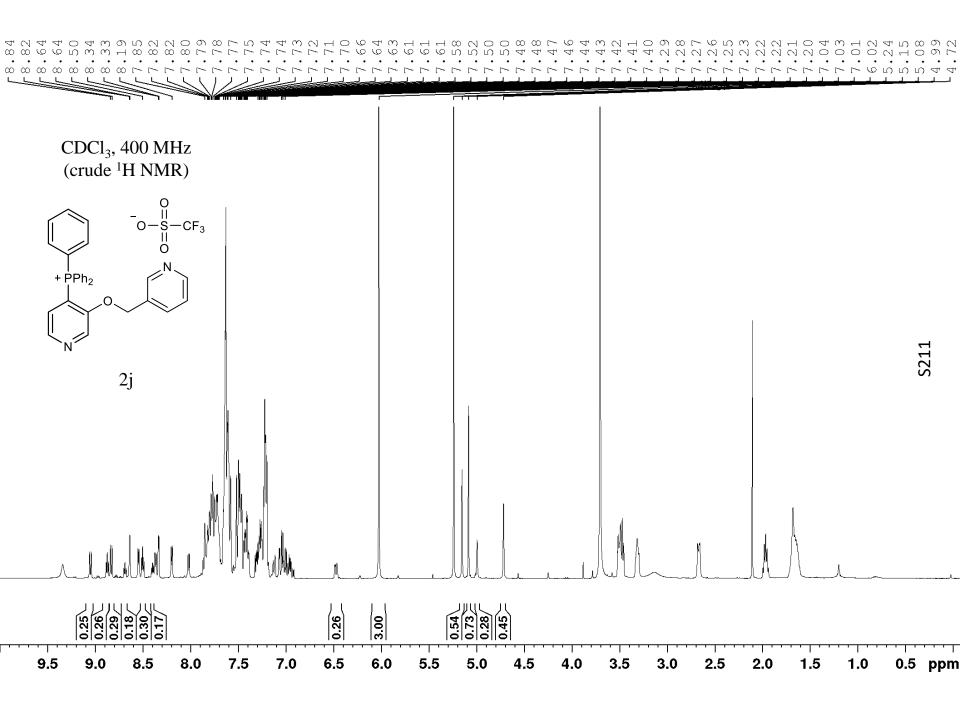


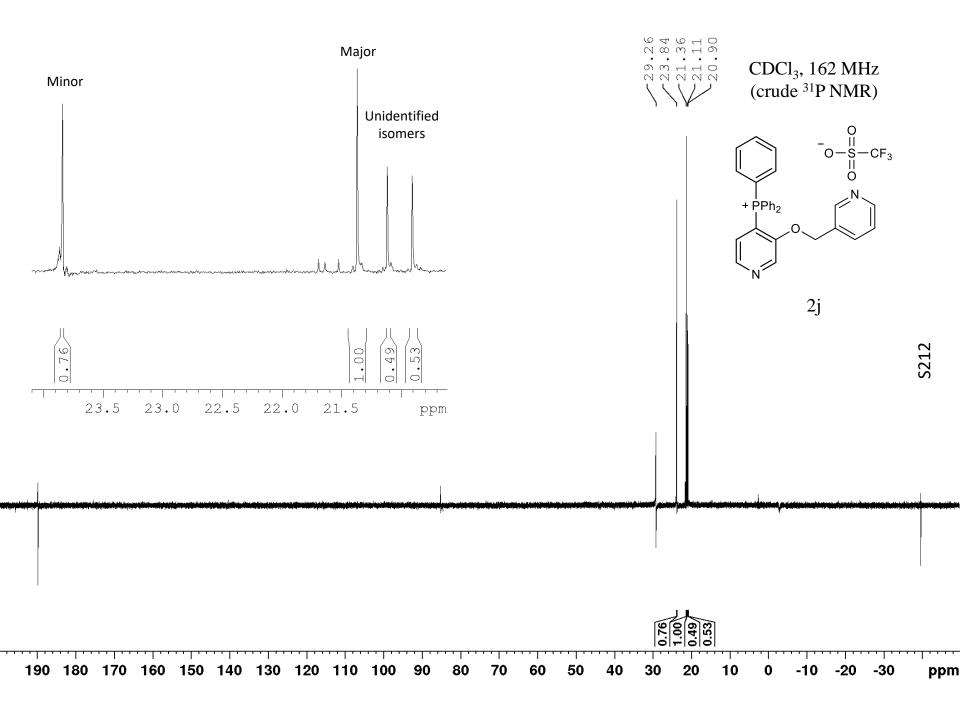

11.82 11.87	$CDCl_3, 365 \text{ MHz}$	
	2h	S201

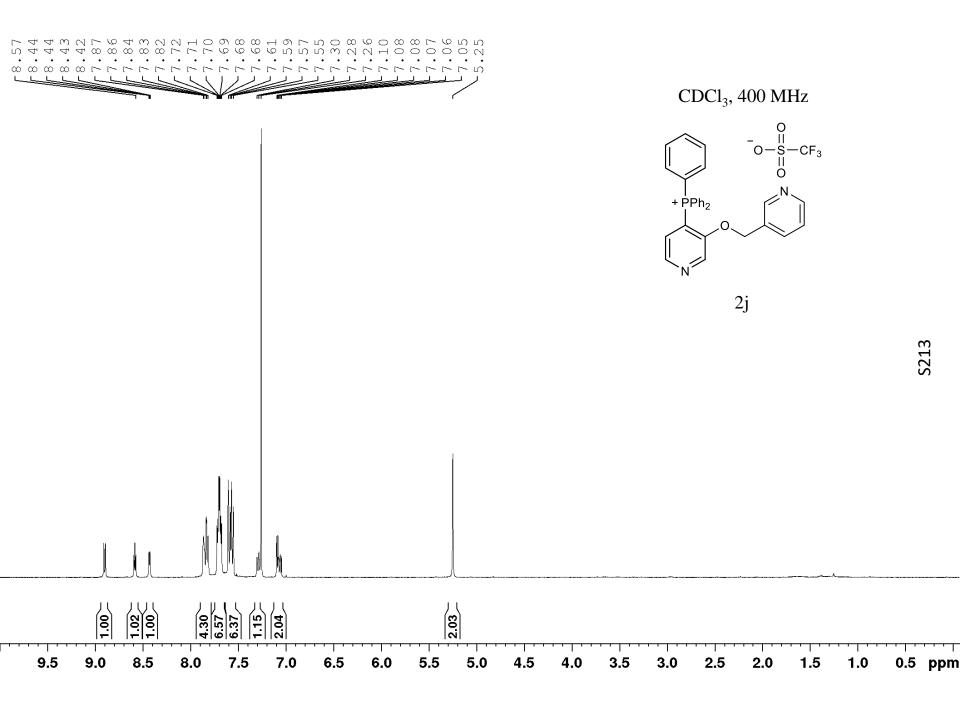


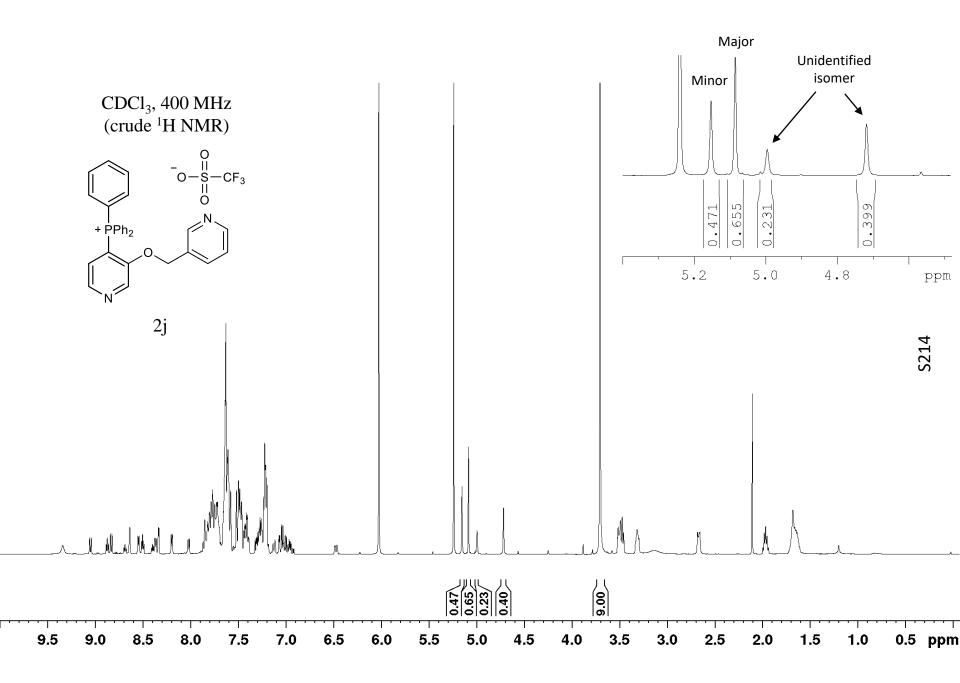


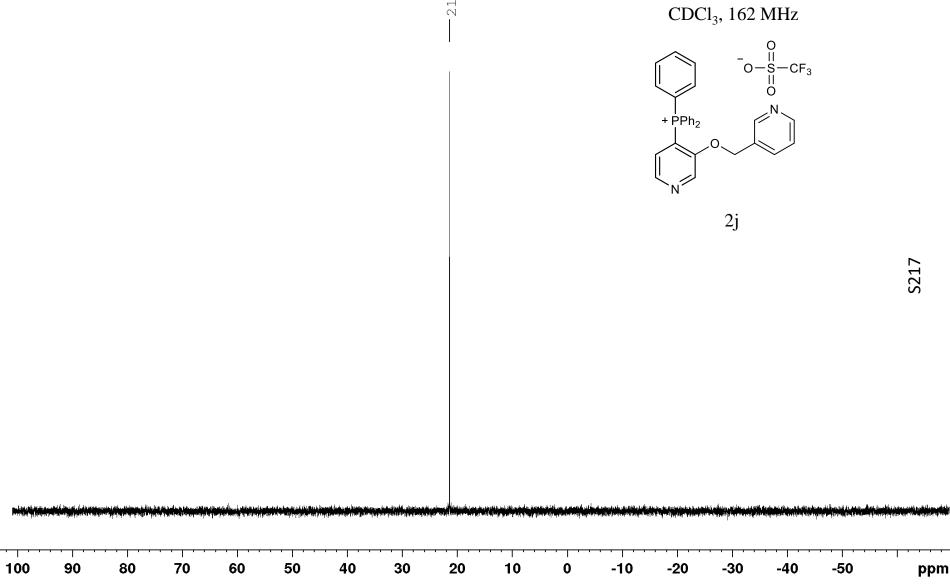


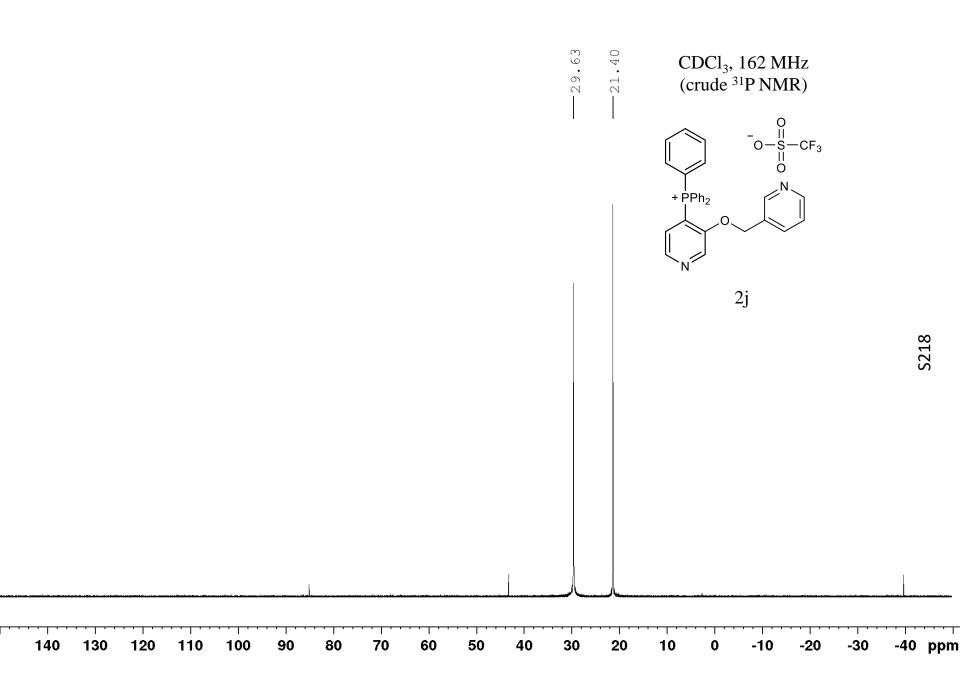



	78.17	$CDCl_3, 365 \text{ MHz}$	
		2i	

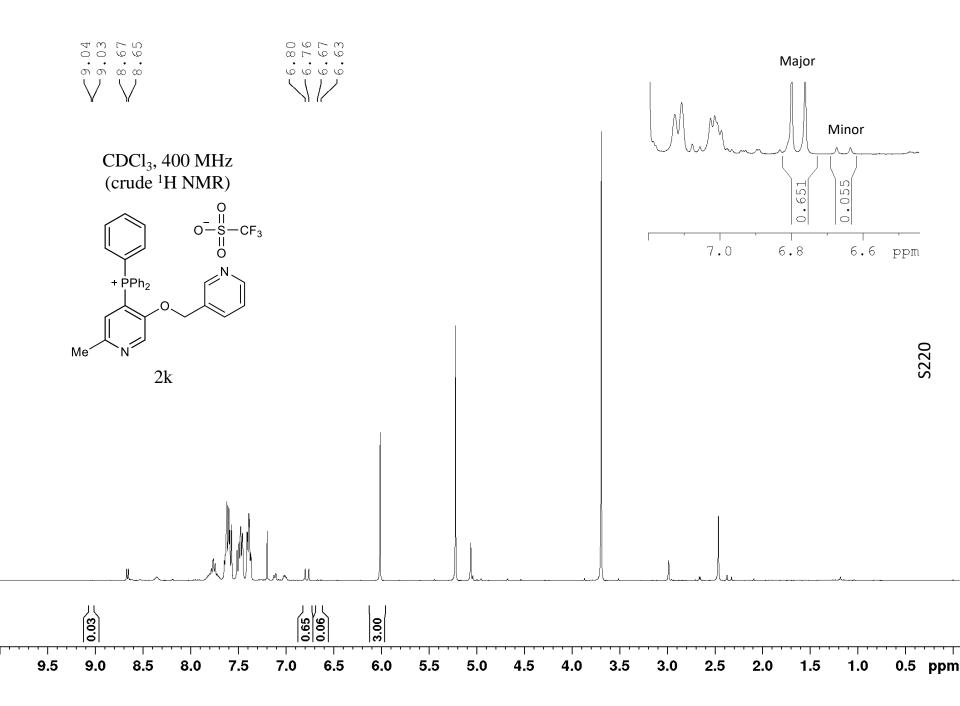

.

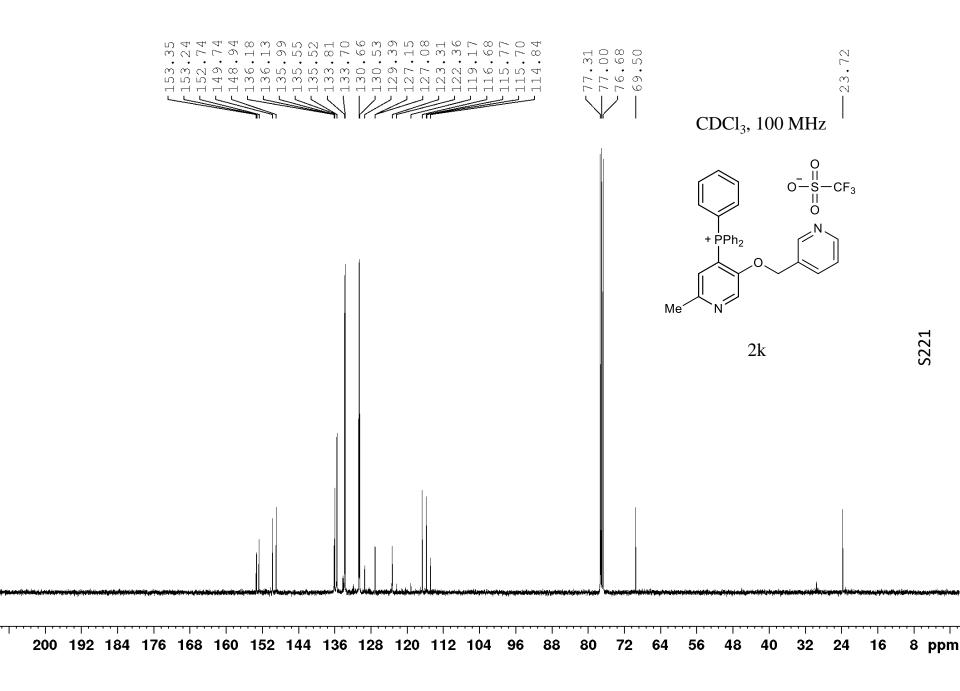




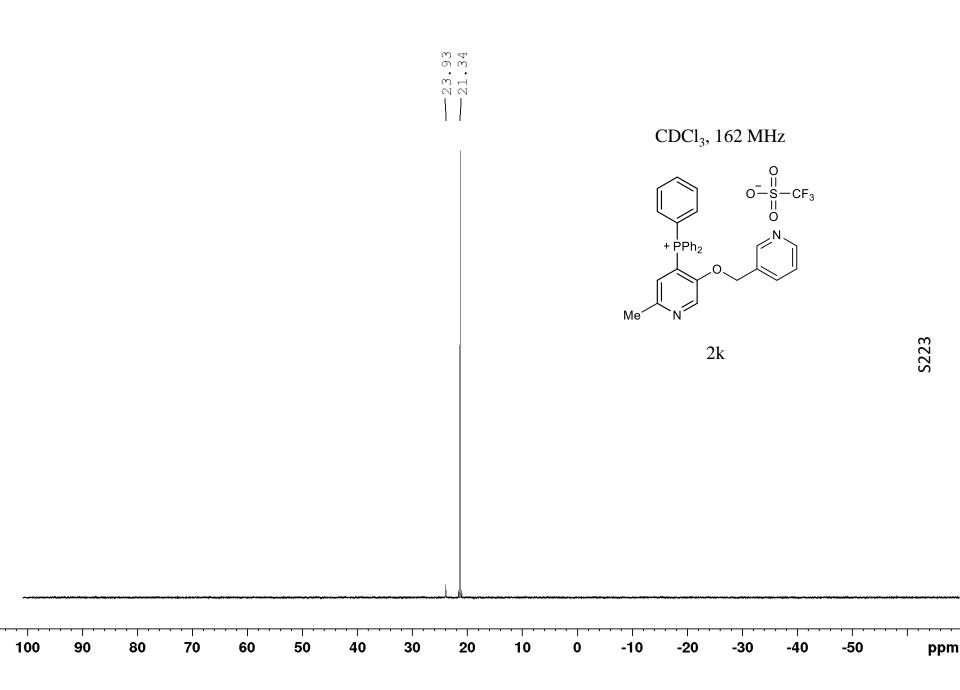


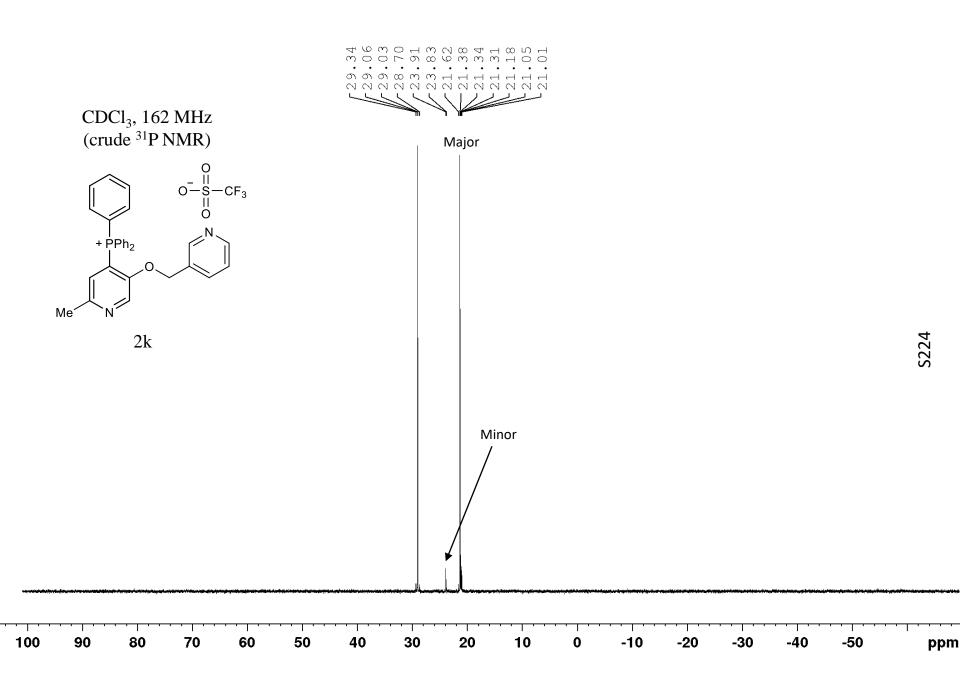

• •		n ∽ ∩ 4 <	• ~ ~ ~ • •	$p \circ \neg \neg \neg \circ \neg$	m 4 0 -	+ 80 • 80	76.68 	C	Ph ₂	- II) 5—CF3		S215
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							••••••••••••••••••••••••••••••••••••••				••••••••••••••••••••••••••••••••••••••	

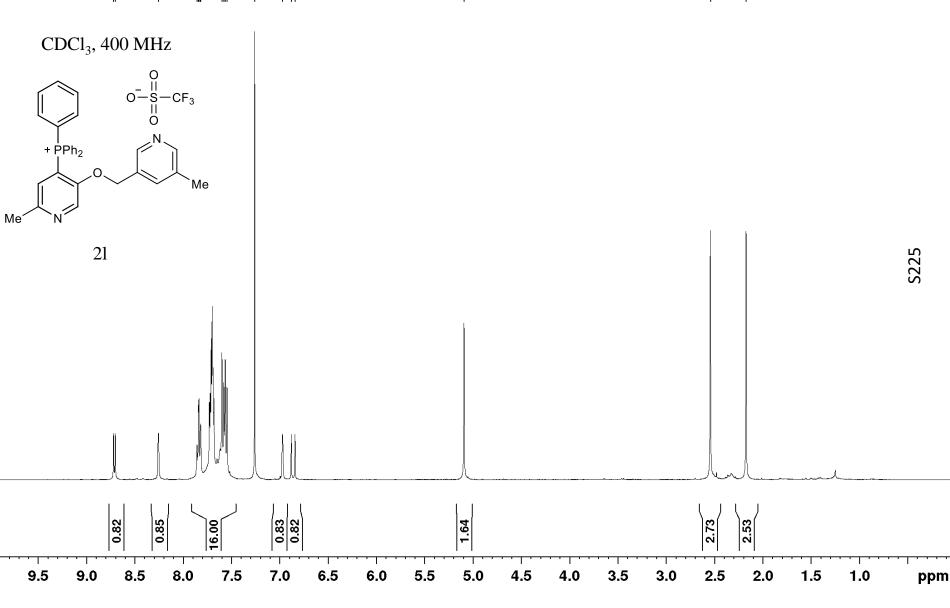

	 $CDCl_3, 365 \text{ MHz}$	
	$- 0$ $- 0$ $- 0$ $- 0$ $- 0$ $- 0$ $- 0$ $- 0$ $+ PPh_2$ $- 0$ $- 0$	
	2j	



-21.42





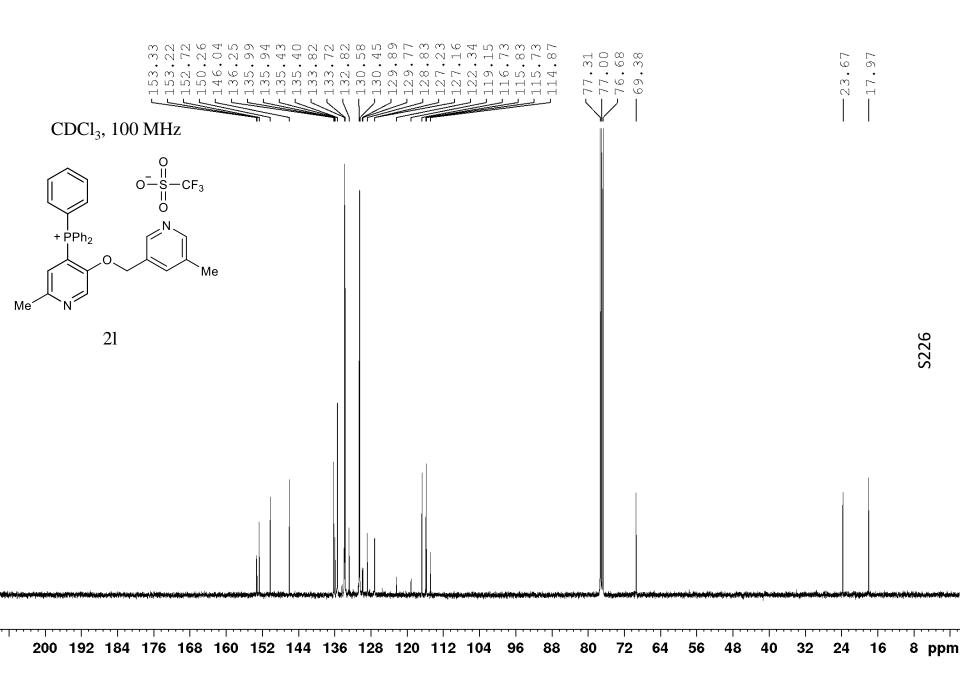


$ \begin{array}{c} $		 CDCl ₃ , 365 MHz	
		Me = N	
			U

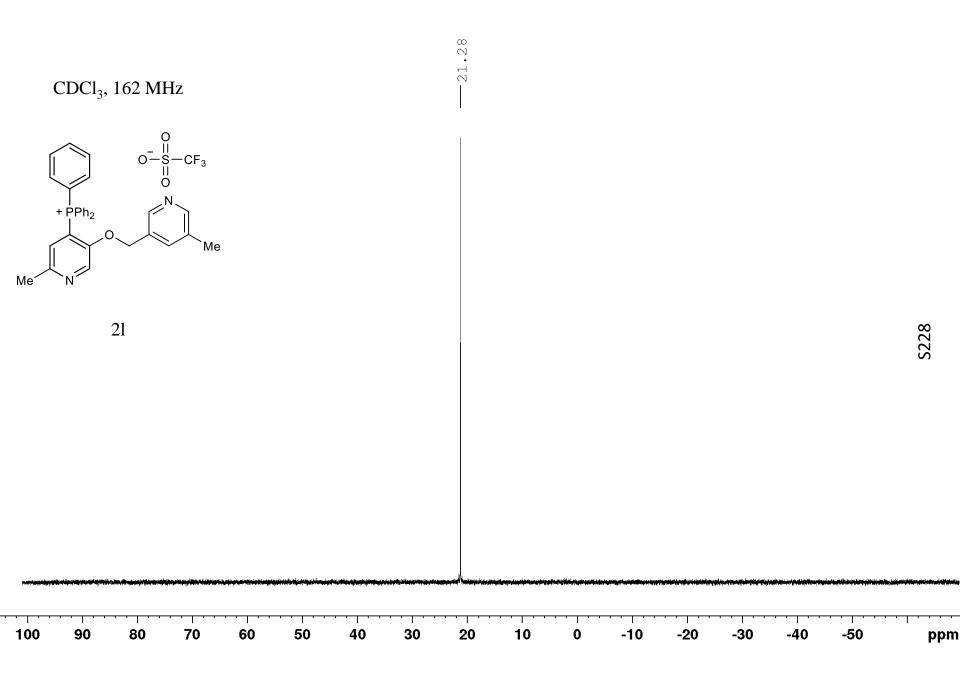
 \circ

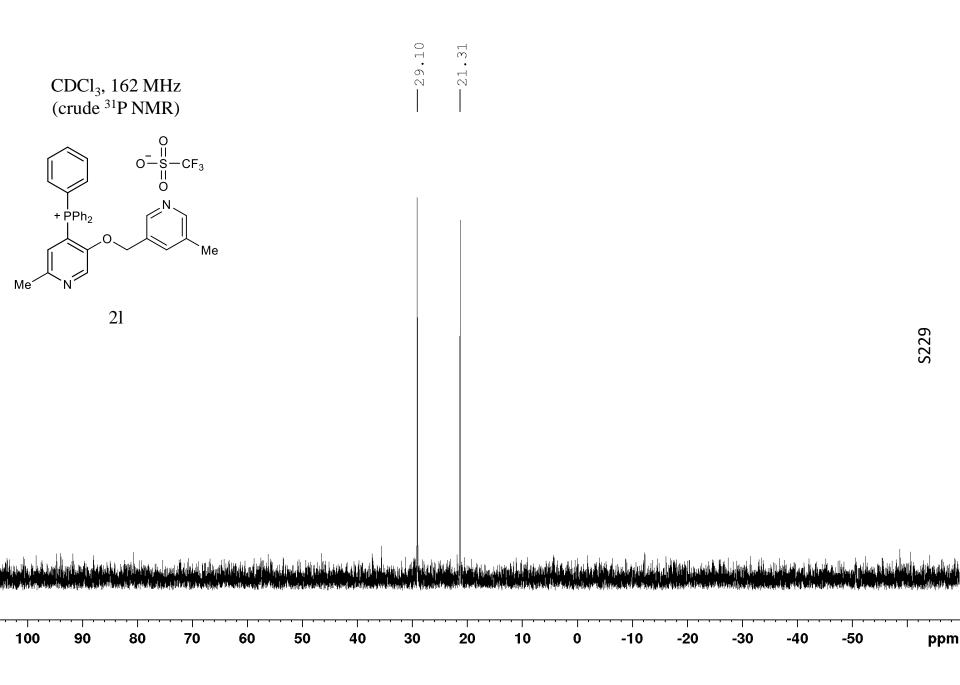
0

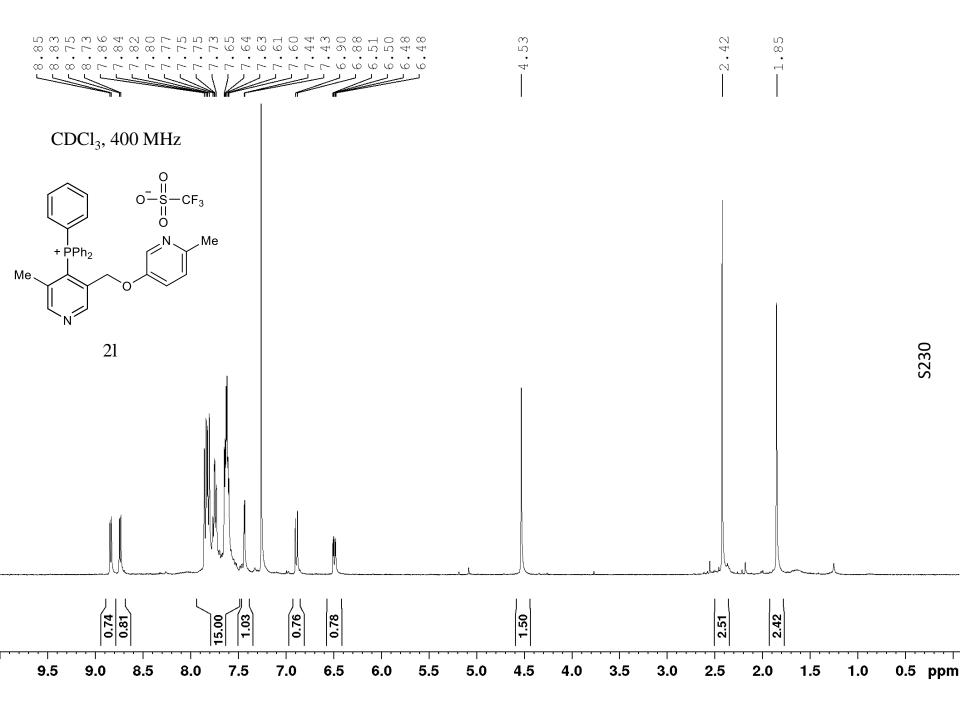
٠

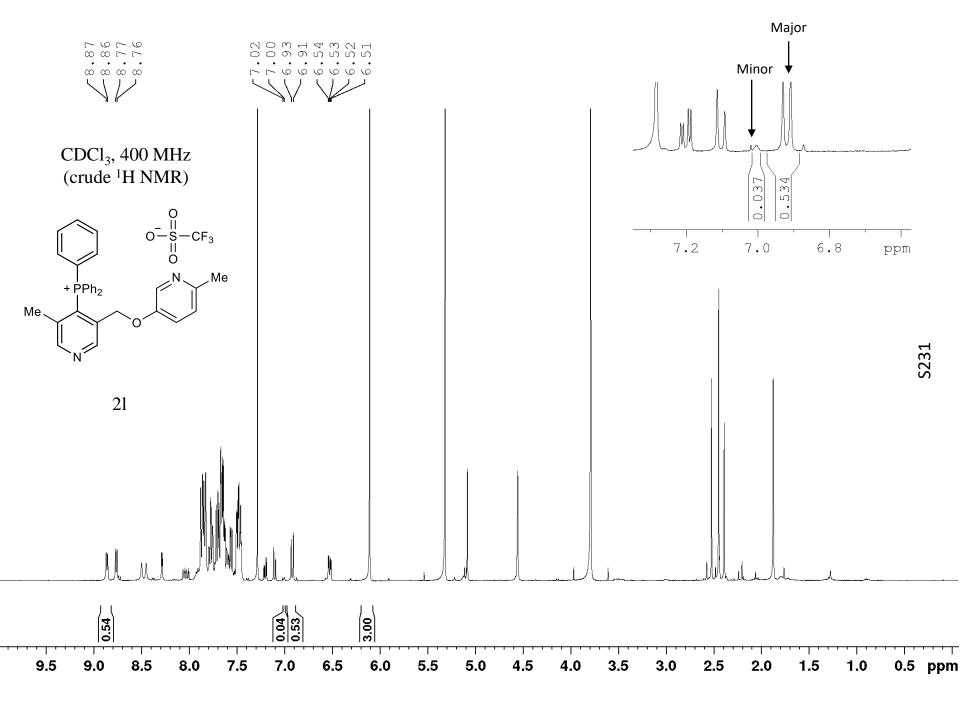

ம

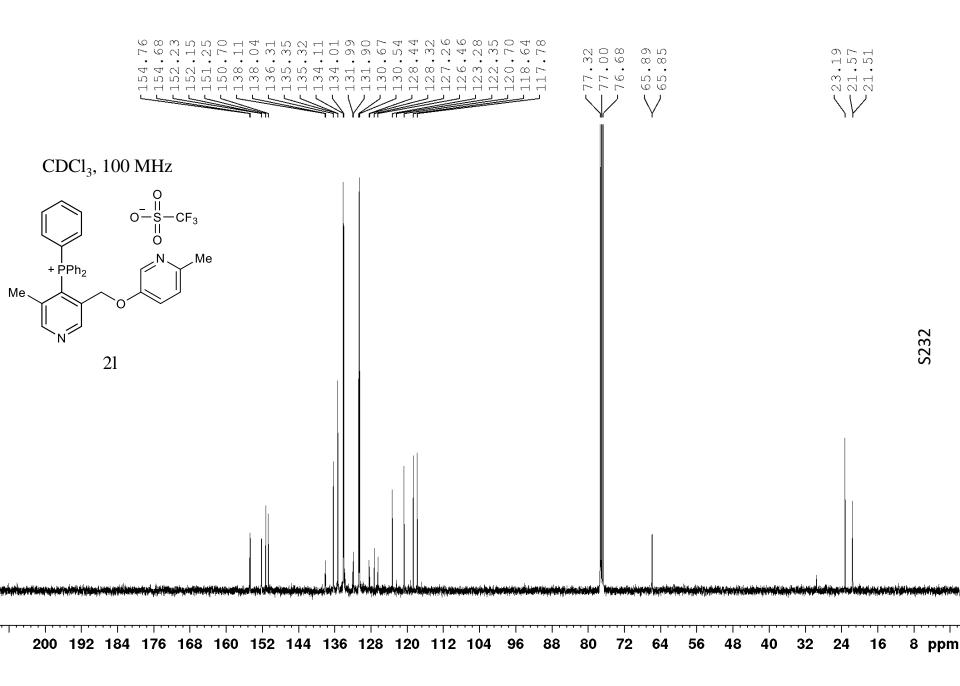
8.72 8.70 8.26 7.86 7.84 7.84 7.84 7.82 7.82 7.82 7.82 7.82 7.57 7.57 7.57 7.57 7.55 84 6.83 86 84 6.84

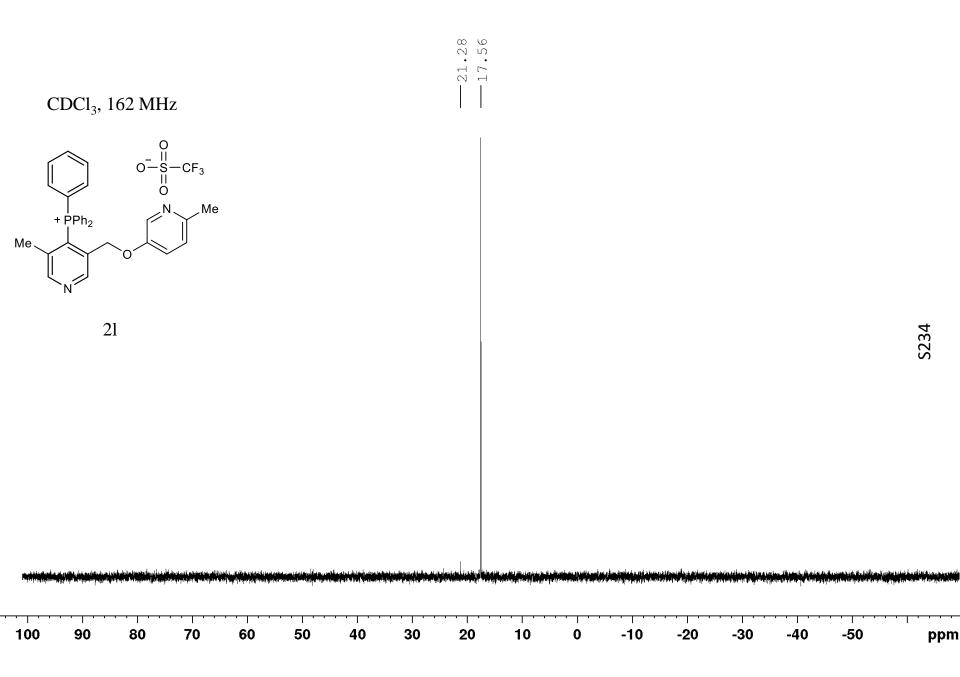

-2.17

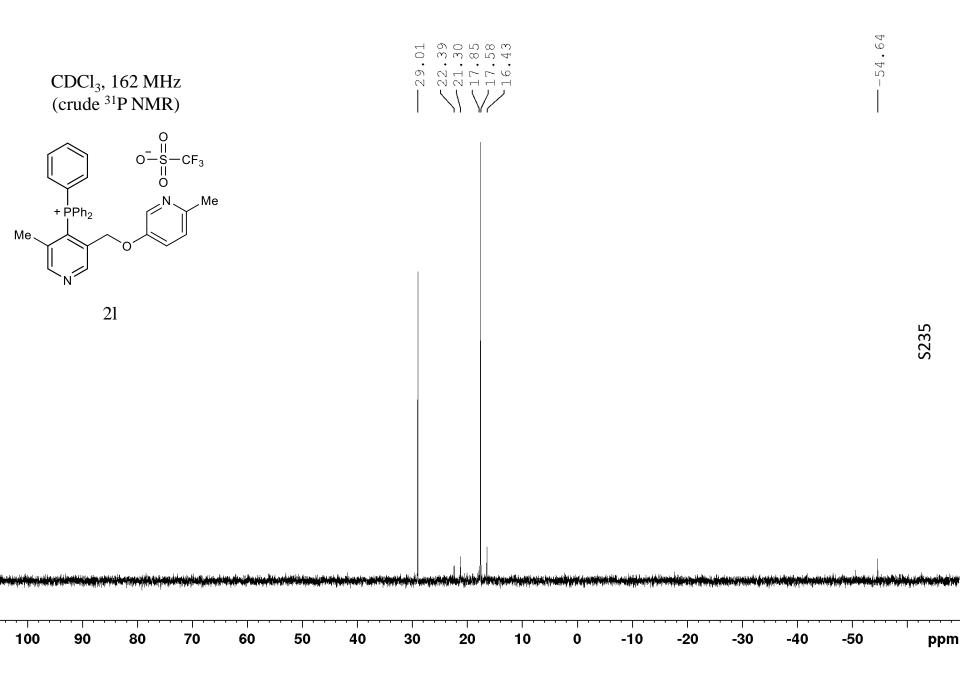

.54

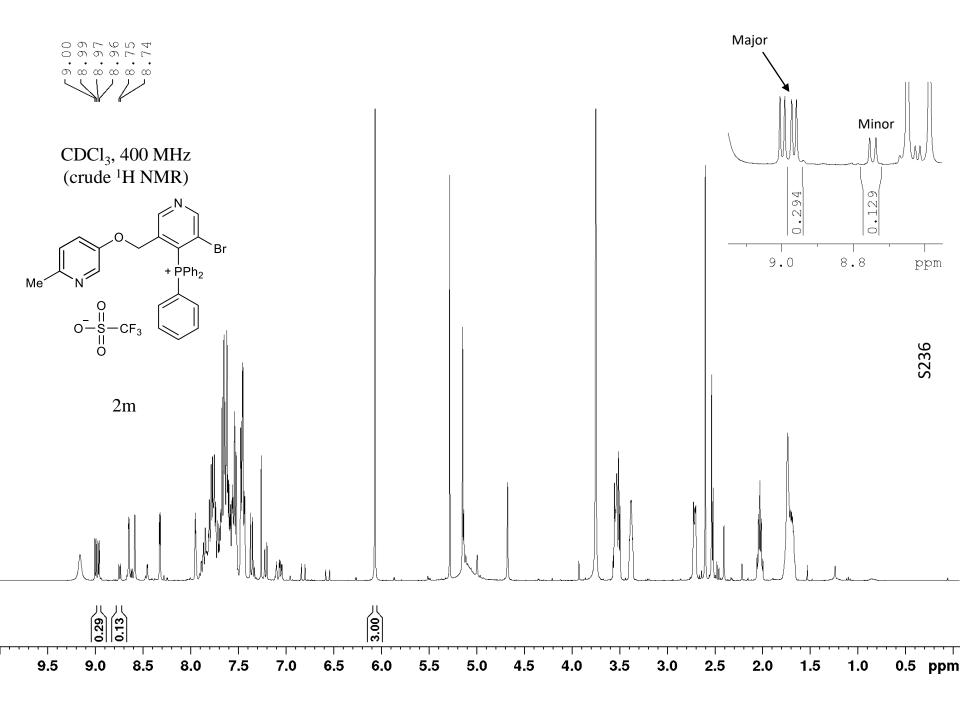

 \sim

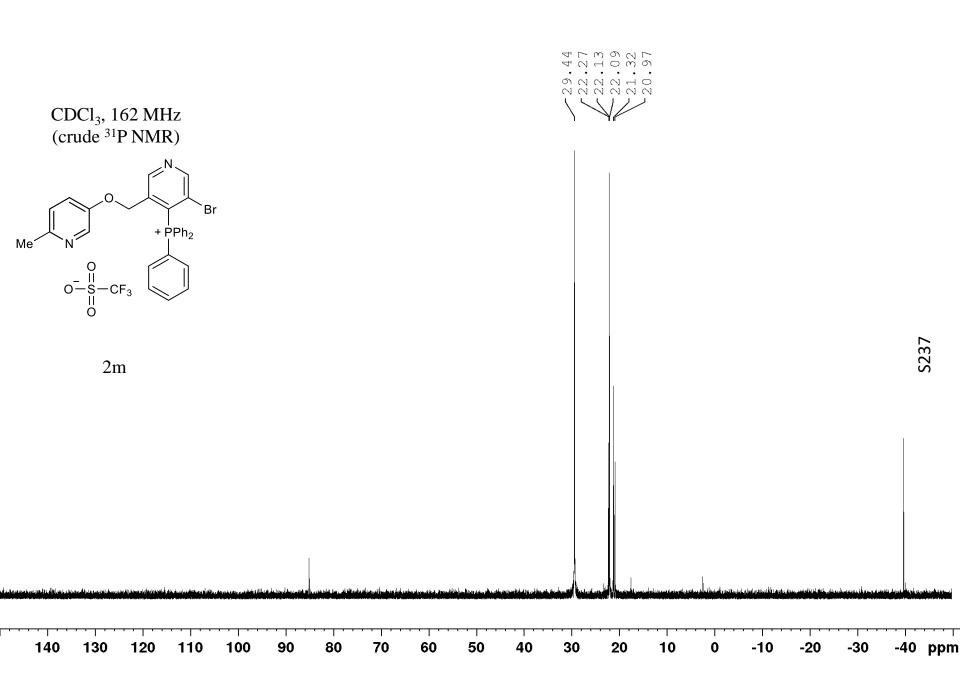


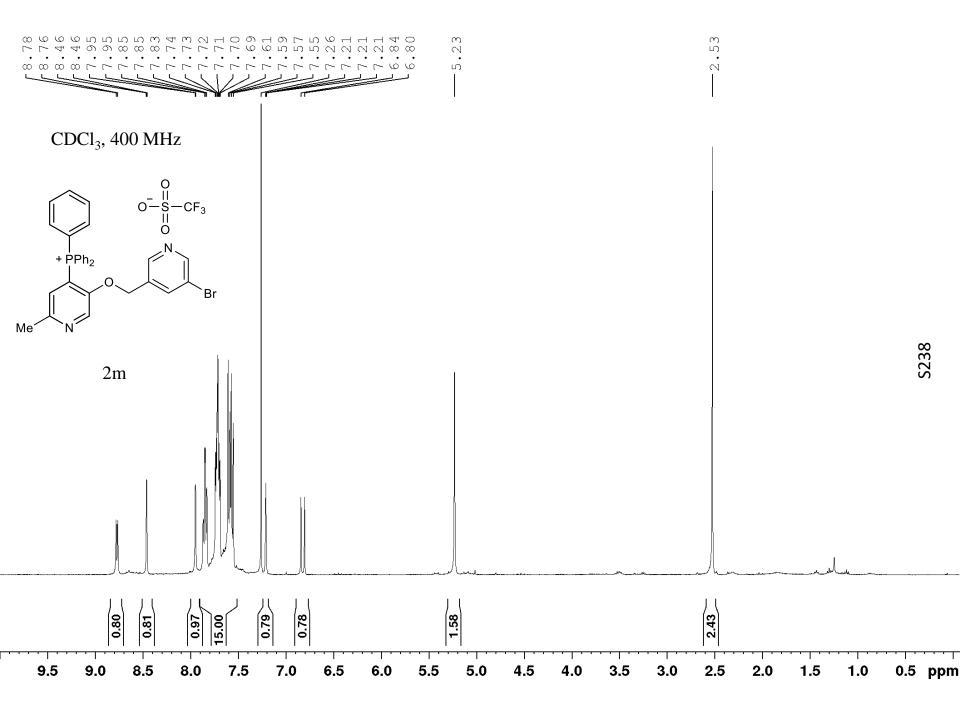

CDCl ₃ , 365 MHz				
Me = N				
21			2005	3661
				,
20 10 0 -10 -20 -30 -40 -50 -6	0 -70 -80 -90	-100 -110 -120 -130 -140 -	150 -160 -170 -180 -190	ppm

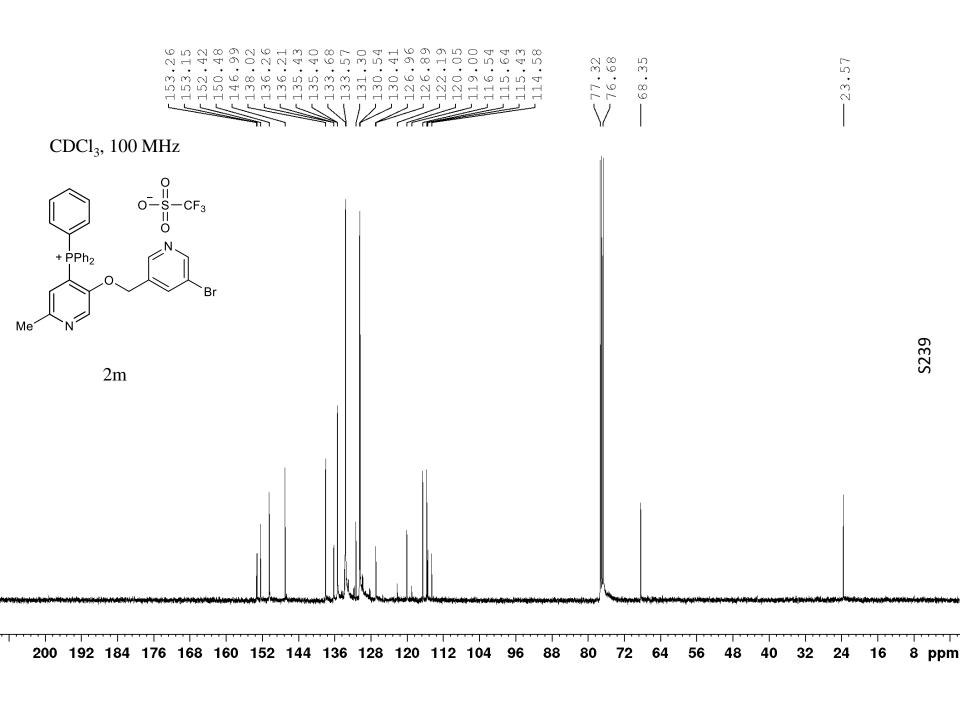


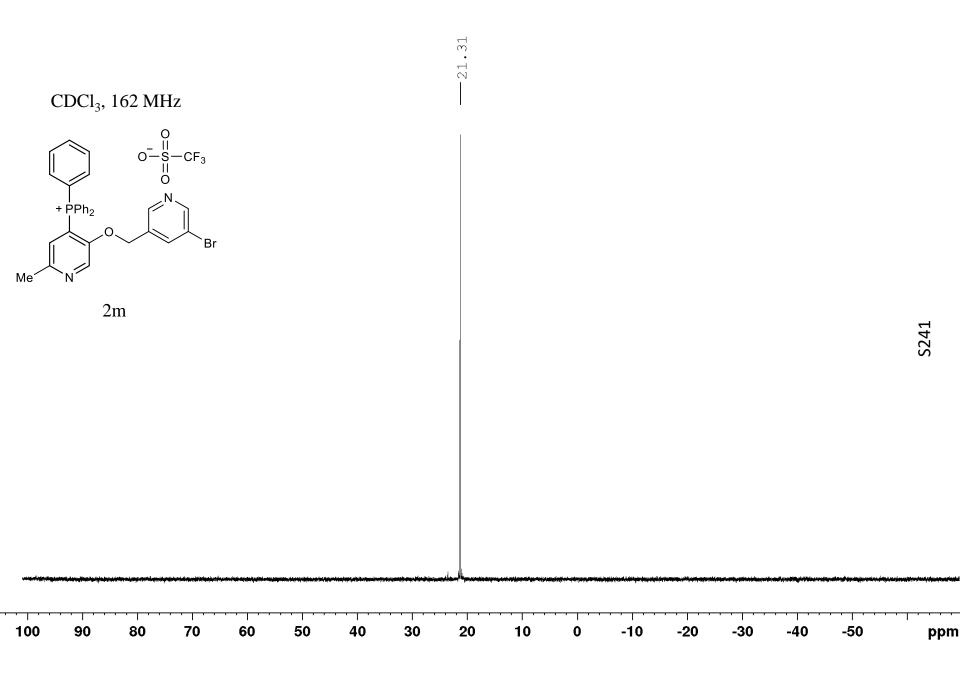


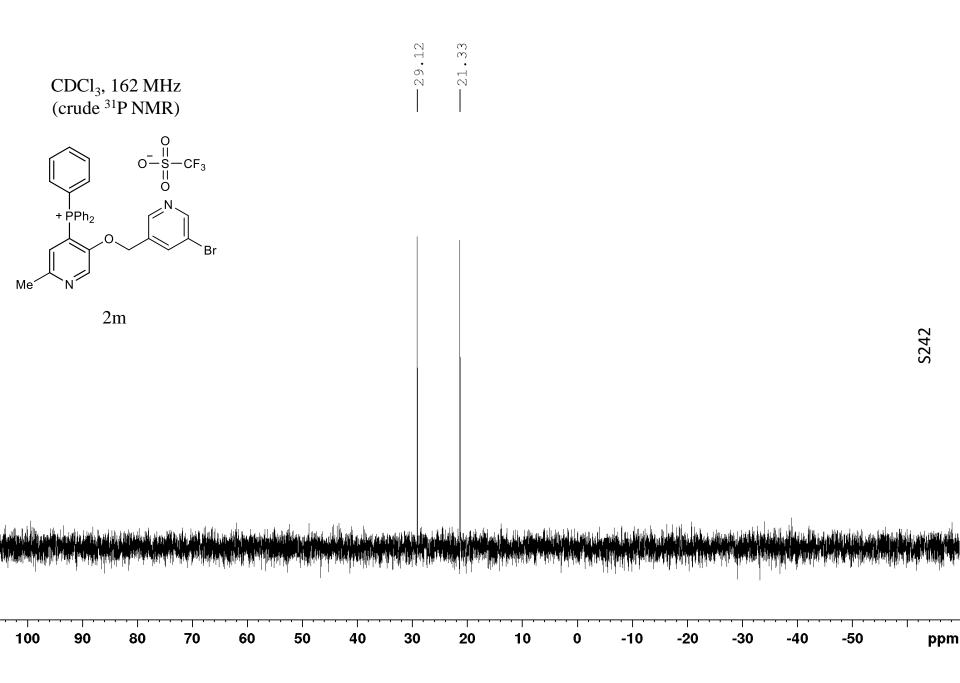


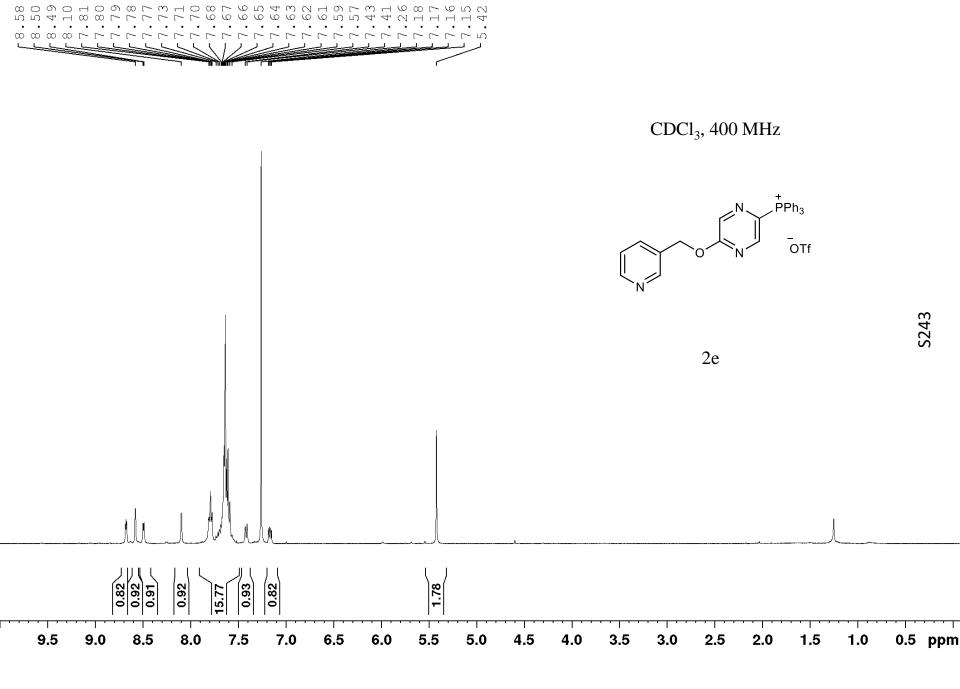


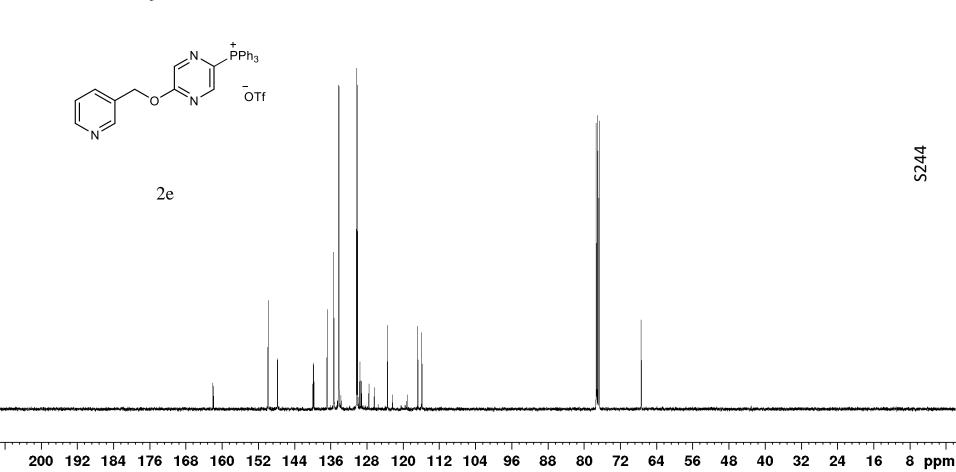

Me = N Me		
vie o		
21		S233



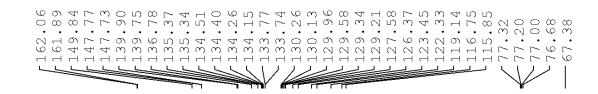






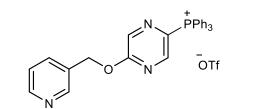


CDCl ₃ , 365 MHz	-78.20	
$ \begin{array}{c} $		
2m		0703
	1999 1999 1999 1999 1999 1999 1999 199	



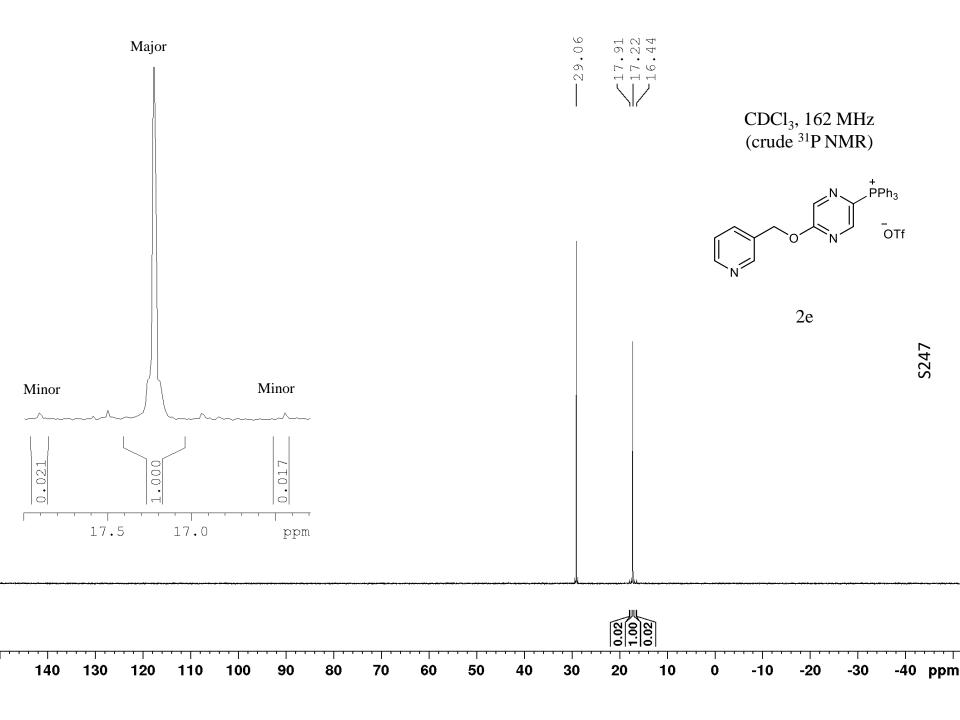
CDCl₃, 100 MHz

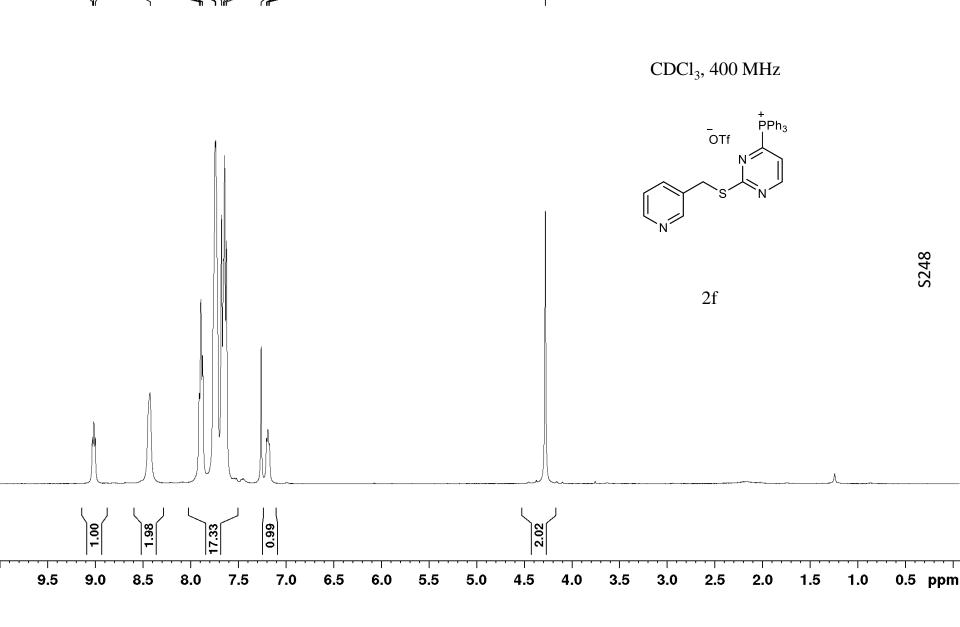
	$CDCl_3, 365 \text{ MHz}$
	2e
	L C

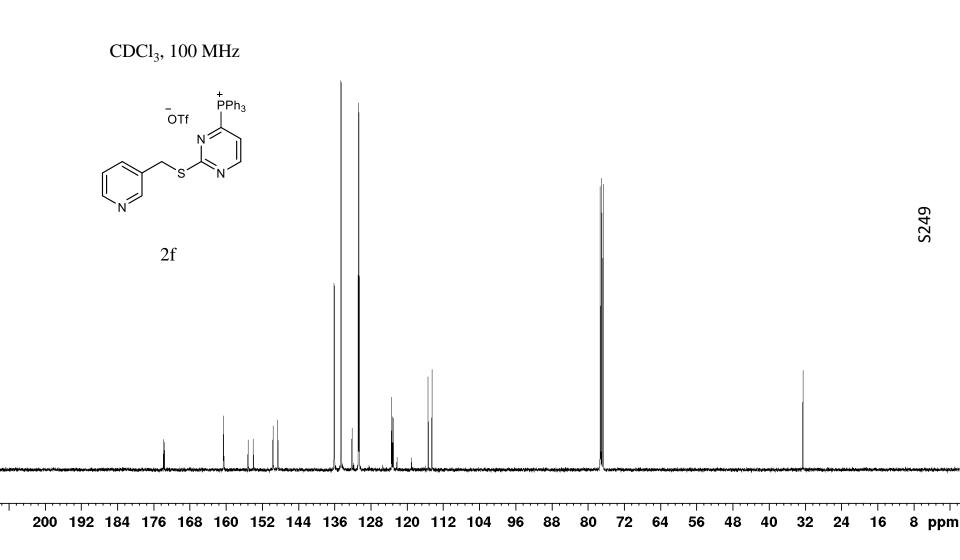


-10

-20


-30


CDCl₃, 162 MHz


2e

-40 ppm

 -4.28

32

Т

 173.83

 173.65

 160.60

 160.53

 160.53

 155.15

 155.15

 155.15

 155.15

 155.15

 155.15

 155.15

 155.15

 155.15

 154.04

 155.15

 155.15

 155.15

 156.03

 136.09

 136.12

 137.19

 123.22

 123.23

 123.22

 123.22

 123.23

 123.23

 123.23

 123.22

 123.23

 123.23

 123.23

 123.23

 123.23

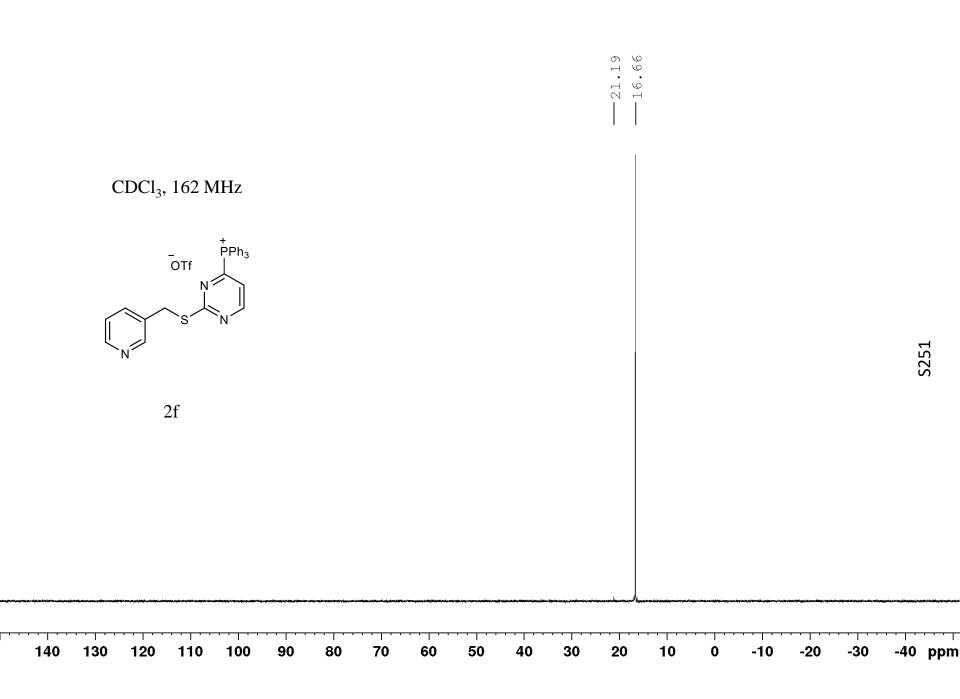
 123.25

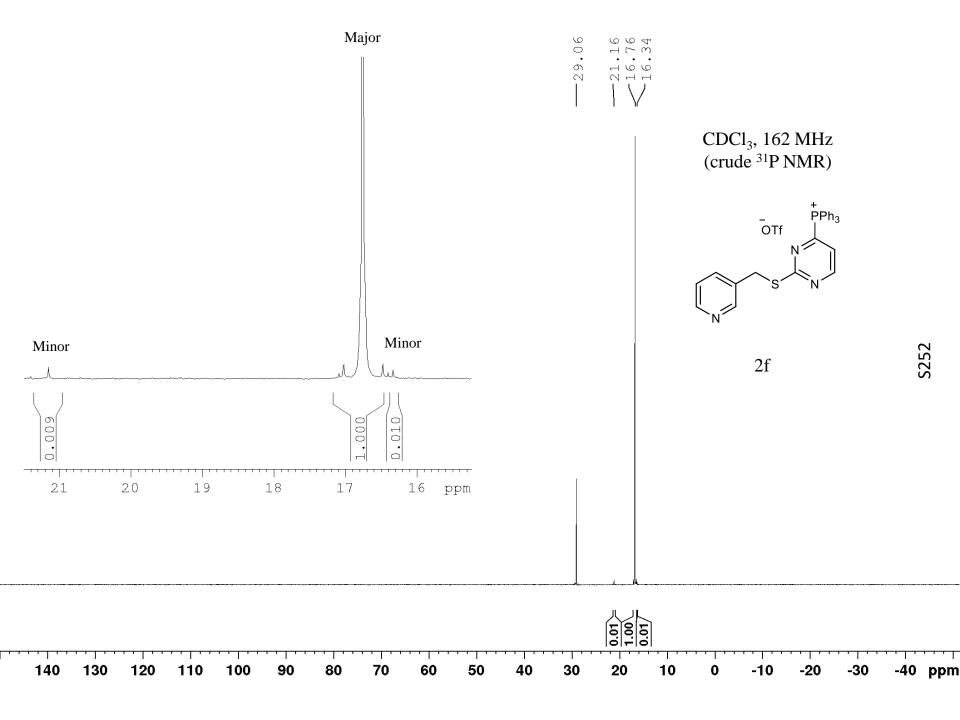
 123.25

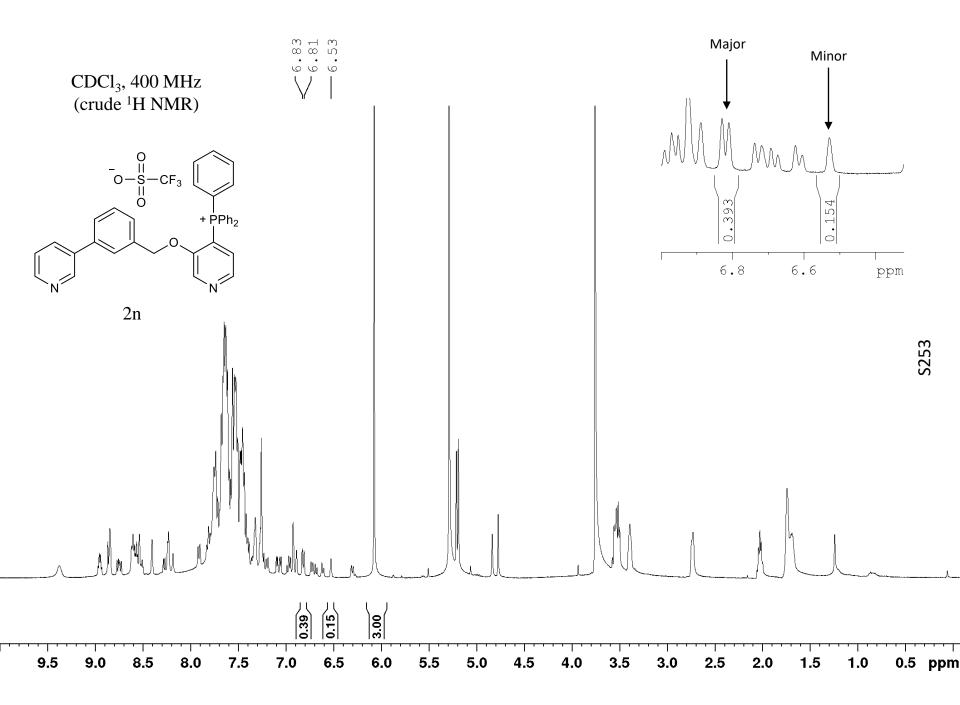
 123.25

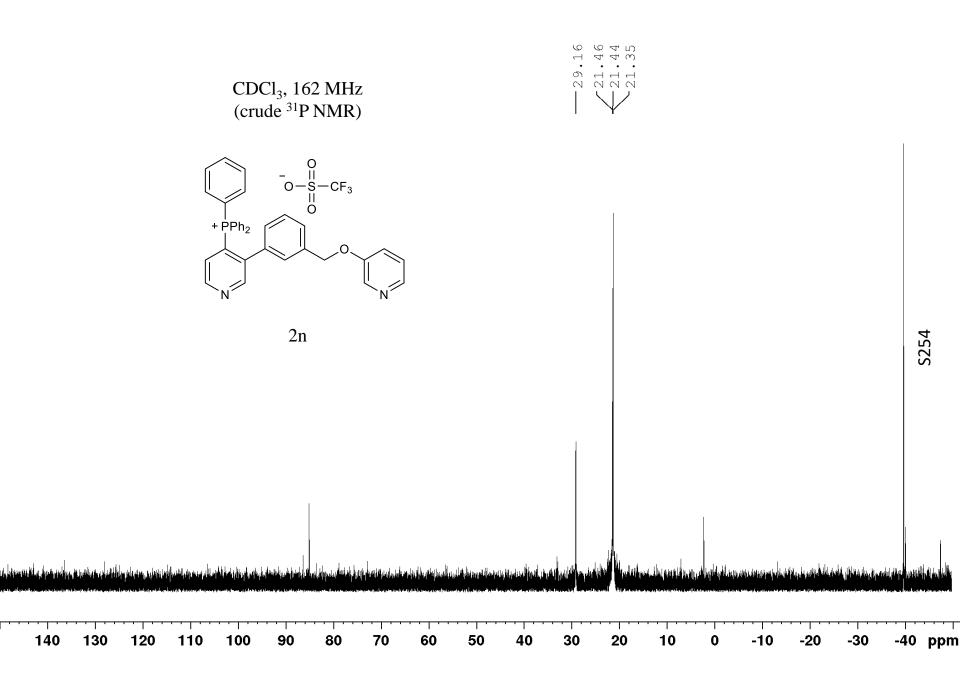
 123.25

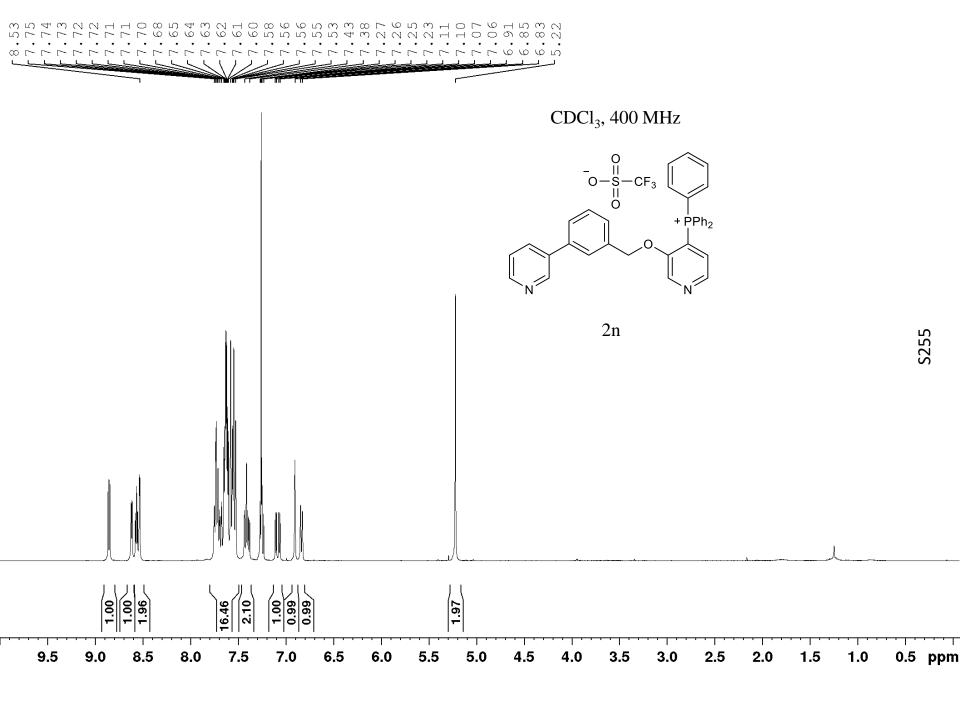
 123.25

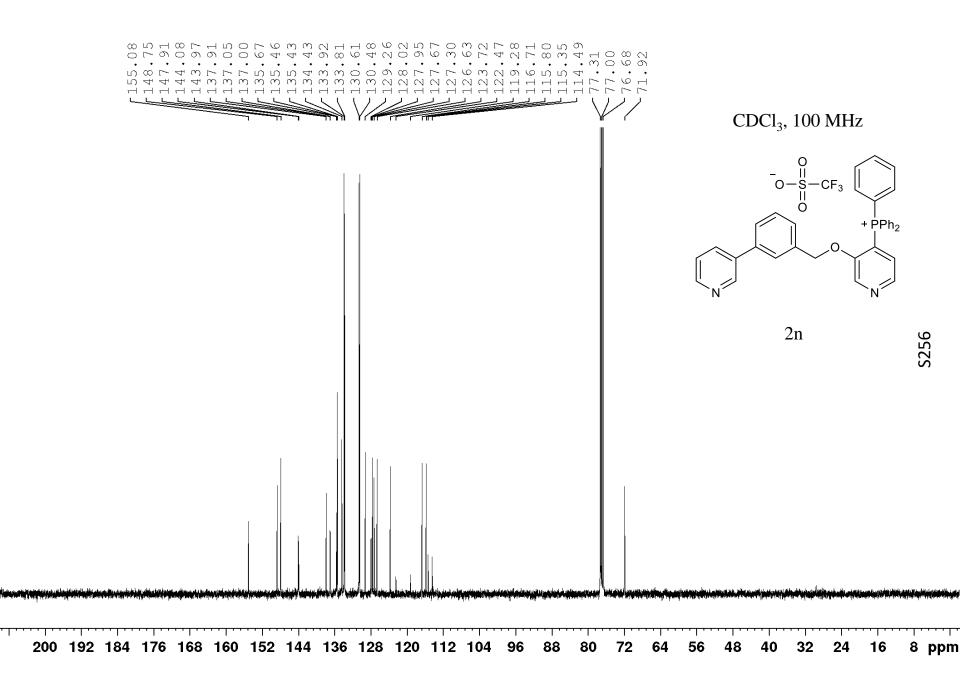

 123.25

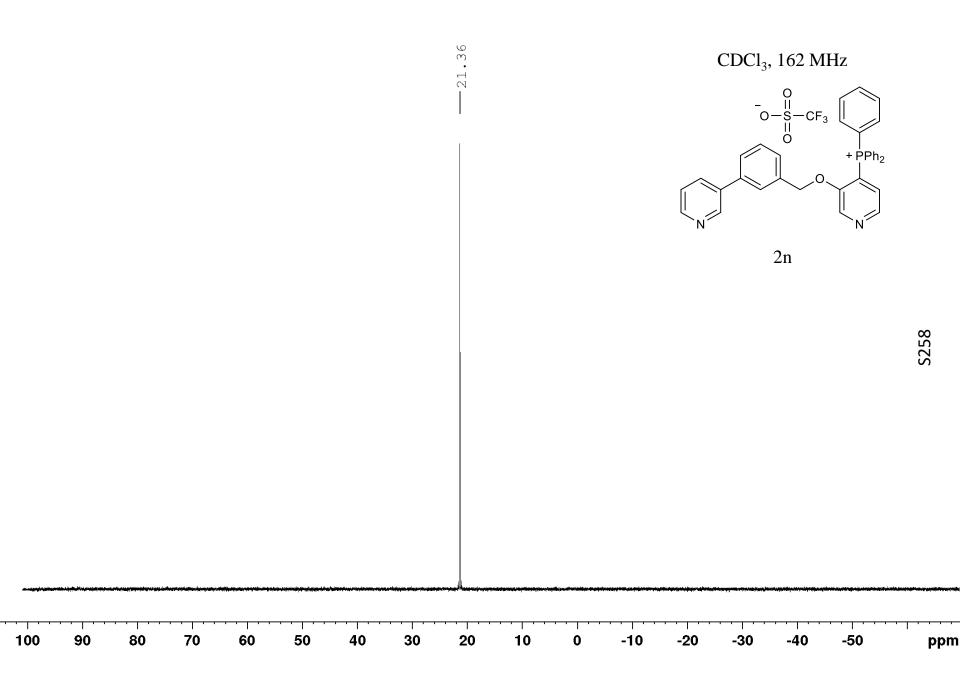

 124.50

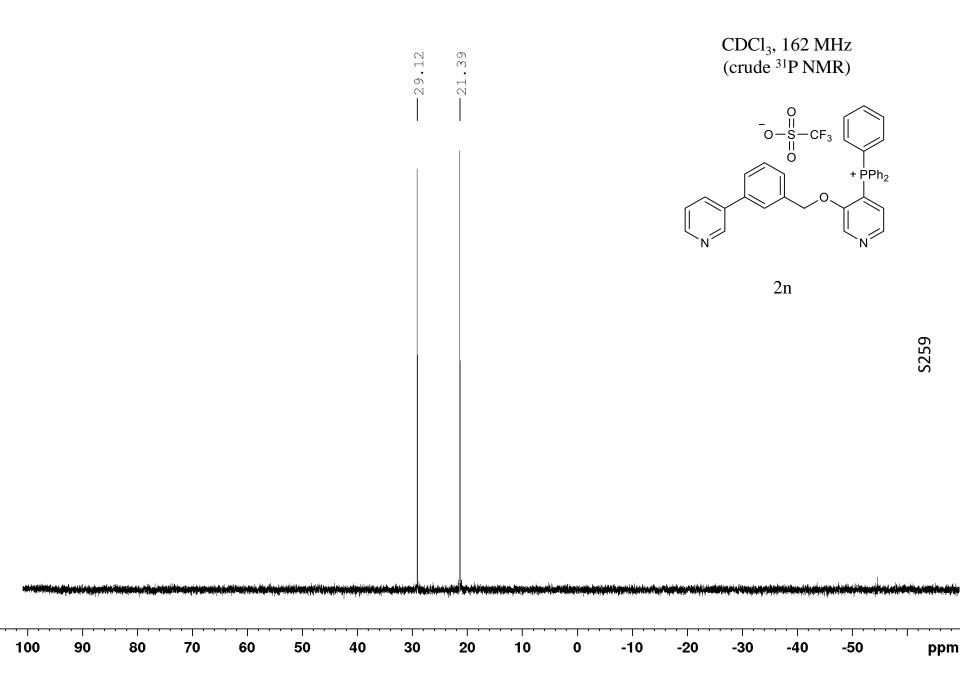

 77.00

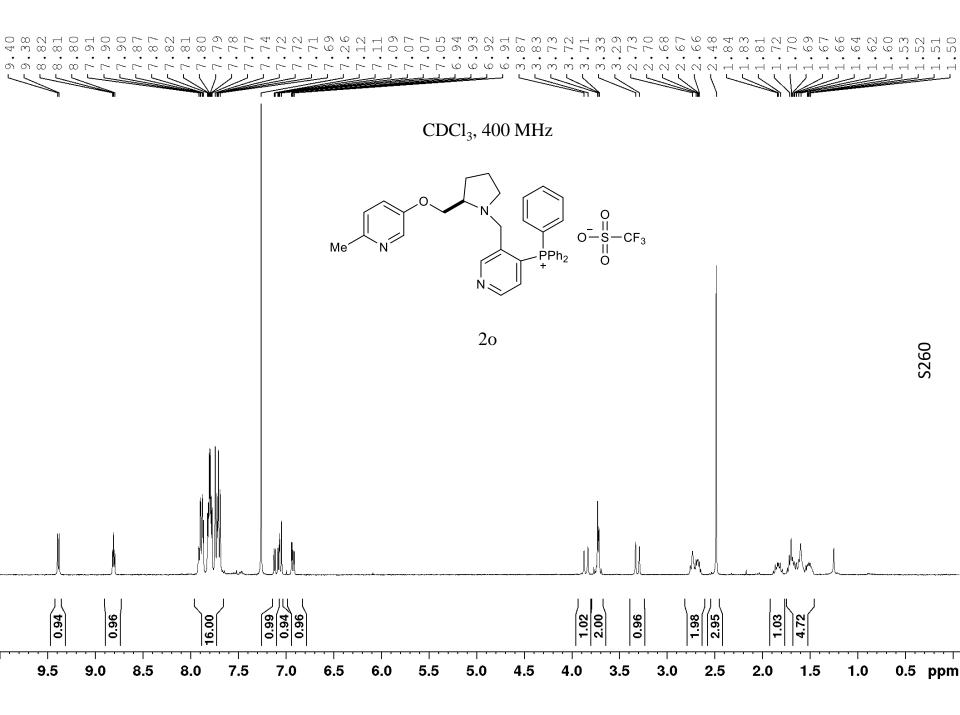

 76.68

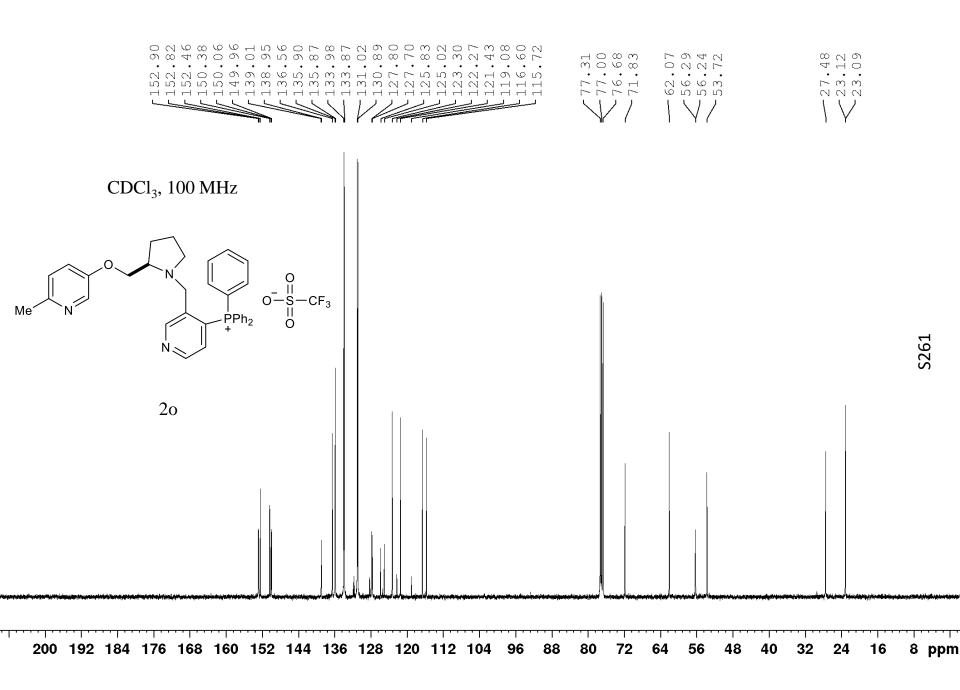

-78.18	CDCl ₃ , 365 MHz
	N 2f



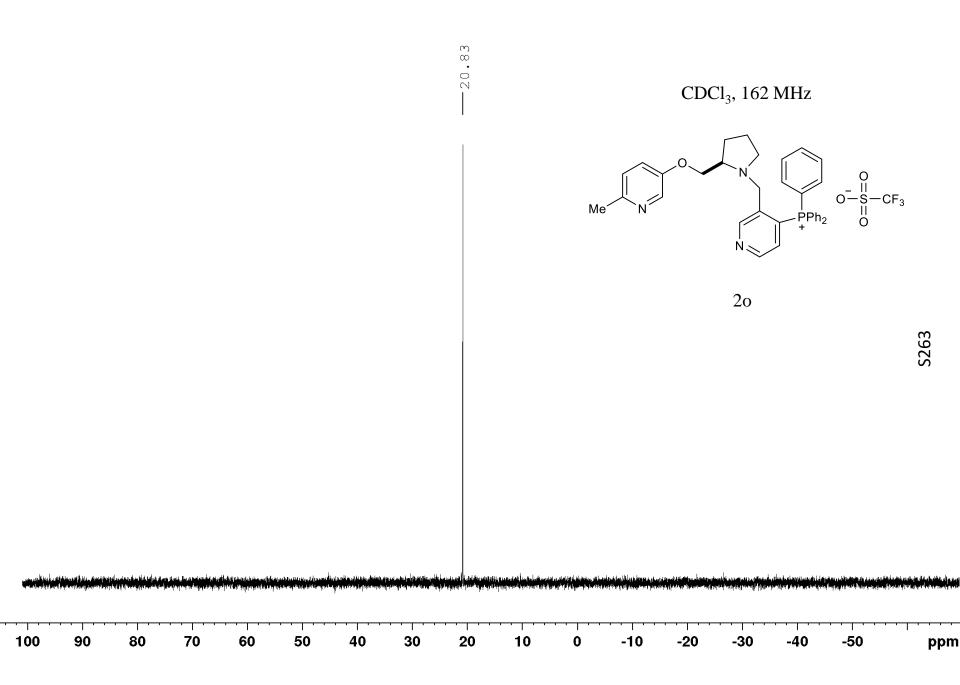


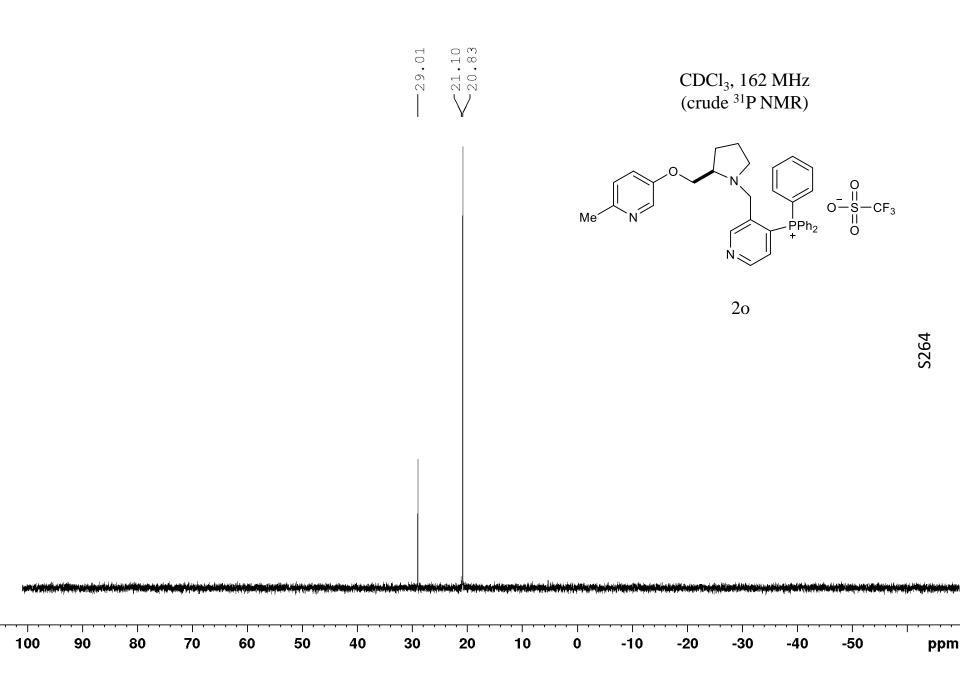


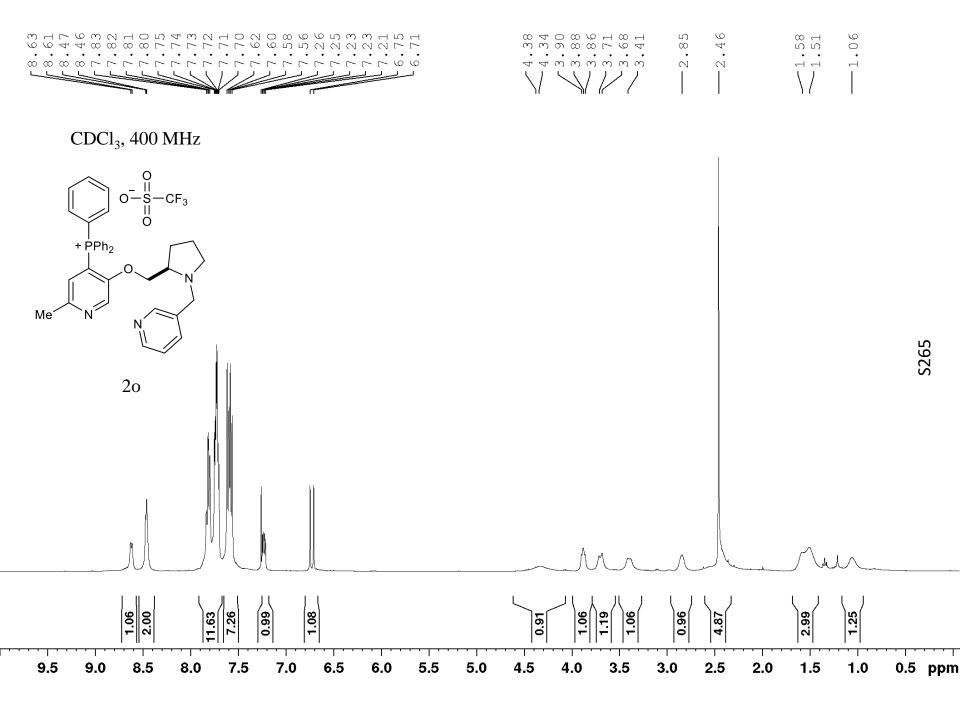


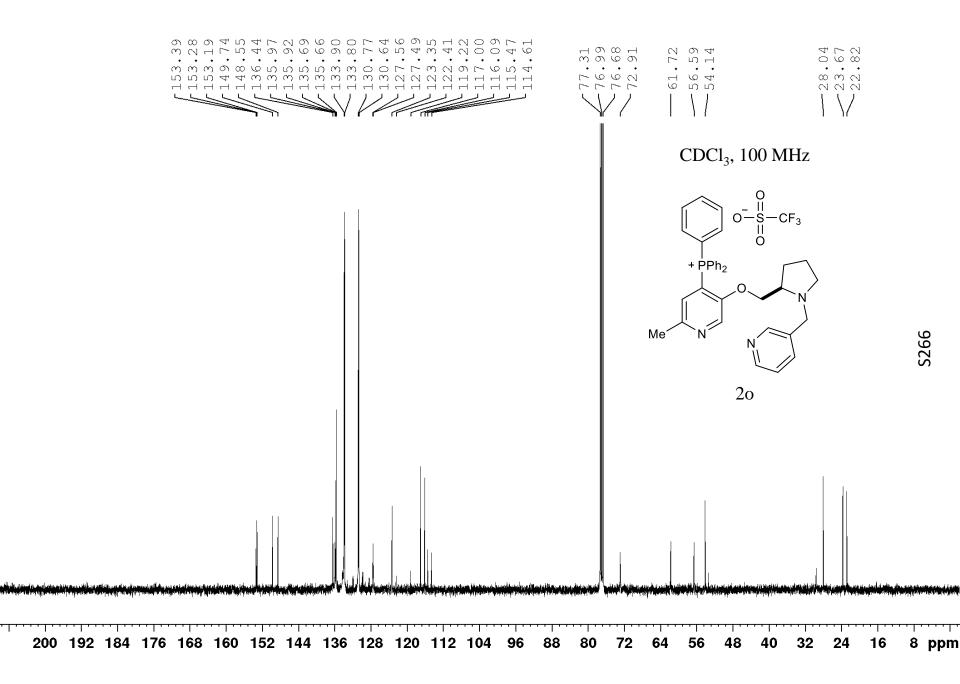


	$CDCl_3, 365 \text{ MHz}$
	$ \begin{array}{c} $
	2n
	2 2 2 2 2

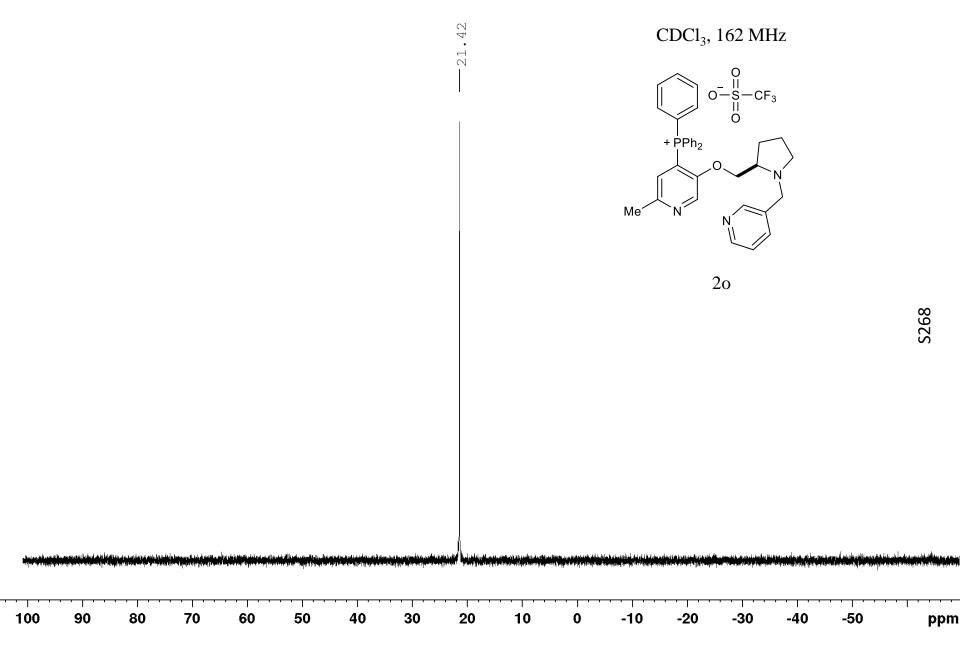


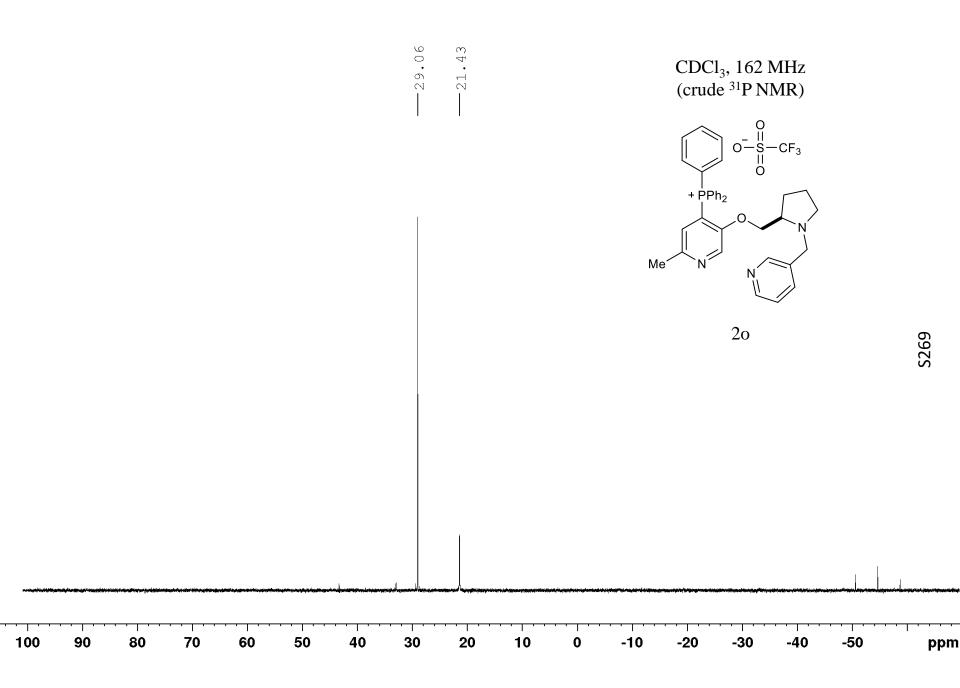


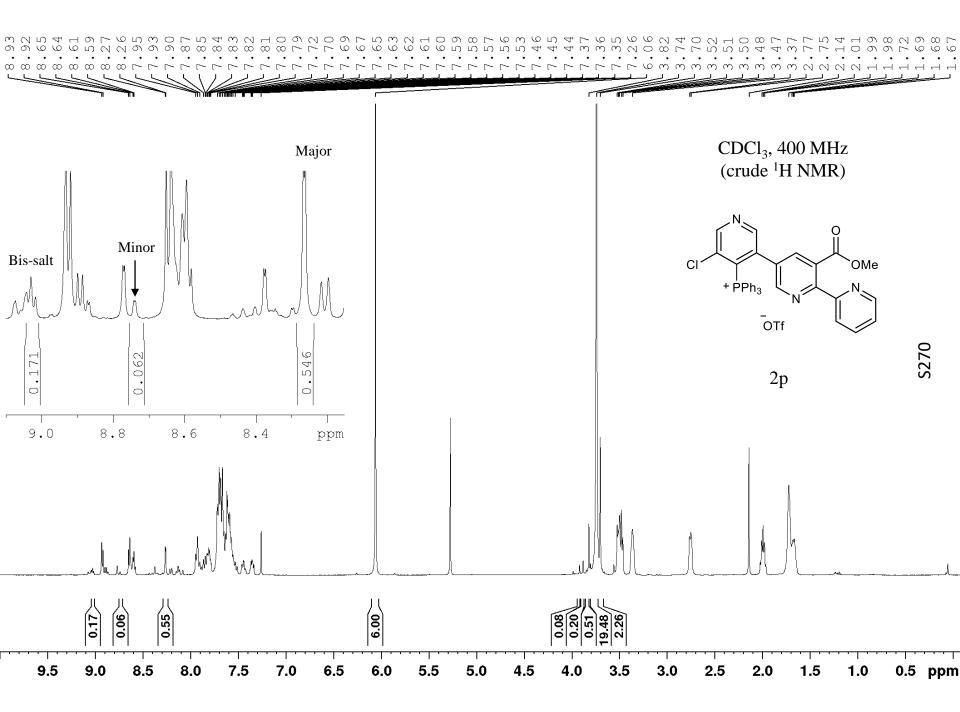


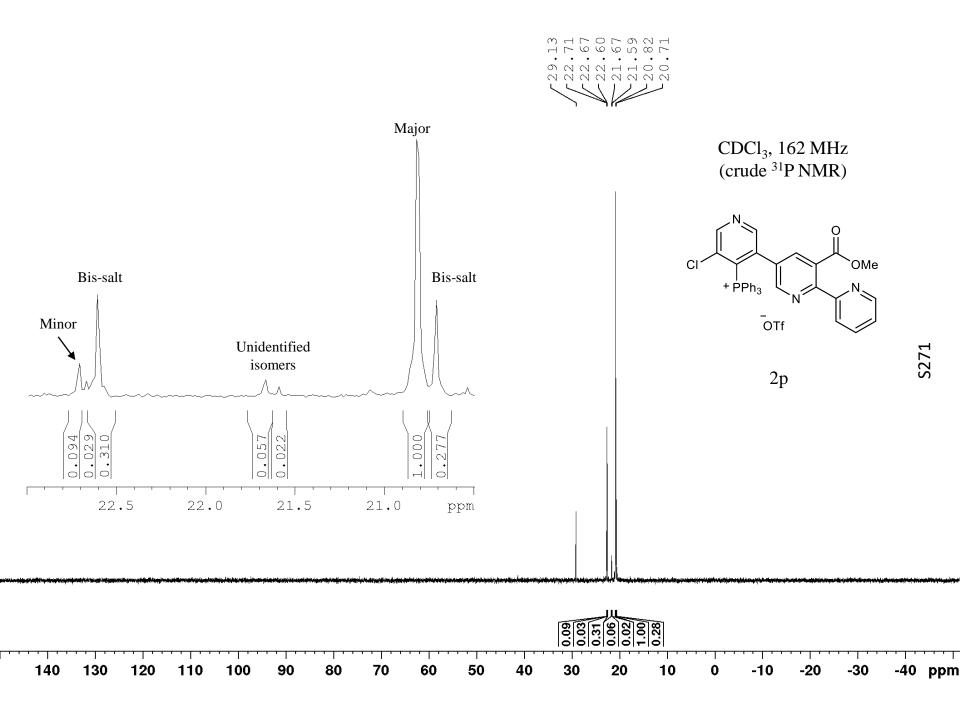


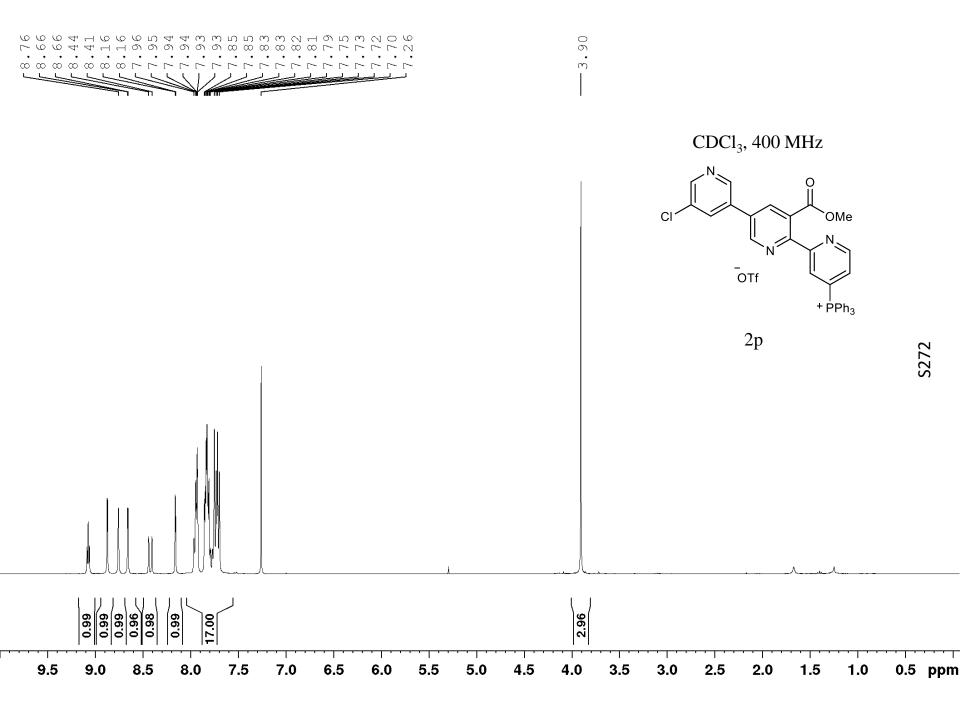
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}$ } \\ \begin{array}{c} \end{array} $\begin{array}{c} \end{array}$ \end{array} $\begin{array}{c} \end{array}$ $\begin{array}{c} \end{array}$ \end{array} \end{array} $\begin{array}{c} \end{array}$ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}	$Me = N \qquad \qquad$			CDCl ₃ , 365 MHz	
			Me	$ \begin{array}{c} N \\ N \\ PPh_2 \\ N \\ N \end{array} \begin{array}{c} O \\ O \\ -S \\ O \\ $	

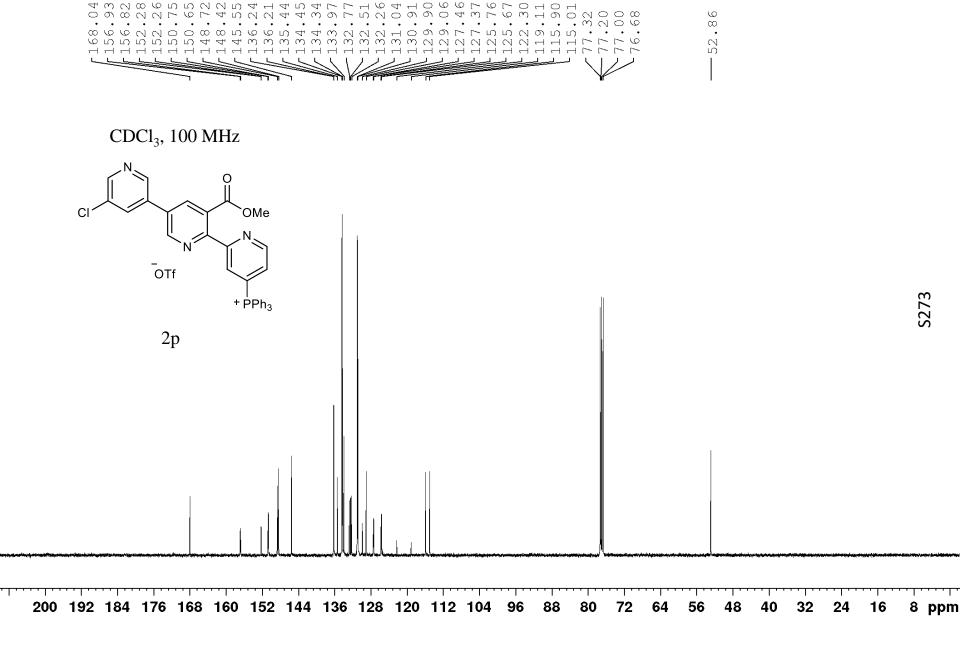


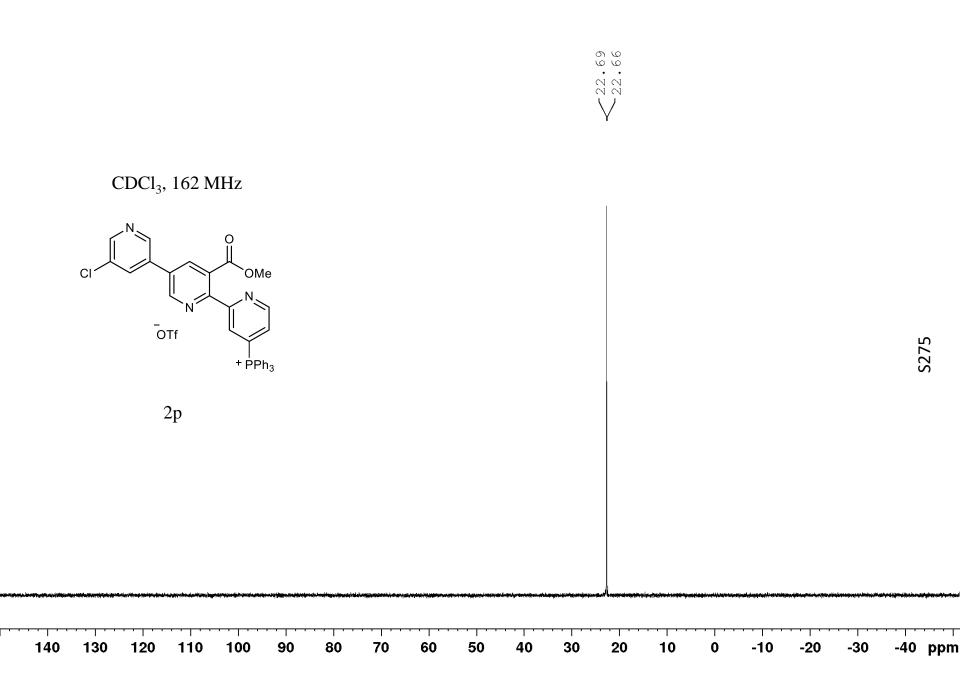


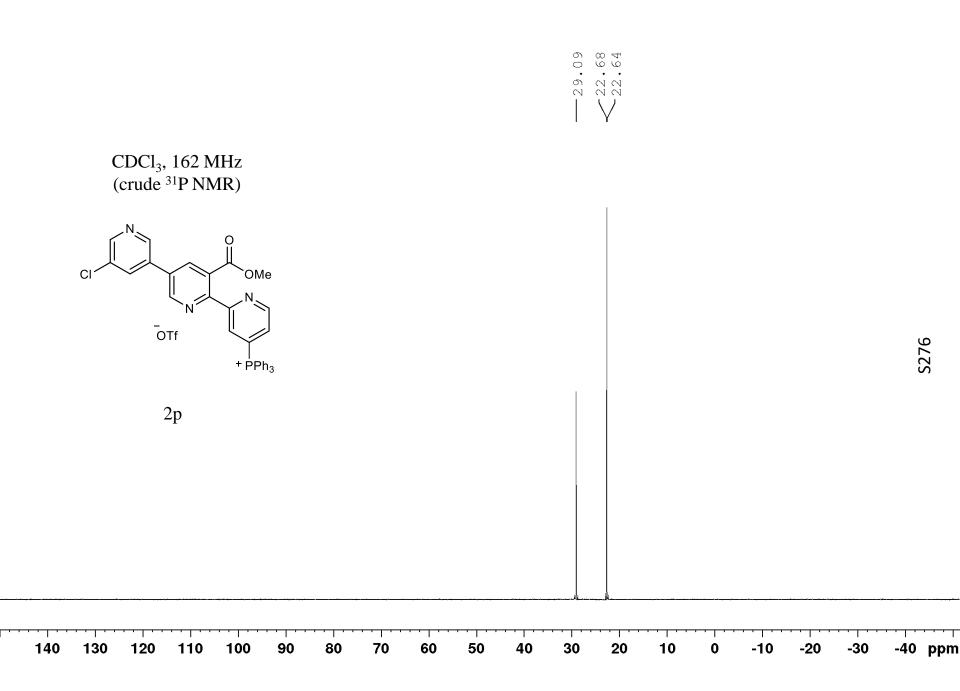


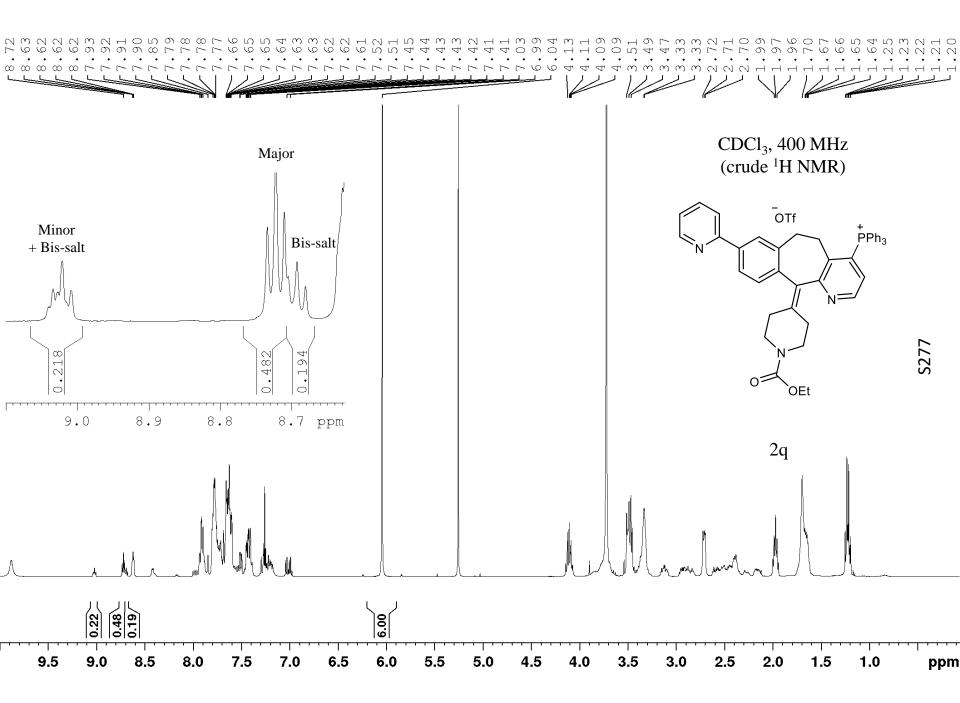


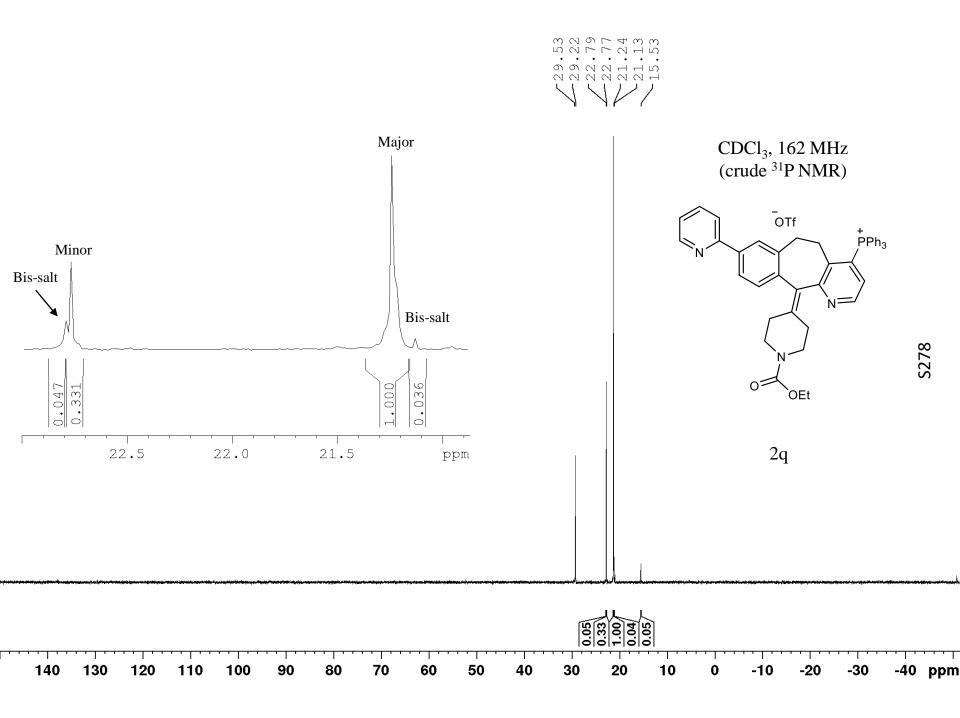

$CDCl_{3}, 365 \text{ MHz}$	
20	S267
 70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170	0 -180 -190 pp

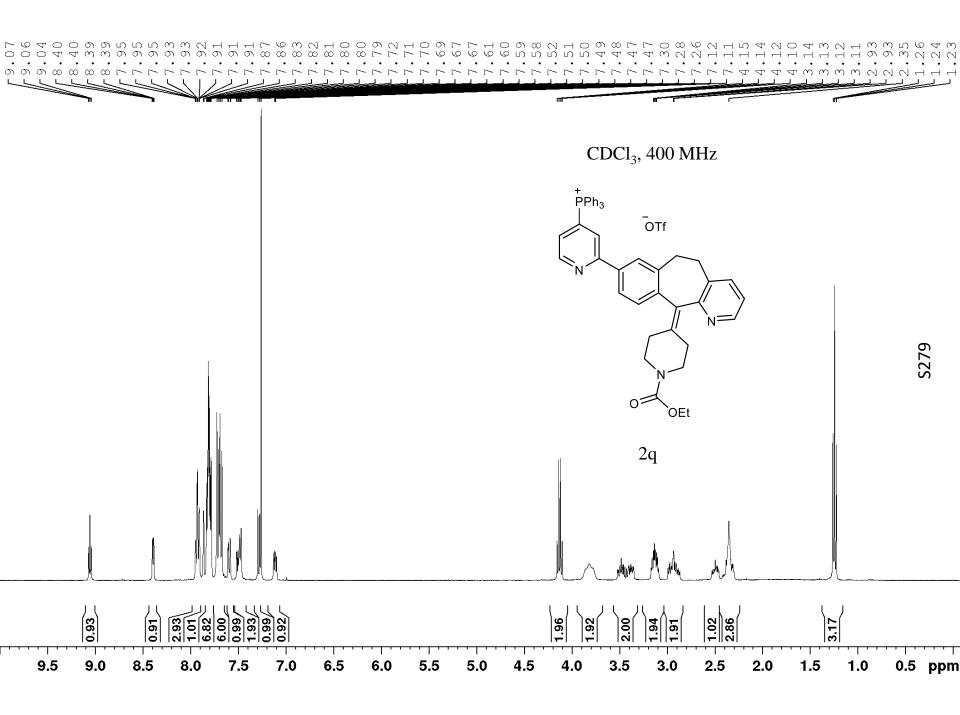


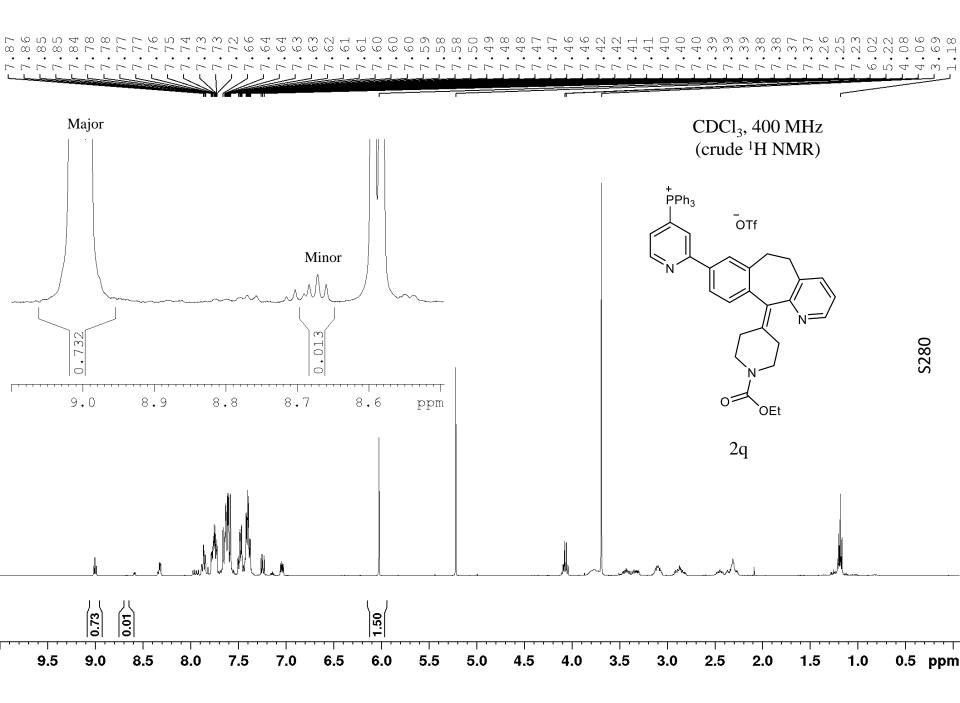


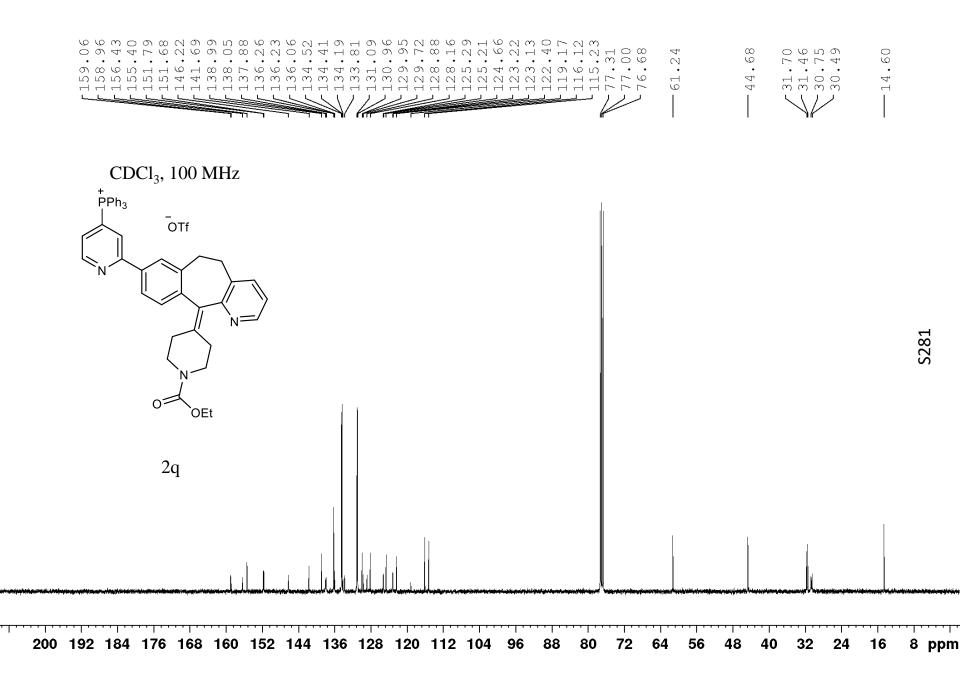


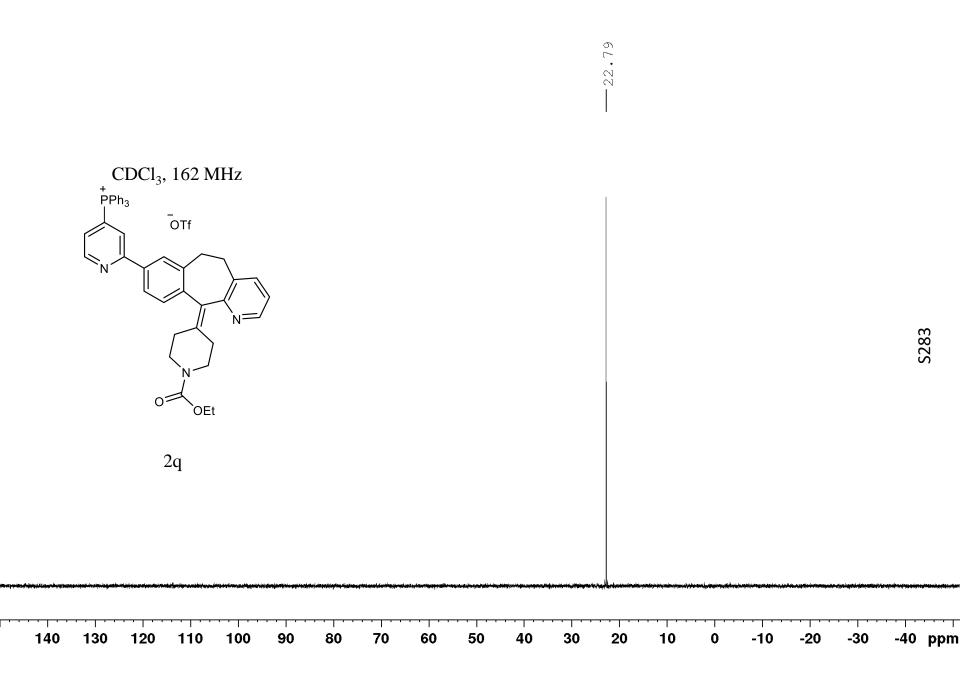


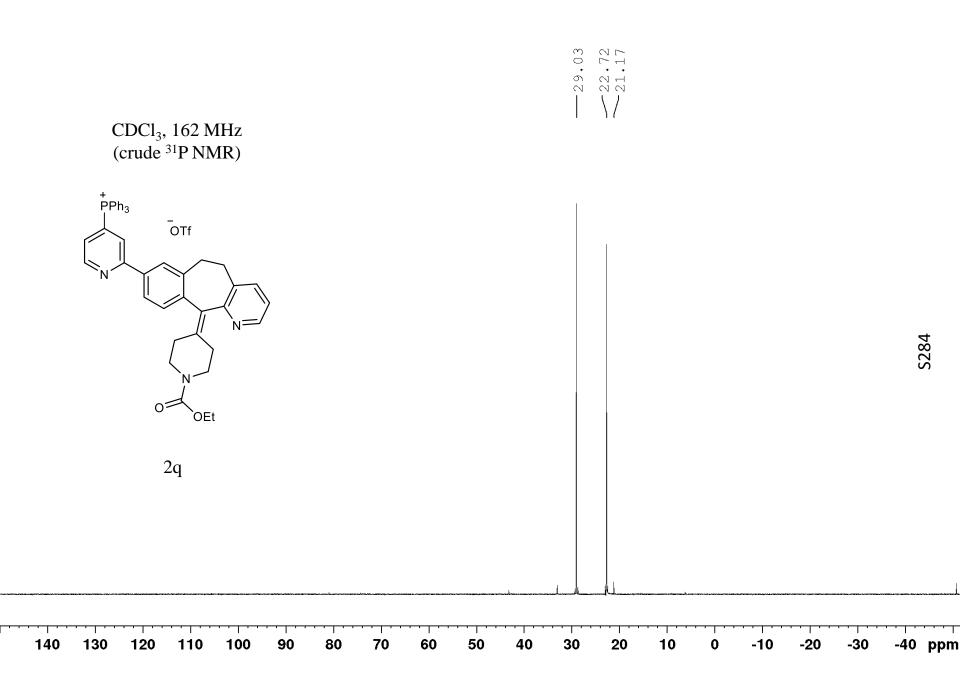

		$CDCl_3$, 365 MHz	
	CI	OMe OTf + PPh ₃	
		2p	

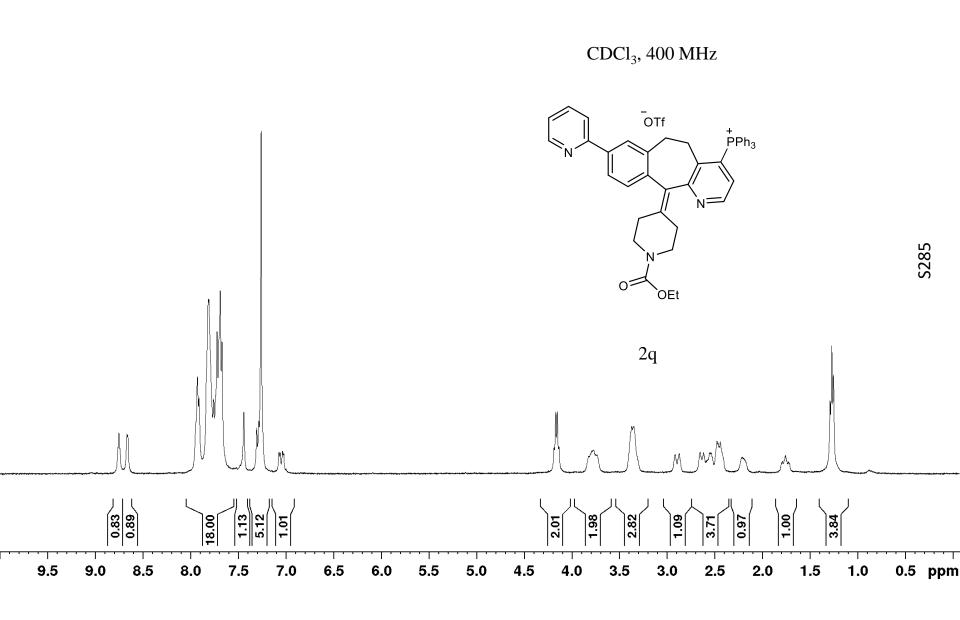

'

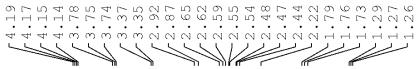


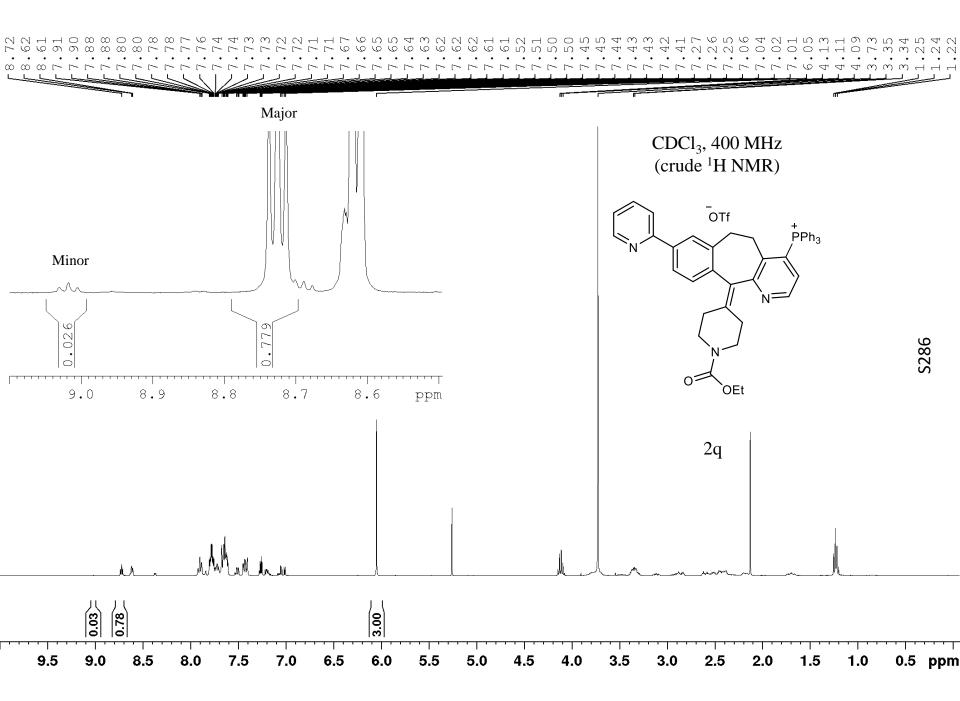


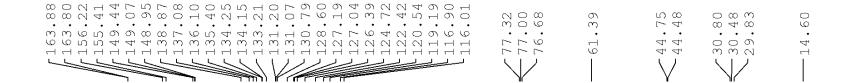


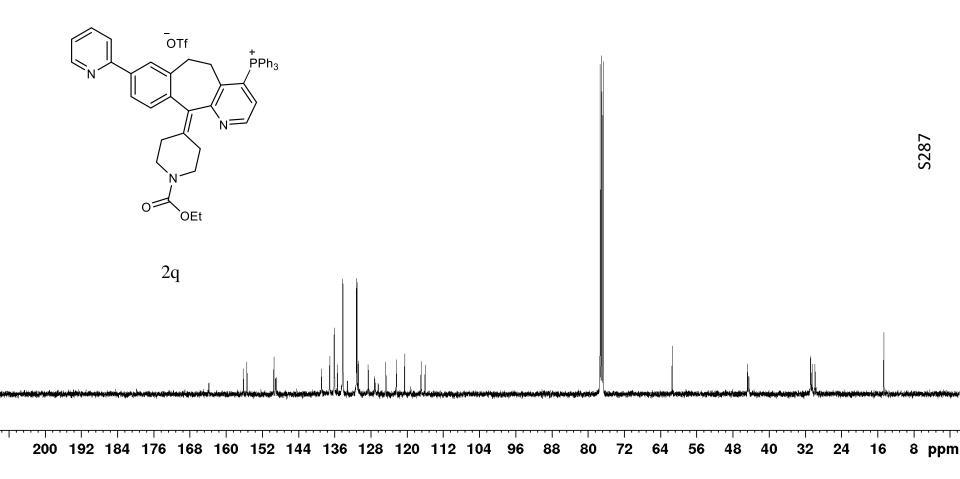


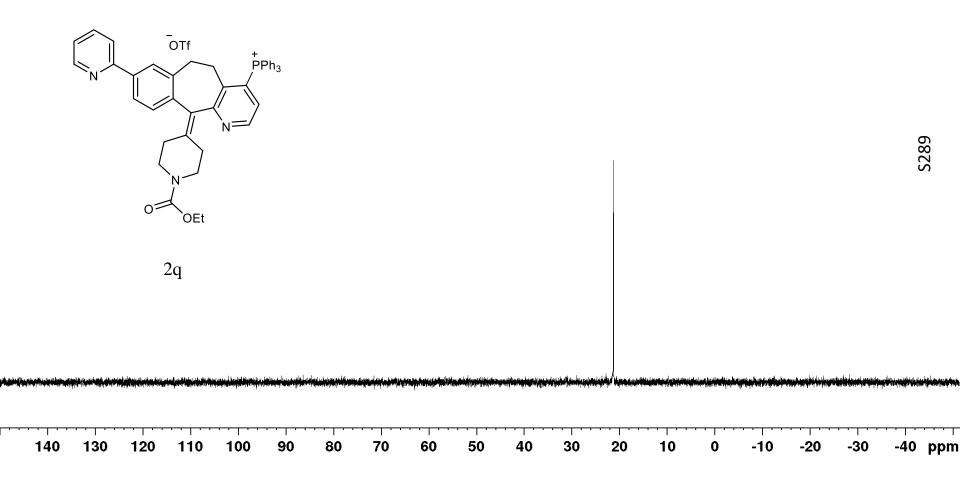


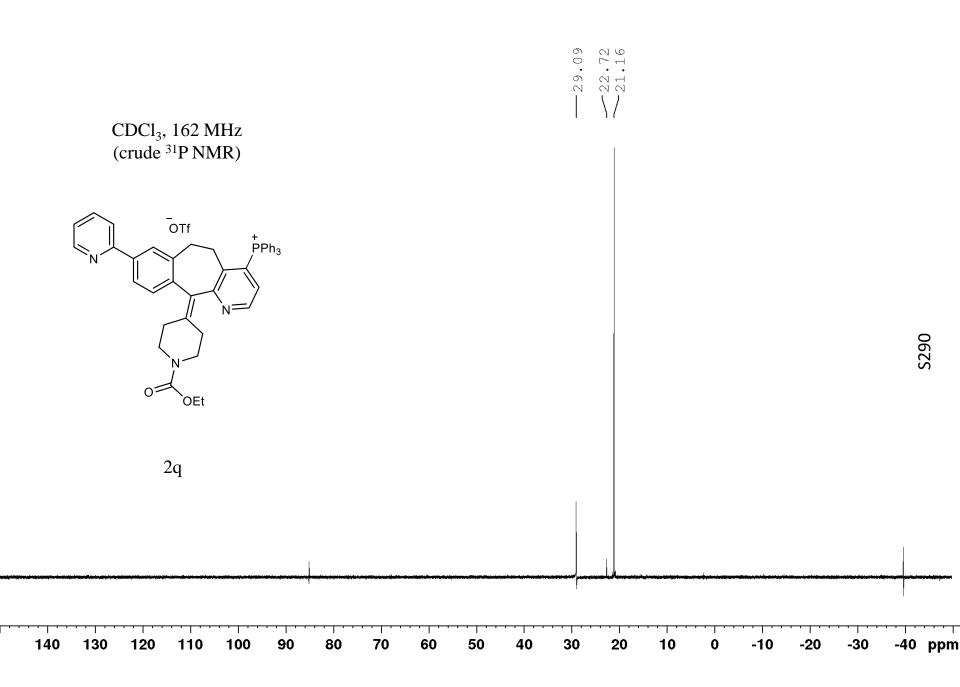

78.15	CDCl ₃ , 365 MHz
	2q

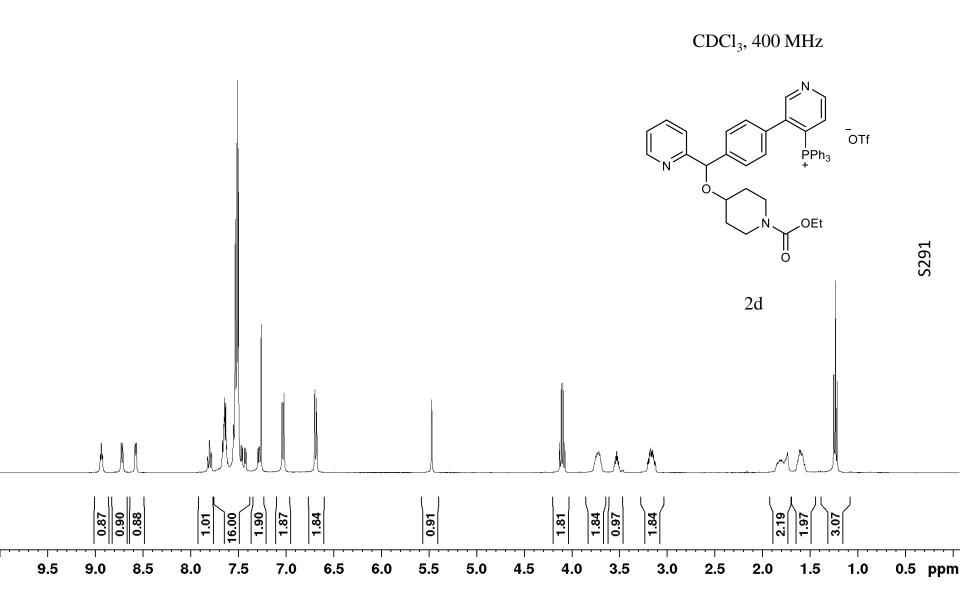


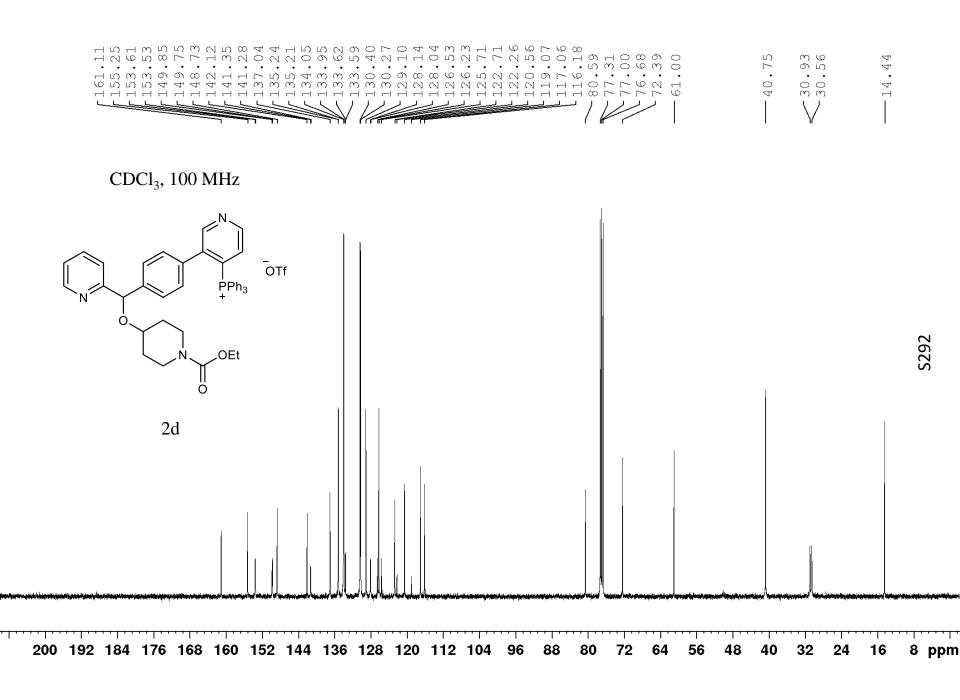



8.75 8.67 8.67 8.67 7.93 7.91 7.91 7.91 7.91 7.91 7.91 7.29 7.29 7.29 7.29 7.20 7.01 7.01 7.02

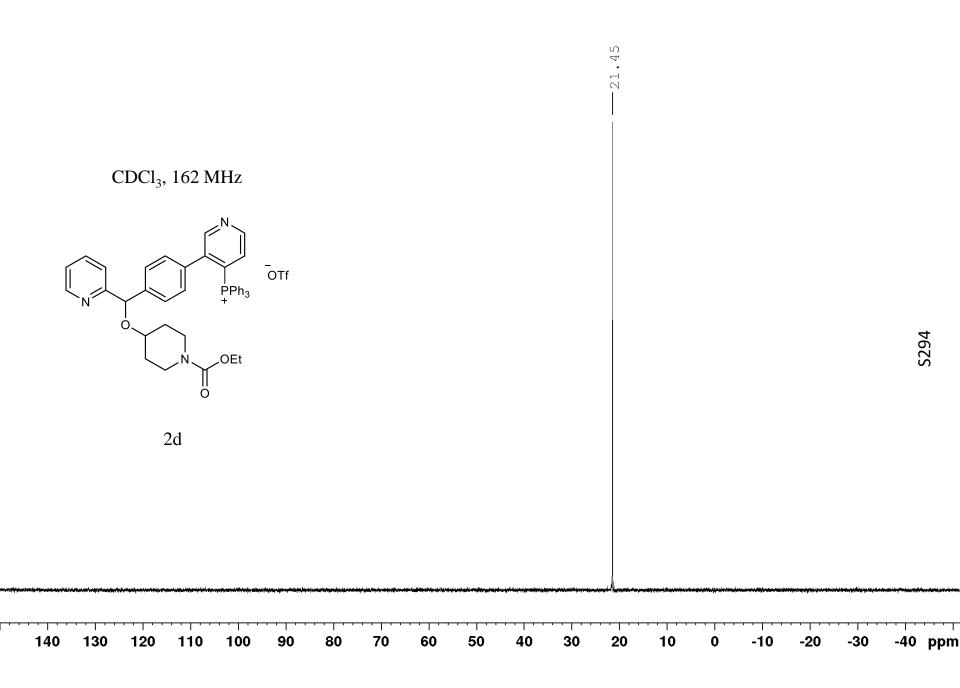

CDCl₃, 100 MHz

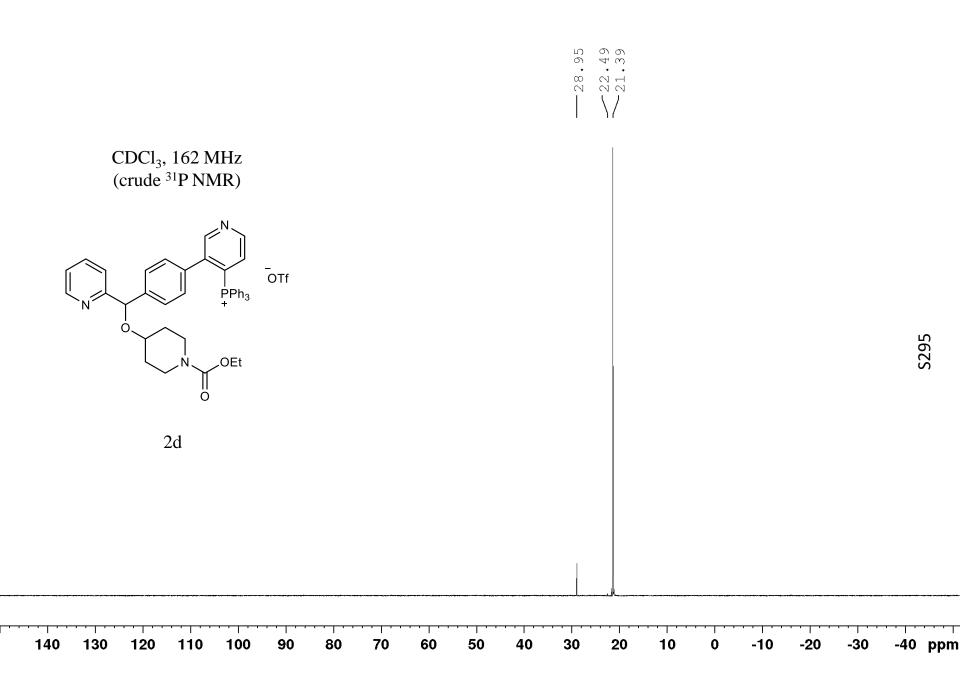


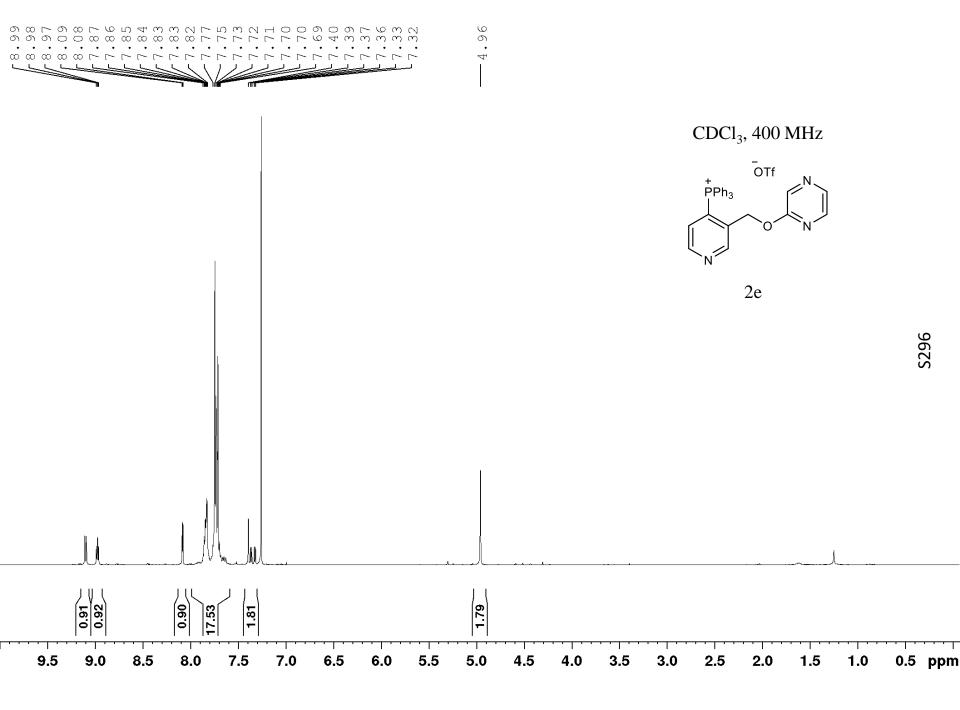

		CDCl ₃ , 365 MHz	
		O OEt	5788
		1	

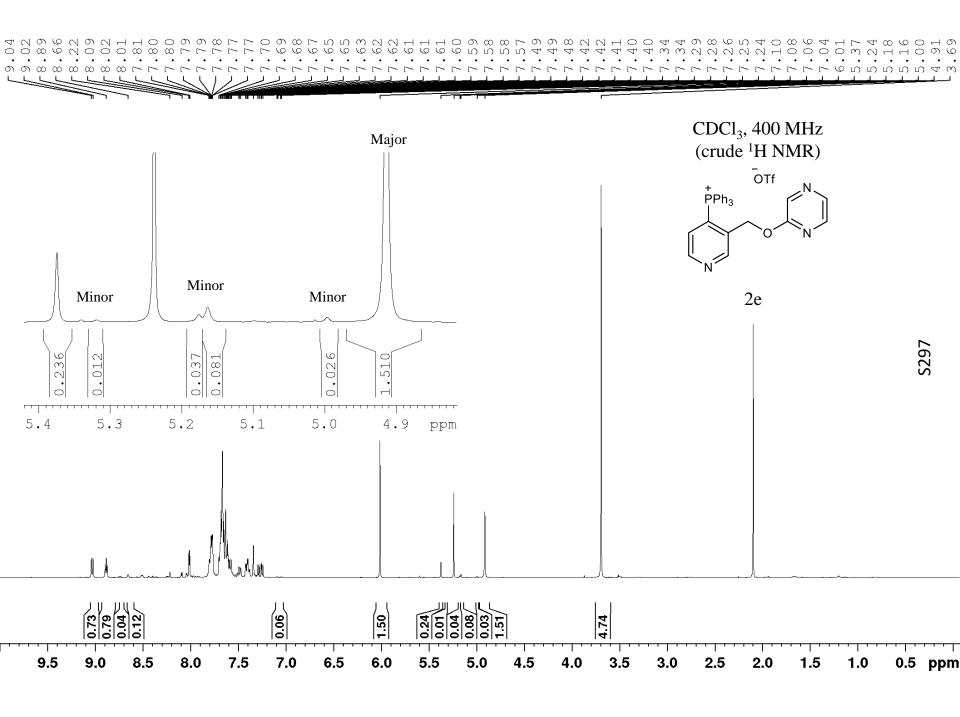


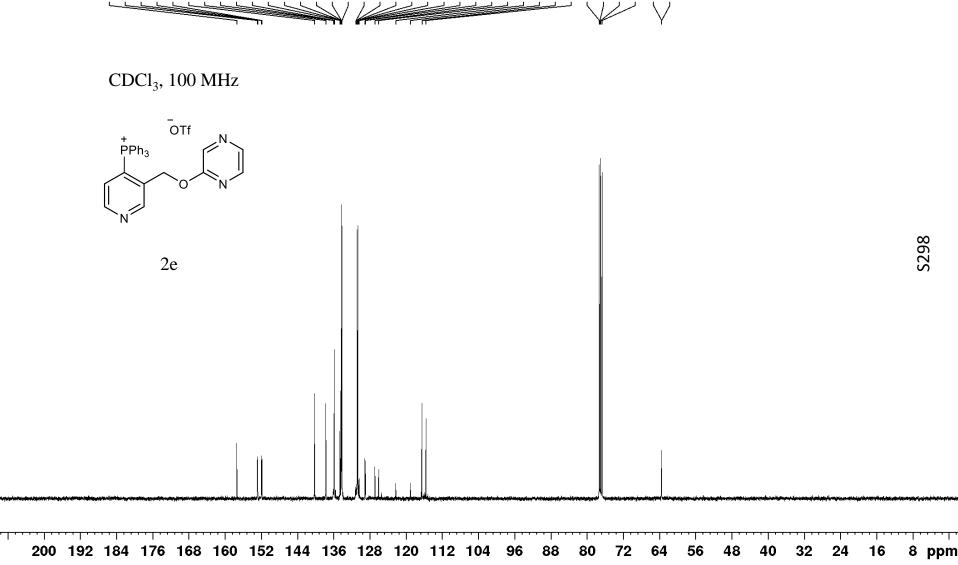
CDCl₃, 162 MHz

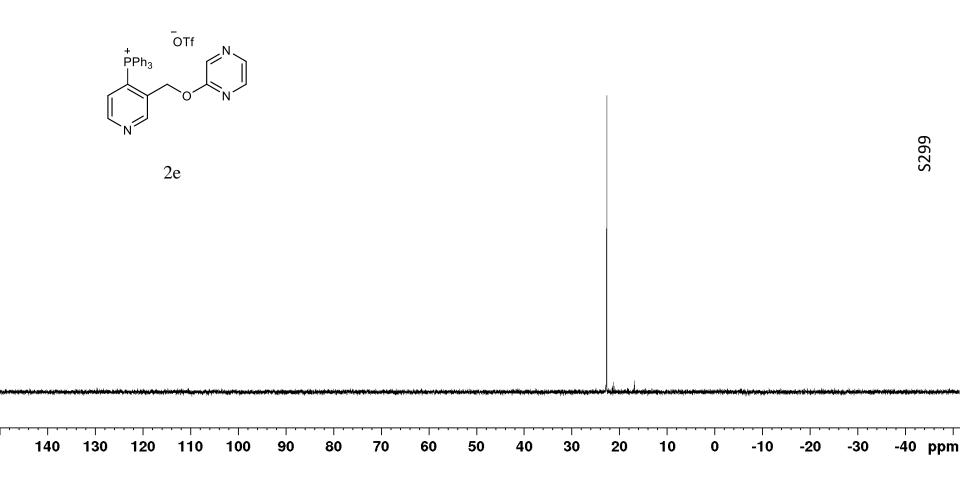


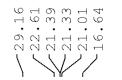


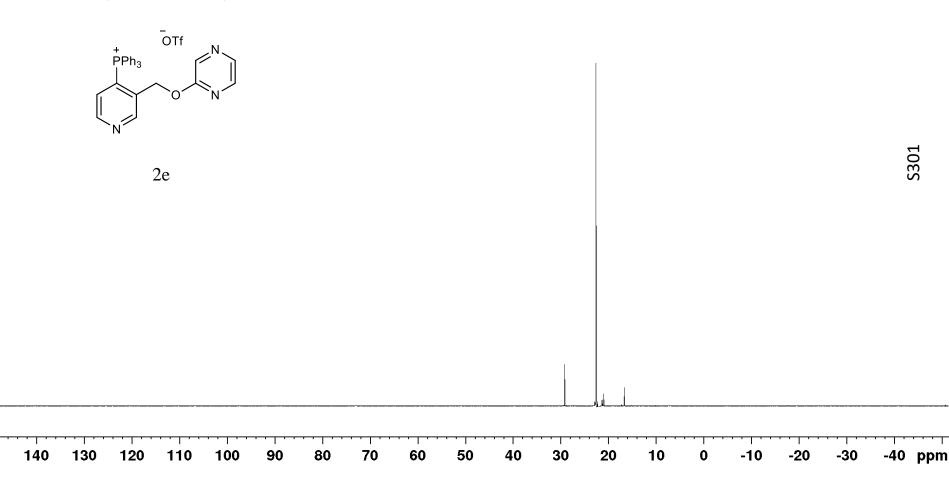


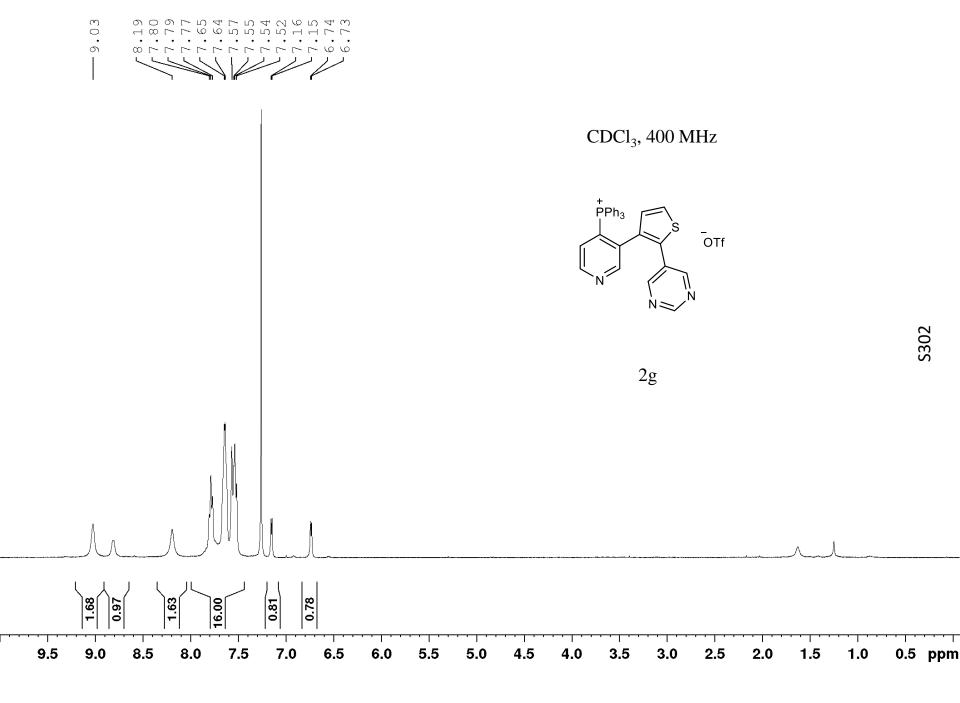


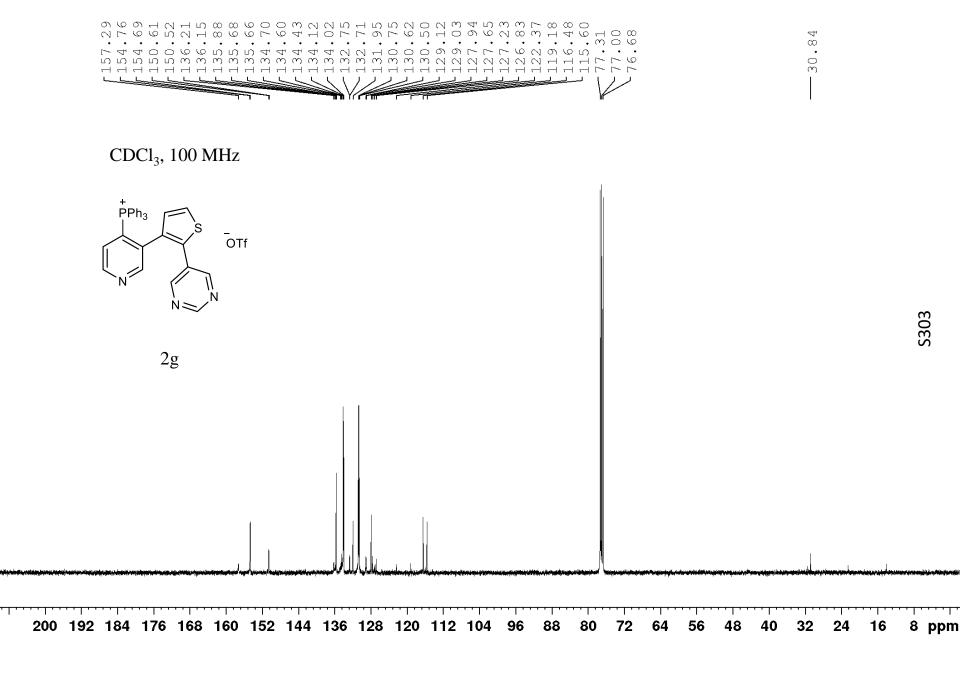

	 CDCl ₃ , 365 MHz	
	OTf	
	o 2d	



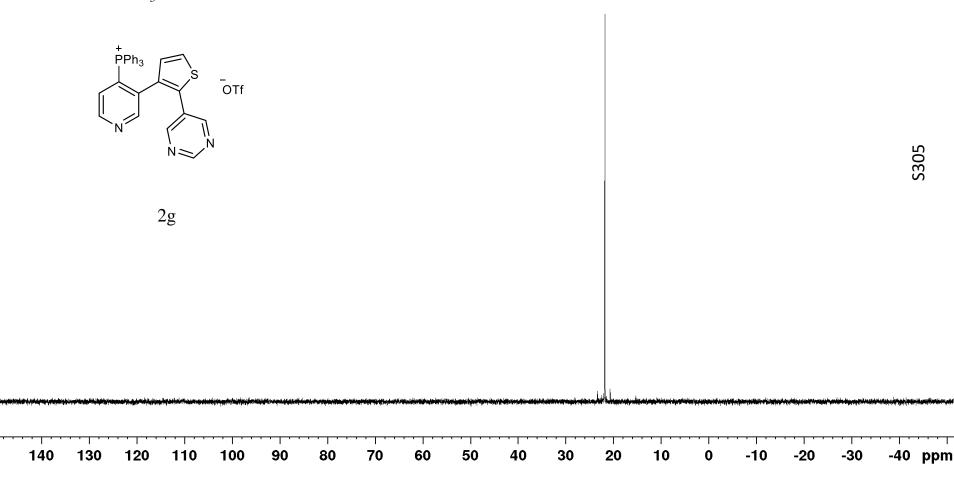

 $\begin{array}{c} 157.43 \\ 1522.81 \\ 1522.81 \\ 1522.81 \\ 15122.81 \\ 15122.81 \\ 137.74 \\ 137.74 \\ 1337.77 \\ 134.60 \\ 1334.45 \\$


CDCl₃, 162 MHz

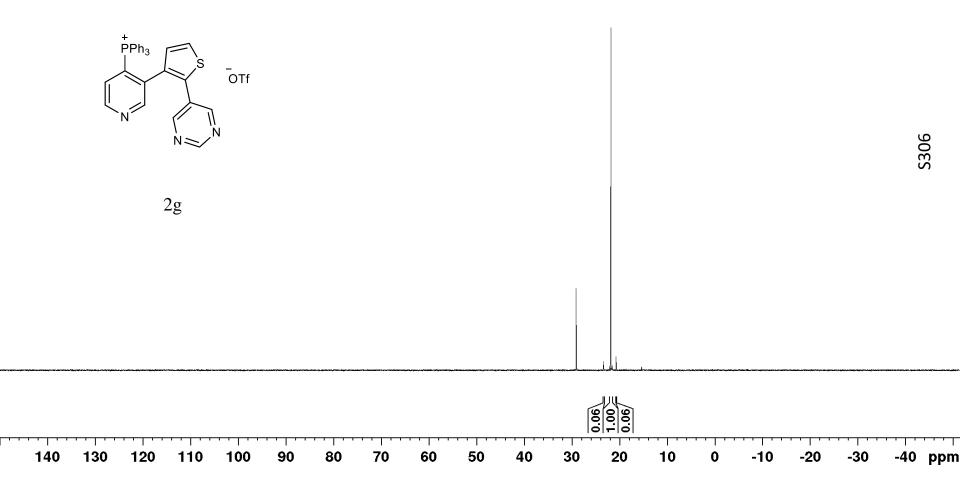


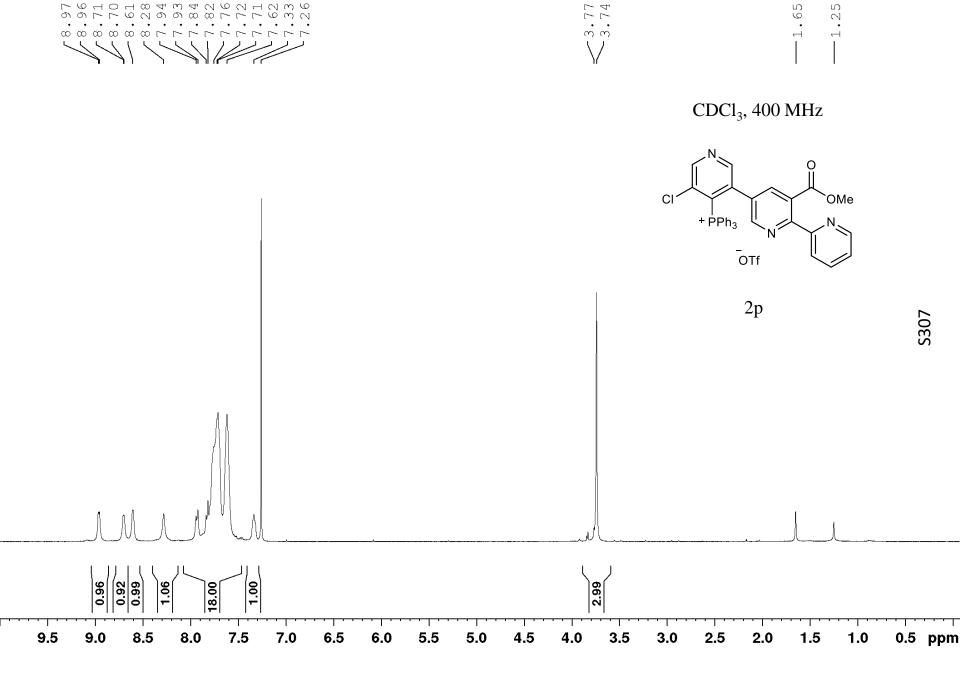

	CDCl ₃ , 365 MHz	
	PPh ₃ OTf N	
	2e	ç

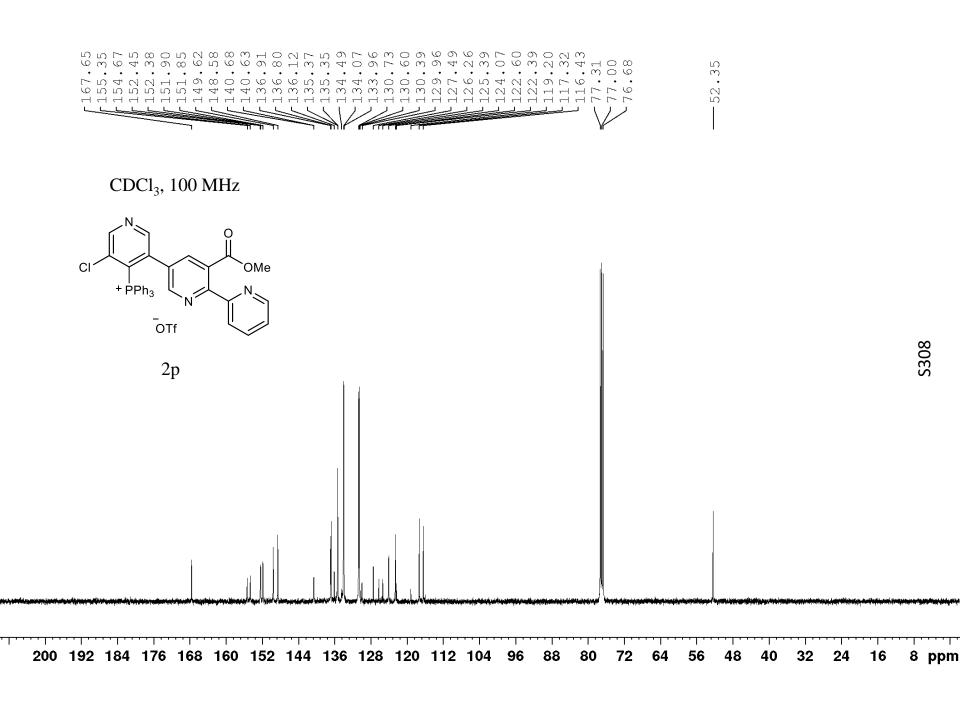
CDCl₃, 162 MHz (crude ³¹P NMR)



	$CDCl_3, 365 \text{ MHz}$
	N N OTF
	2g

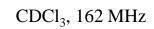


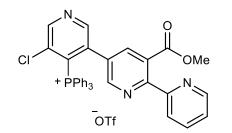

CDCl₃, 162 MHz



6 0	32 80	38
•	• •	•
5	тЭ	S
\sim	$\sim \sim$	
	\mathbf{N}	

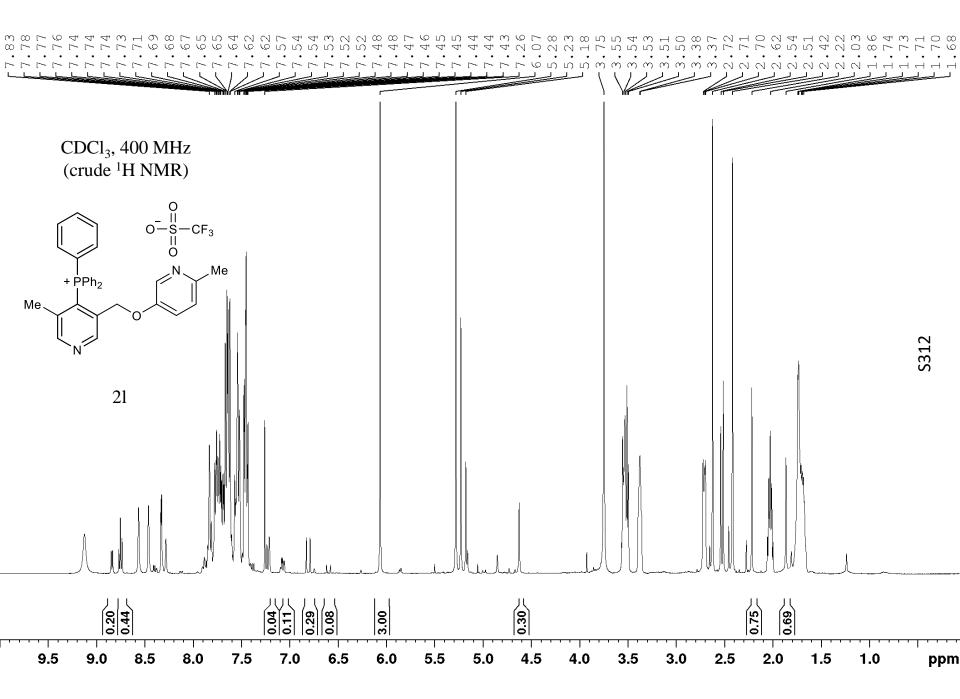
CDCl₃, 162 MHz (crude ³¹P NMR)

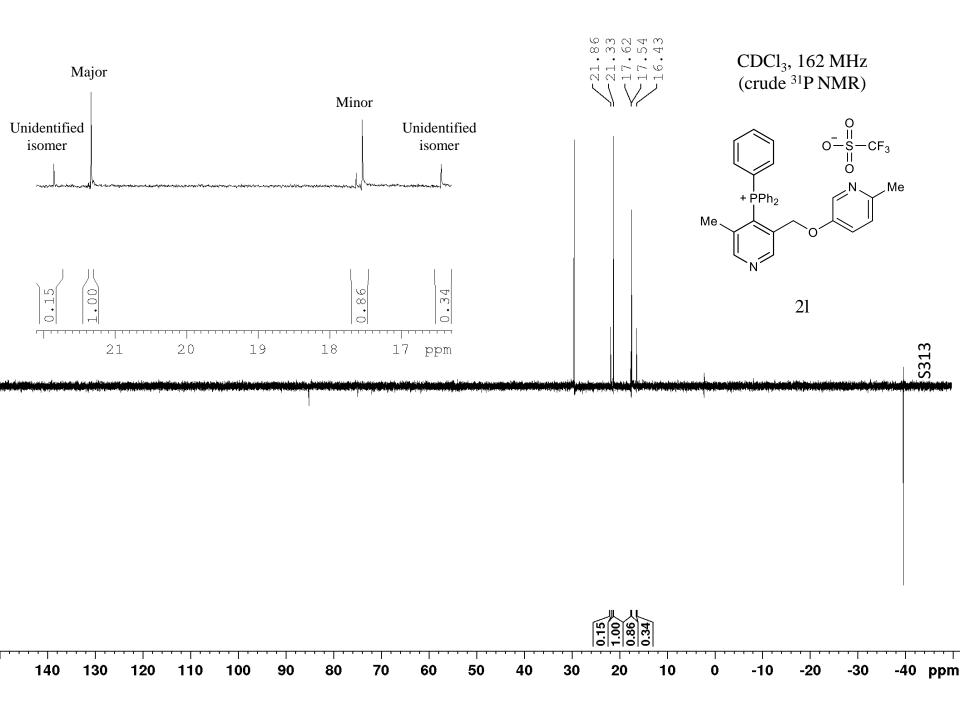


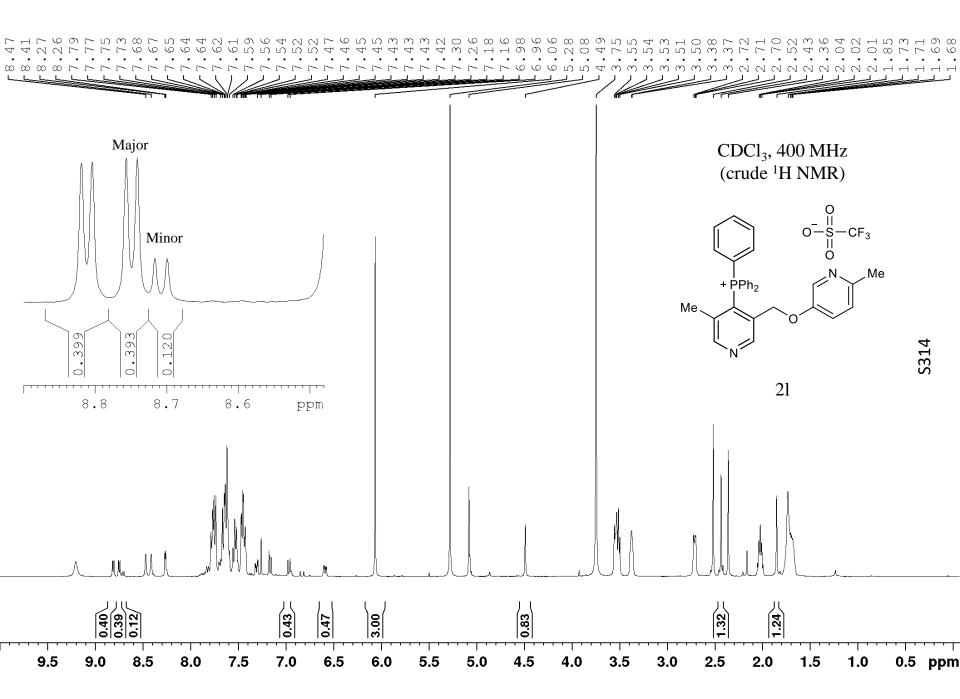


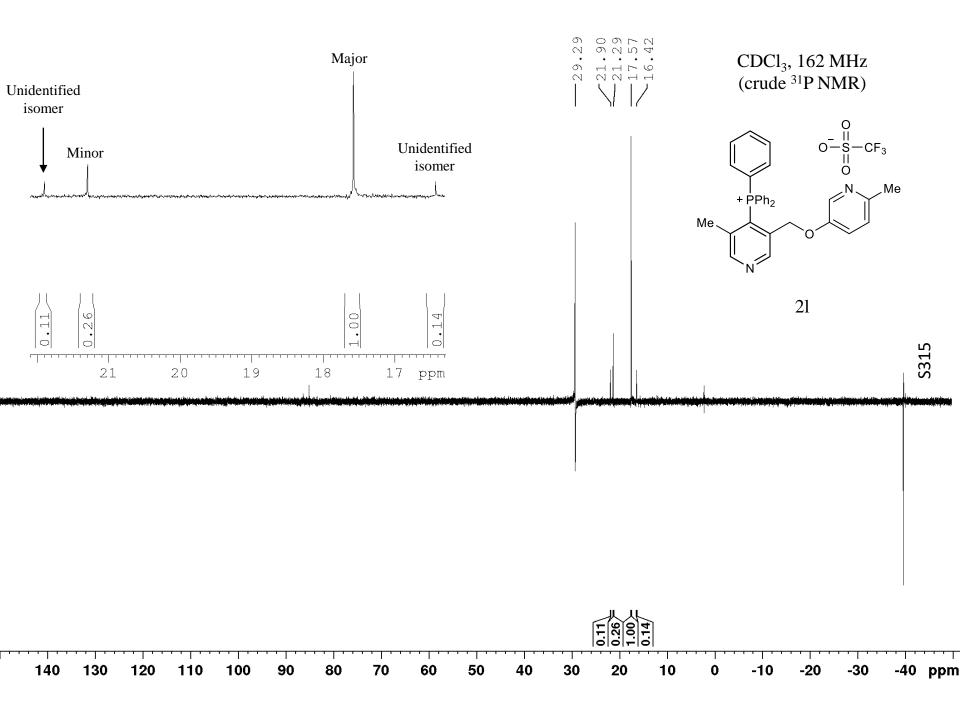
- 78.15	CDCl ₃ , 365 MHz
	CI + PPh ₃ OTf
	2p

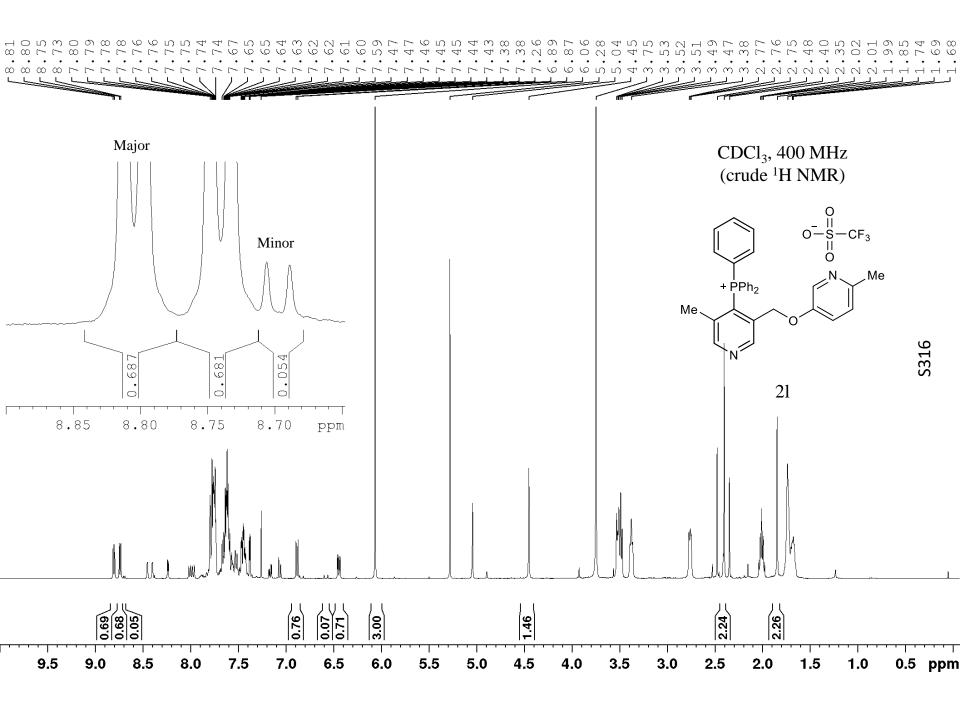


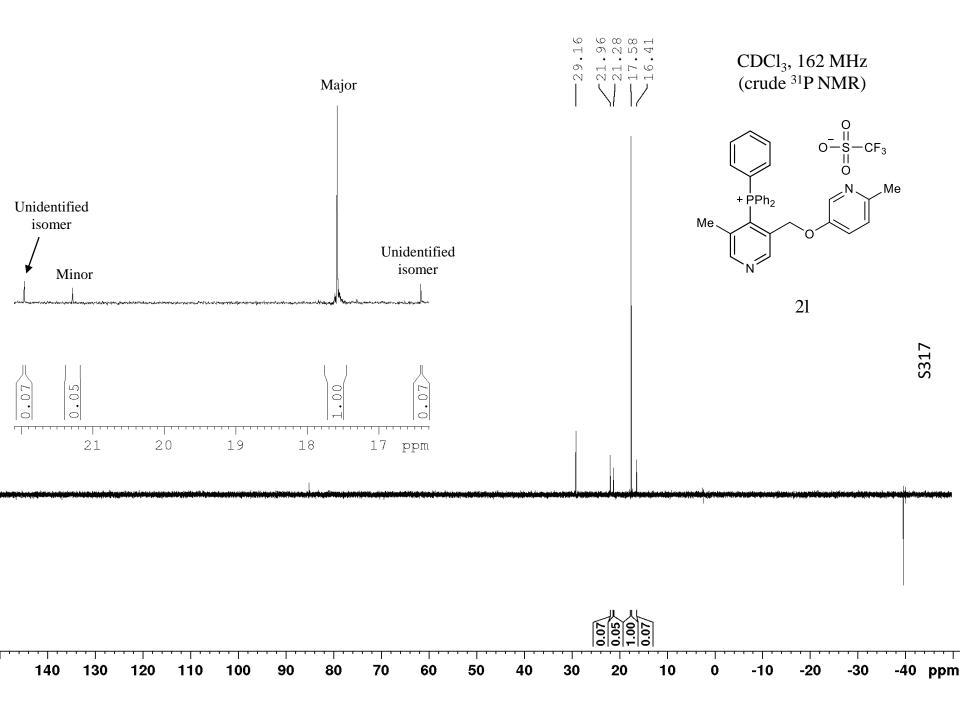


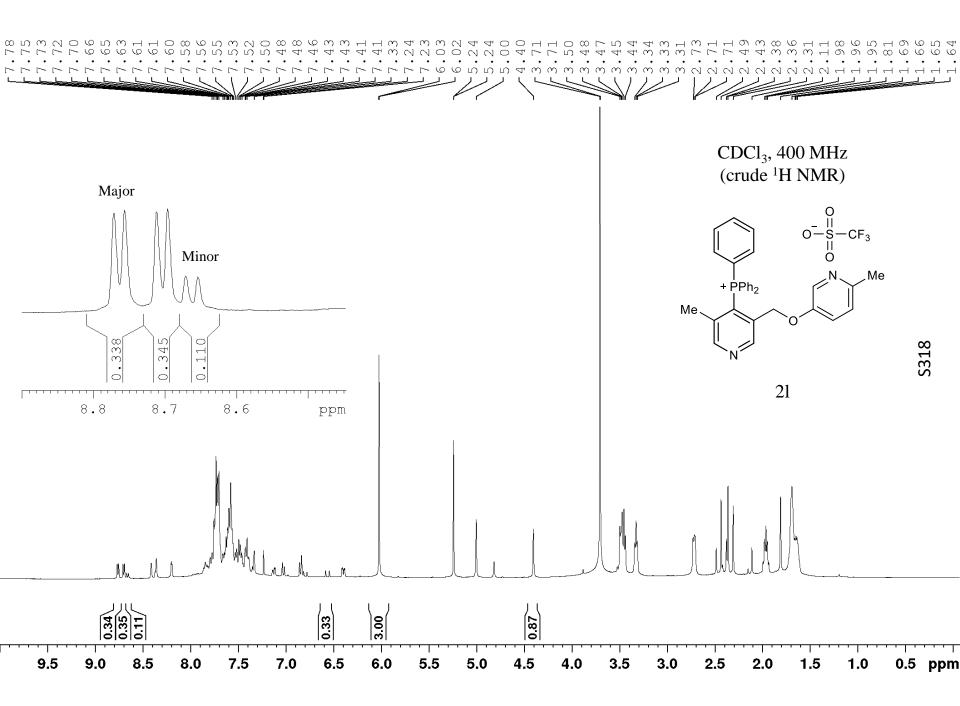


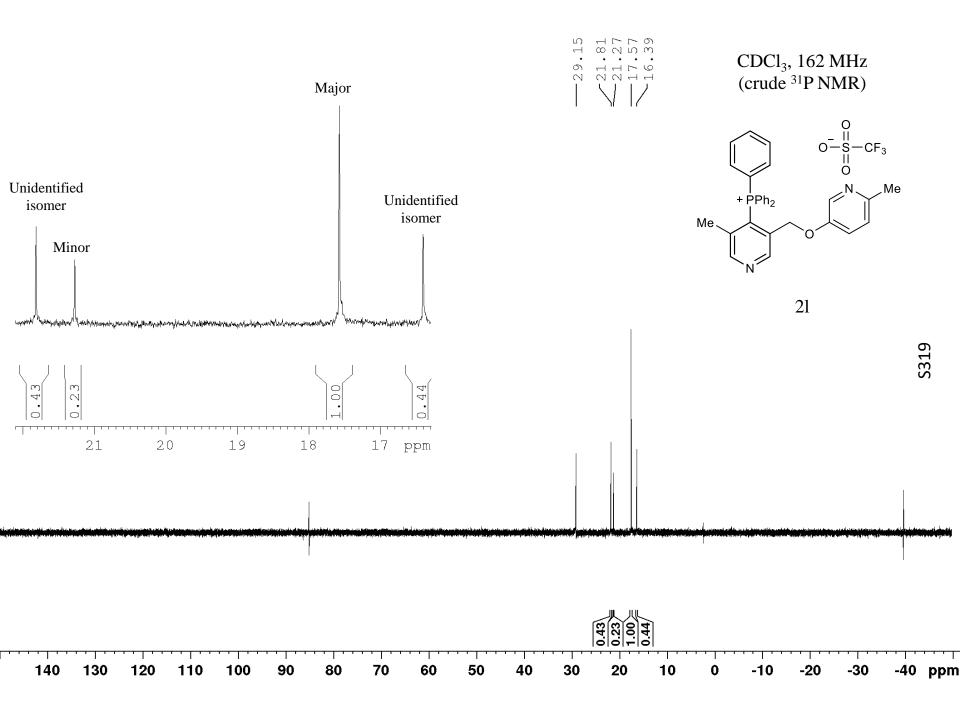

2p

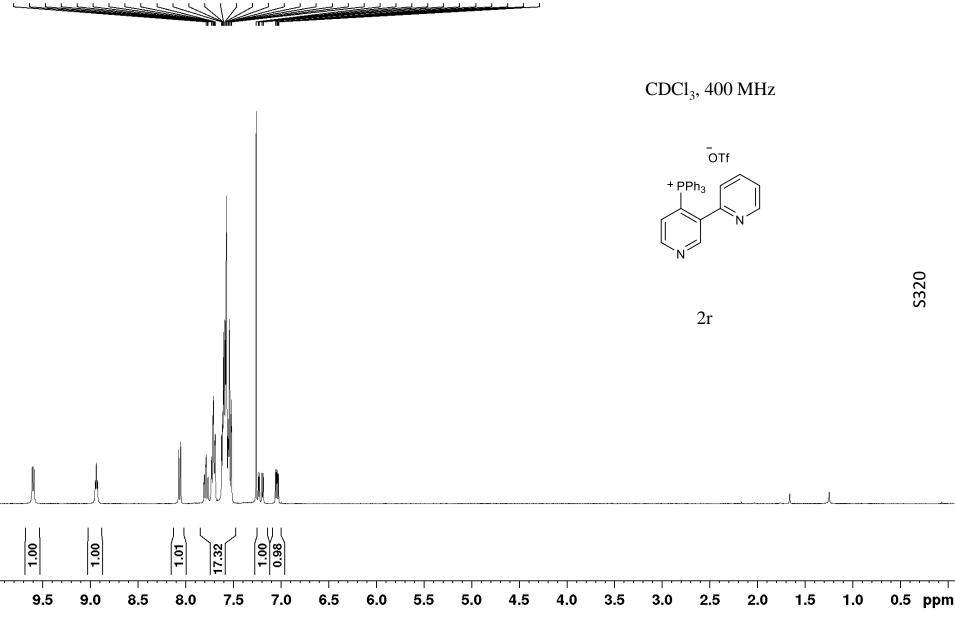

n de fan ferste stêlet in herder profisielie.	anting and a second	nd inid-sectors institution or	<u>tering and the standard stand</u>	, ipriprostipiosista		anal di shi saya daka da saya	<u>A shekar ta baya ku</u> t	Ning the strength of the stren	ya ya na		internet and the statistic statistic second	millinger		in distant	<u>natyatan kalaptan pi</u>	an si shekara	i nthallan dalaraha n	and the state of the	
							· · · · · · ·												
140	130	120	110	100	90	80	70	60	50	40	30	20	10	Ó	-10	-20	-30	-40	ppm

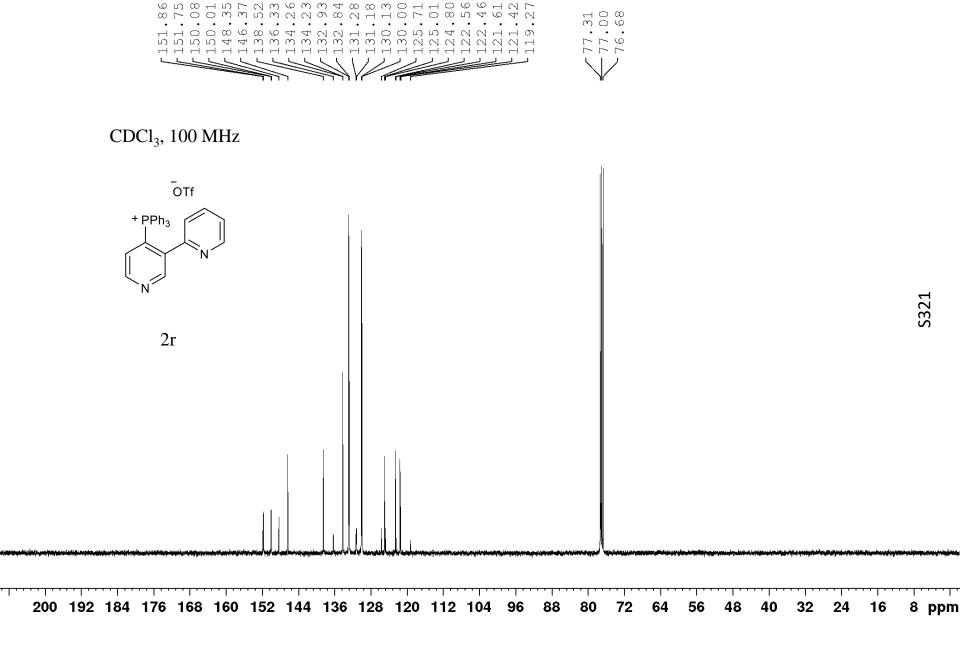


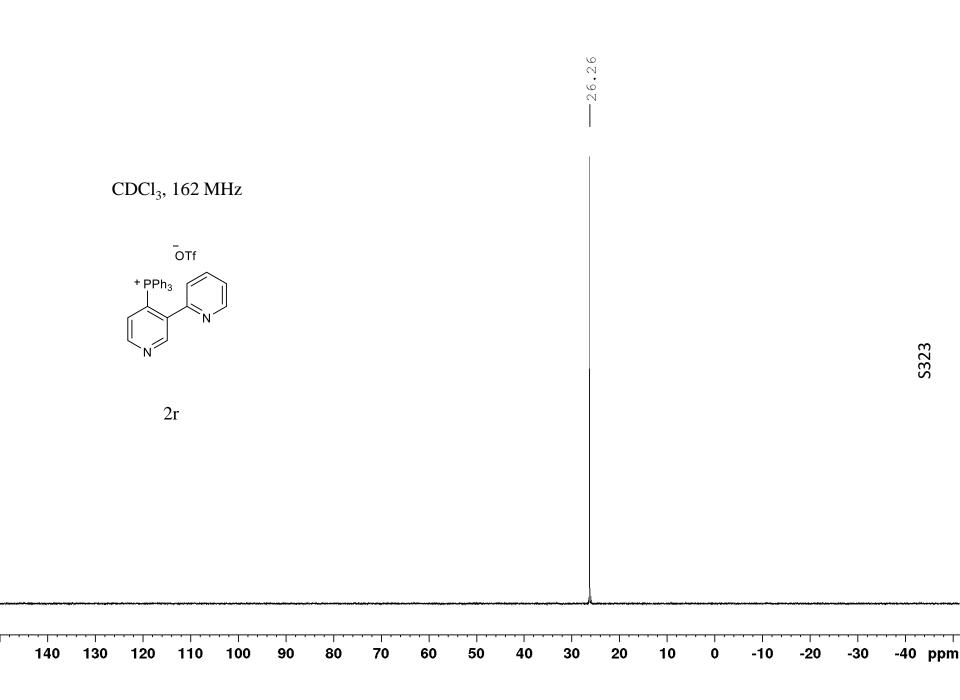


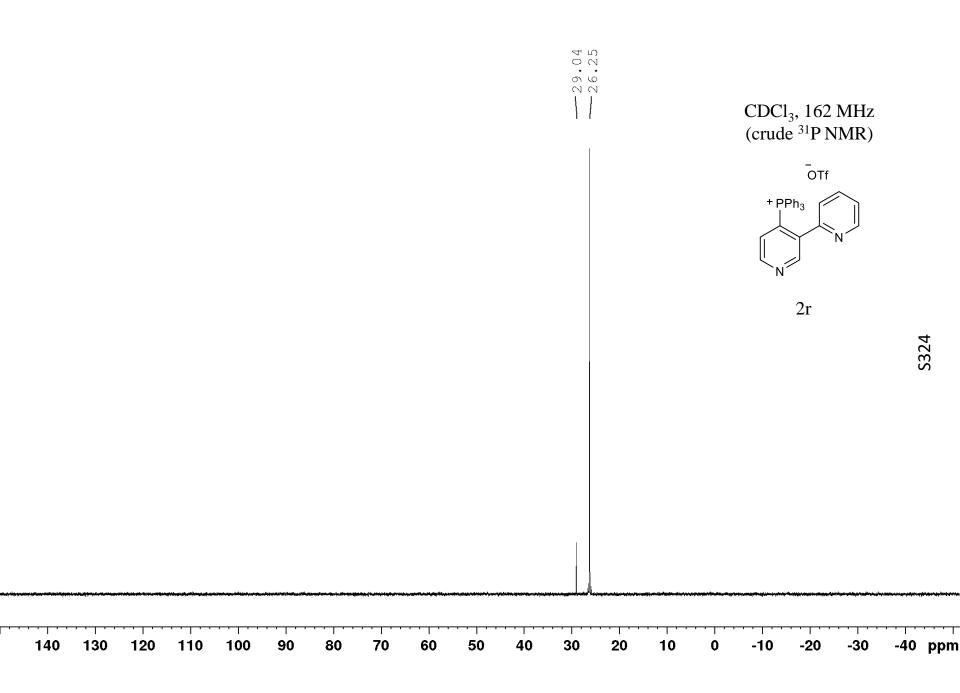


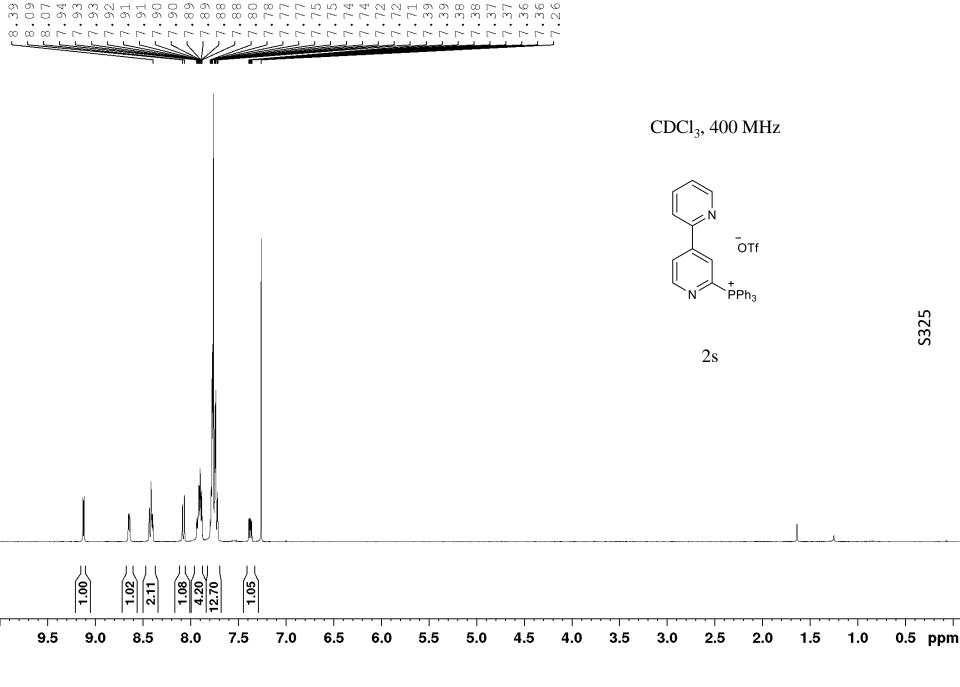


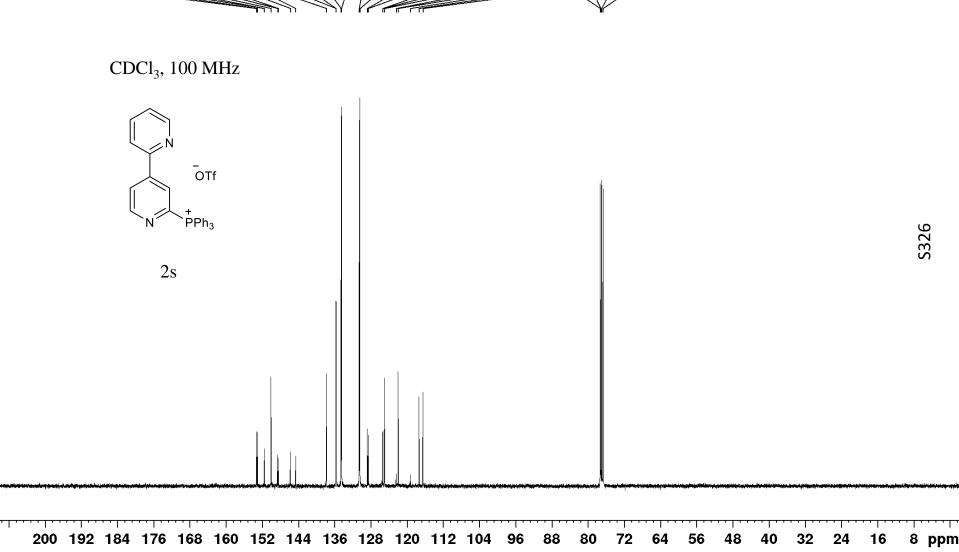












- 78.05	CDCl ₃ , 365 MHz OTf + PPh ₃	
	2r	

 153.32

 151.58

 151.58

 151.56

 151.56

 151.56

 148.62

 148.62

 148.51

 148.62

 148.51

 148.62

 137.87

 135.75

 135.75

 135.75

 135.75

 137.87

 137.87

 137.87

 137.87

 137.87

 137.87

 137.87

 137.87

 137.87

 137.87

 137.87

 137.87

 137.87

 137.57

 138.57

 137.59

 137.59

 128.88

 128.85

 128.85

 129.23

 125.38

 125.38

 125.38

 125.38

 125.38

 125.38

 126.53

 116.51

 116.51

 116.51

 116.51

 116.51

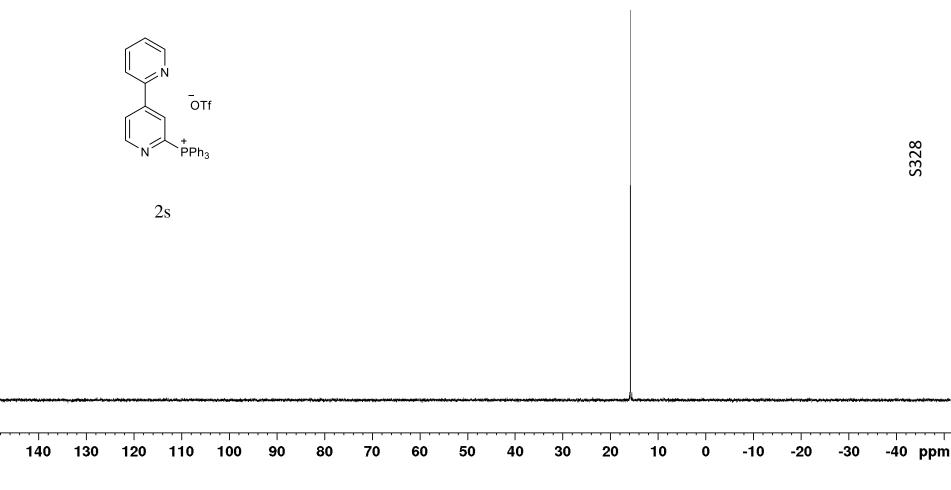
 116.51

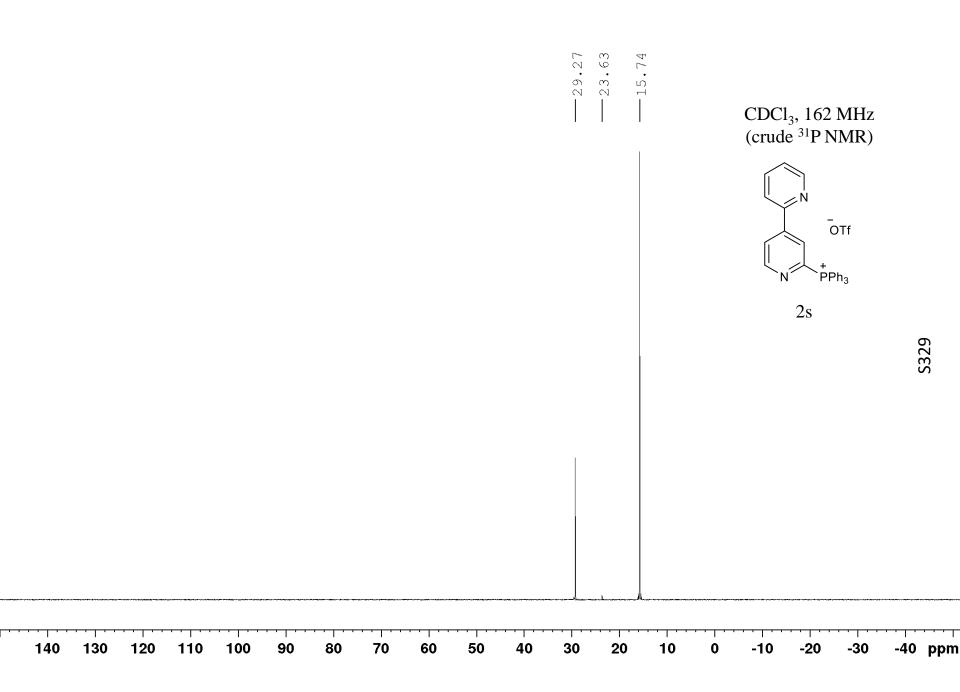
 116.51

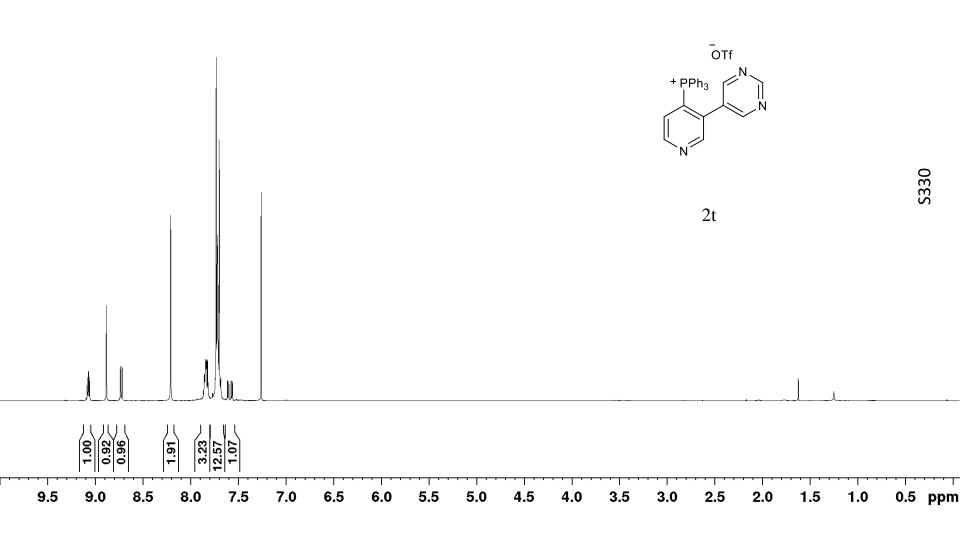
 116.51

 116.51

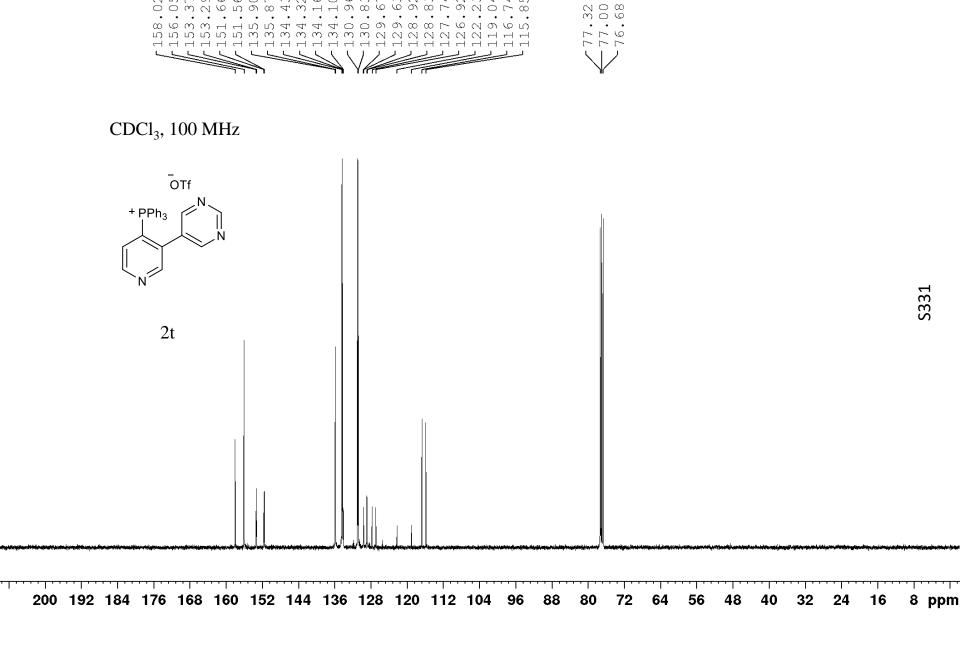
 116.51


 117.00

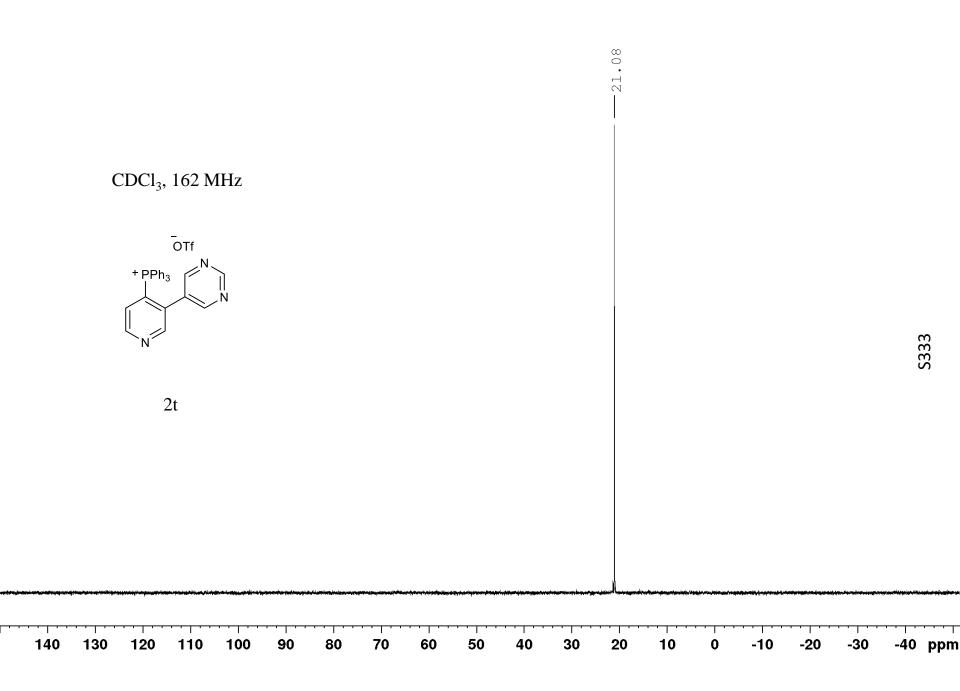

2327	$CDCl_3, 365 \text{ MHz}$	
		5327

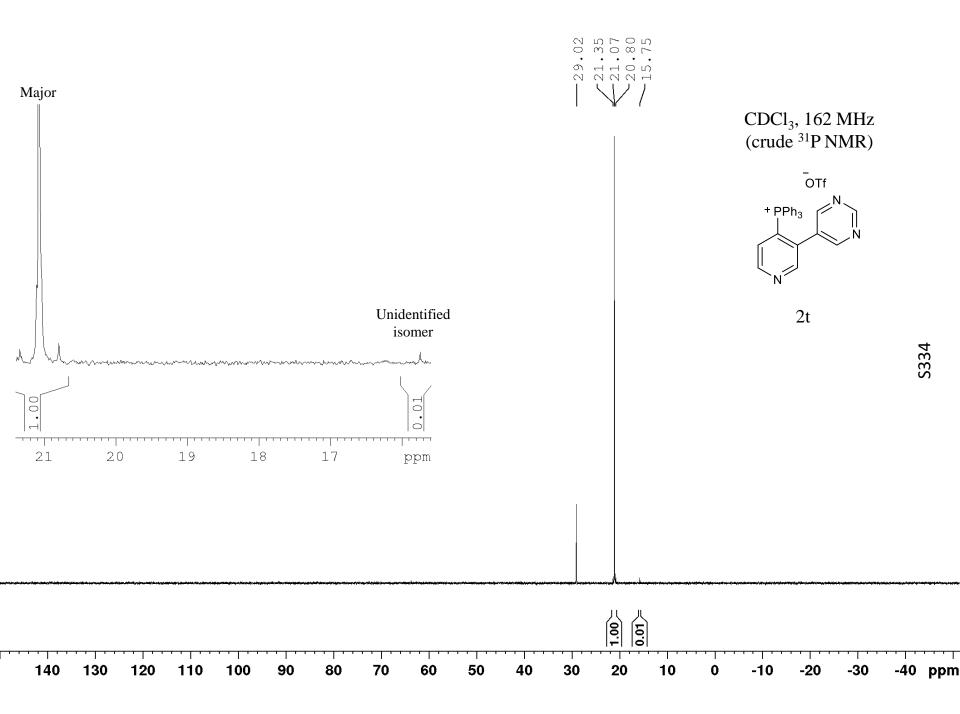

.

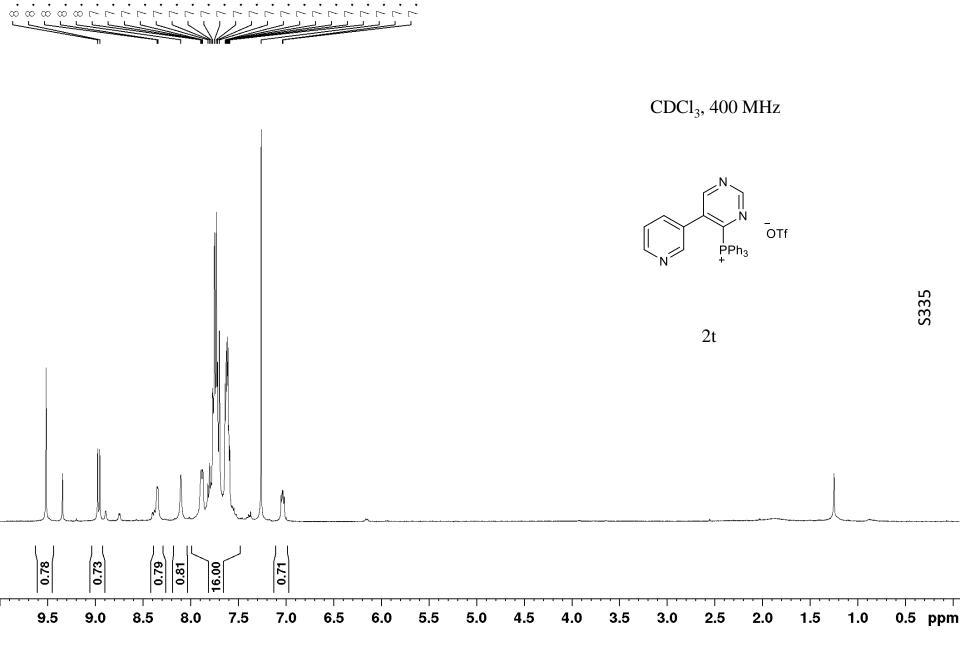
CDCl₃, 162 MHz



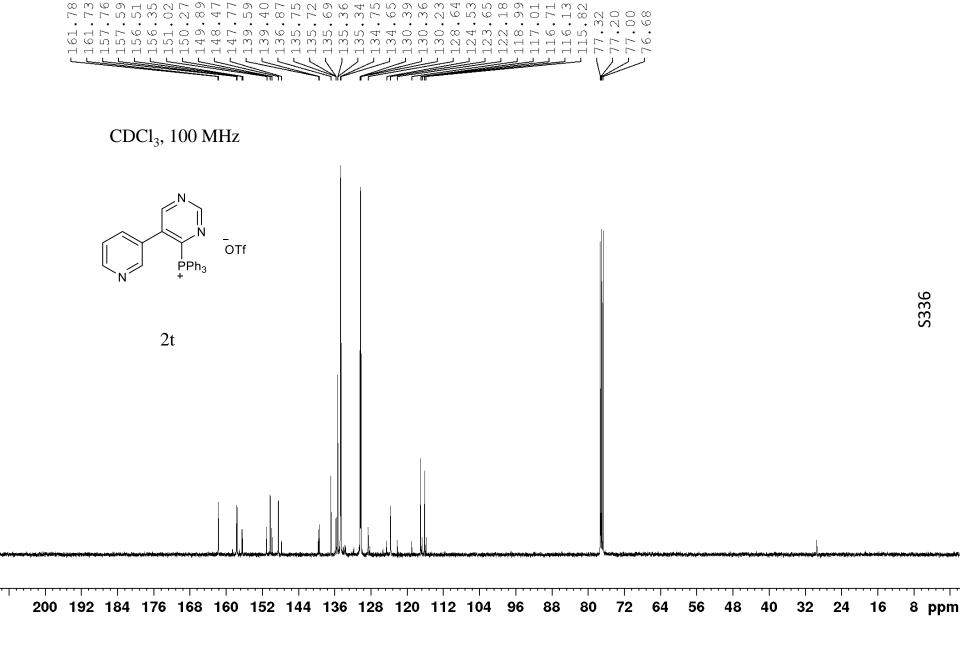
CDCl₃, 400 MHz


01440040000000000000400440


. .


•

• • • • •

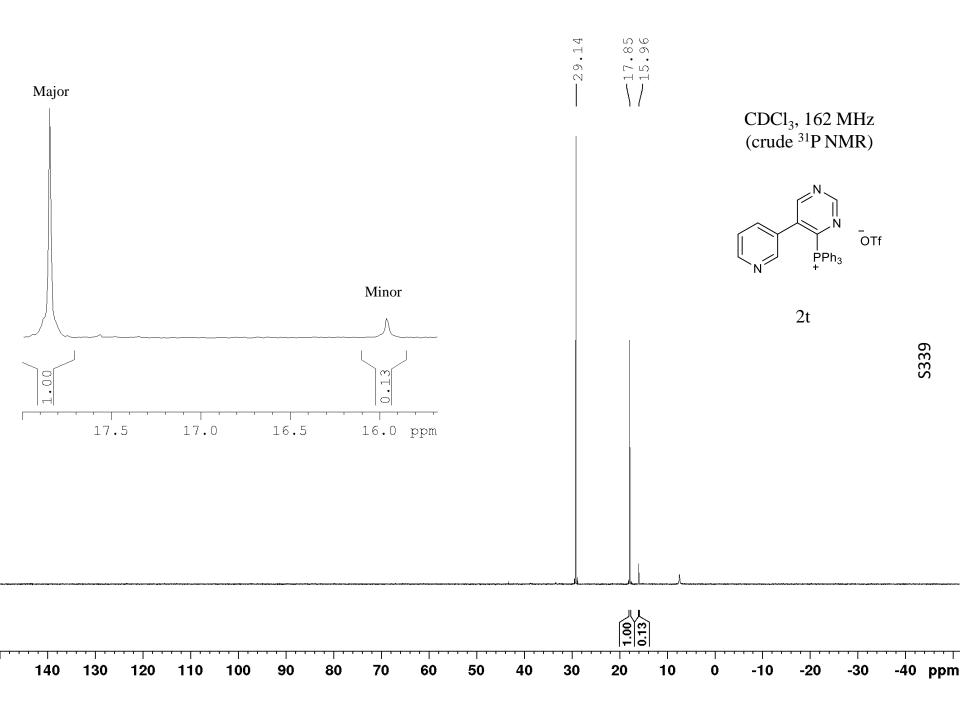

- 78.18	CDCl ₃ , 365 MHz OTf + PPh ₃	
	2t	

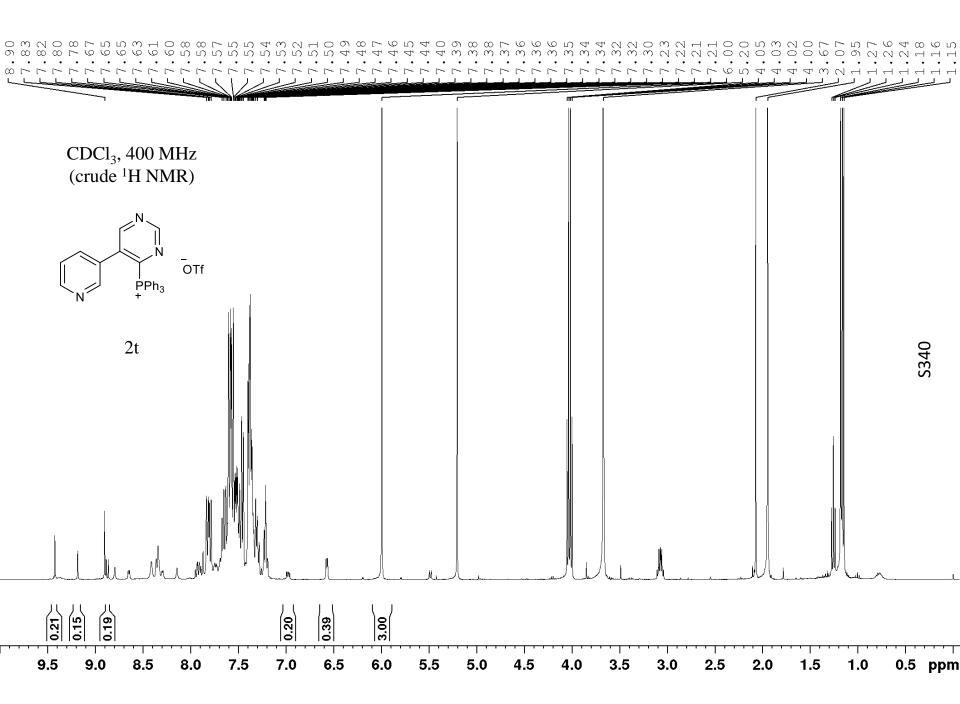
 $\circ \circ$ \sim

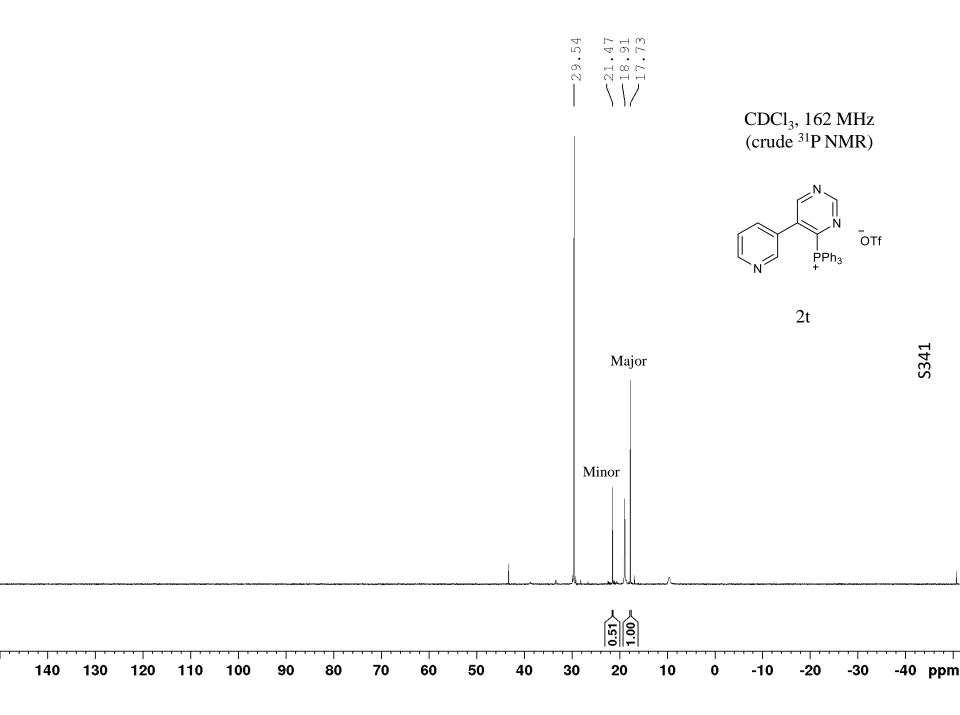
	CDCl ₃ , 365 MHz	
	PPh ₃ OTf	
	2t	
		LCC3

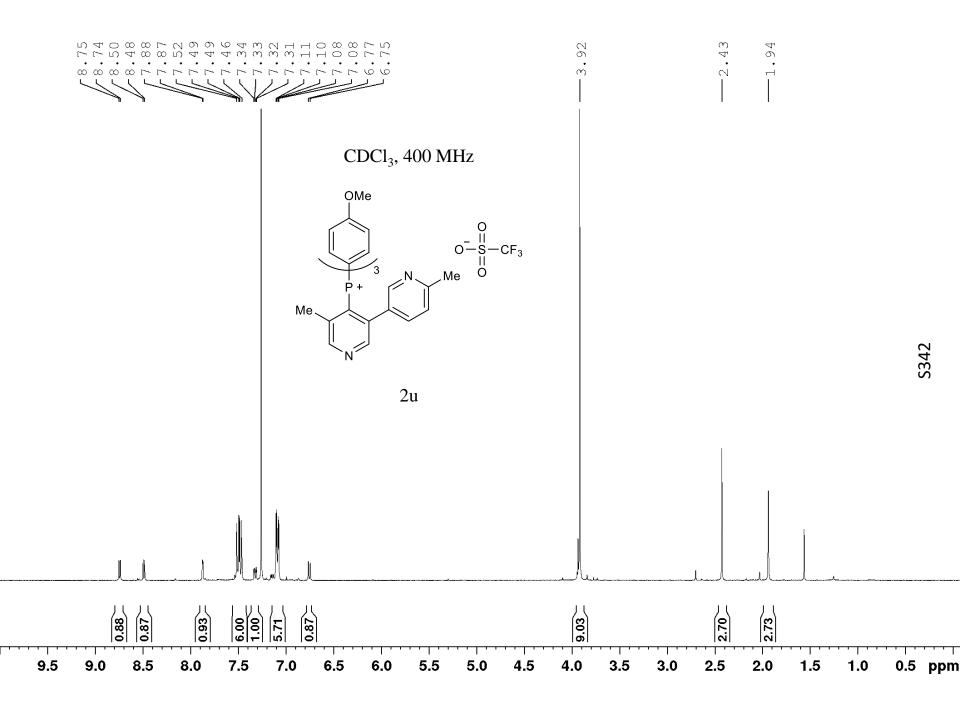
-10

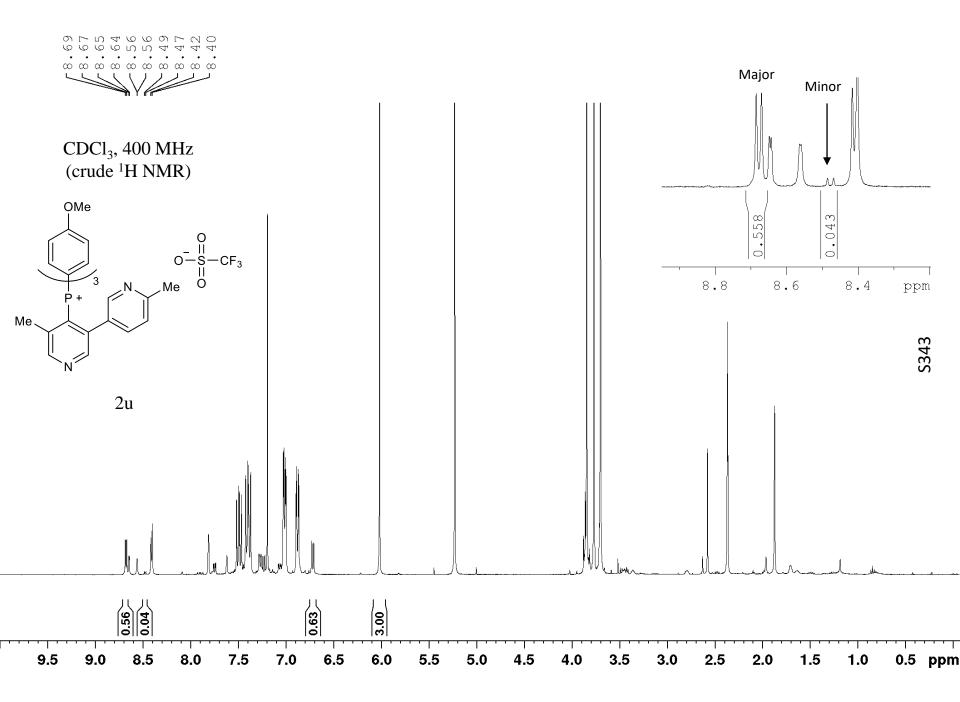
-20

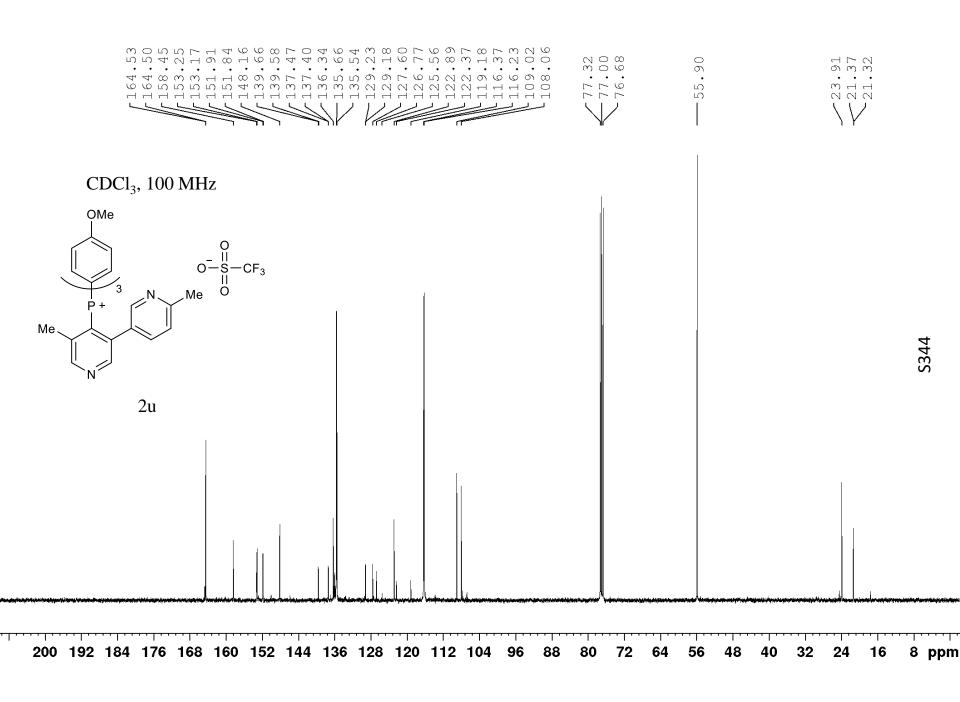

-30

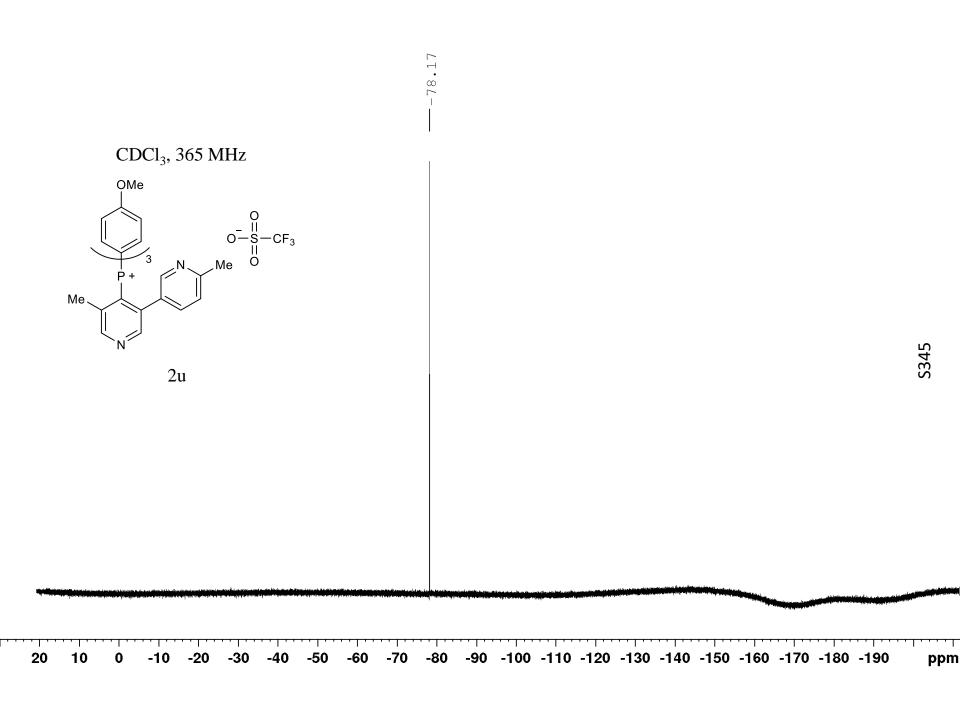

CDCl₃, 162 MHz

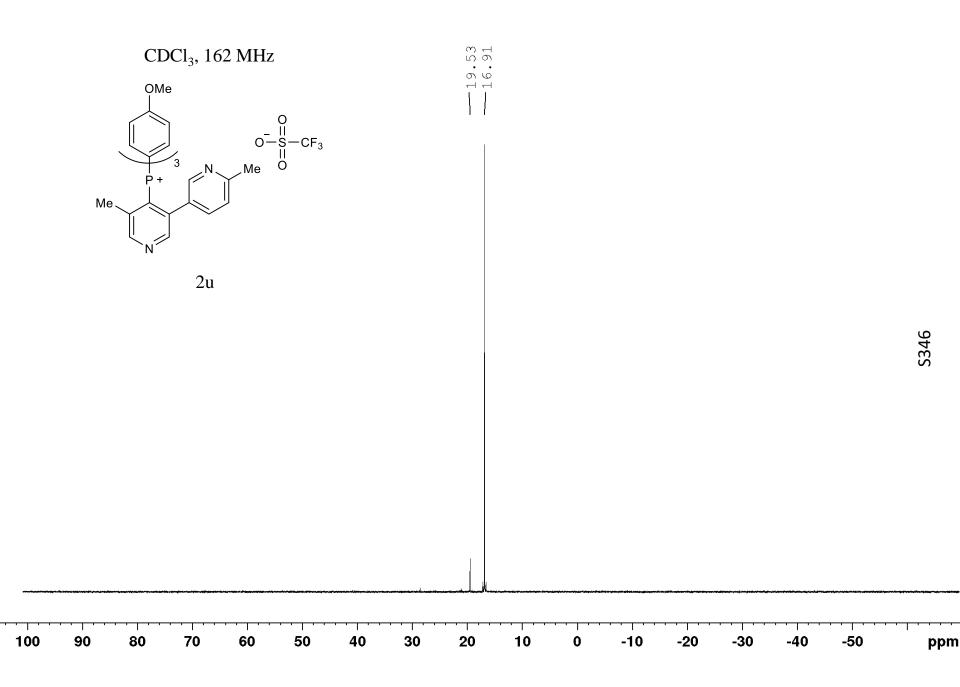

PPh₃ OTf

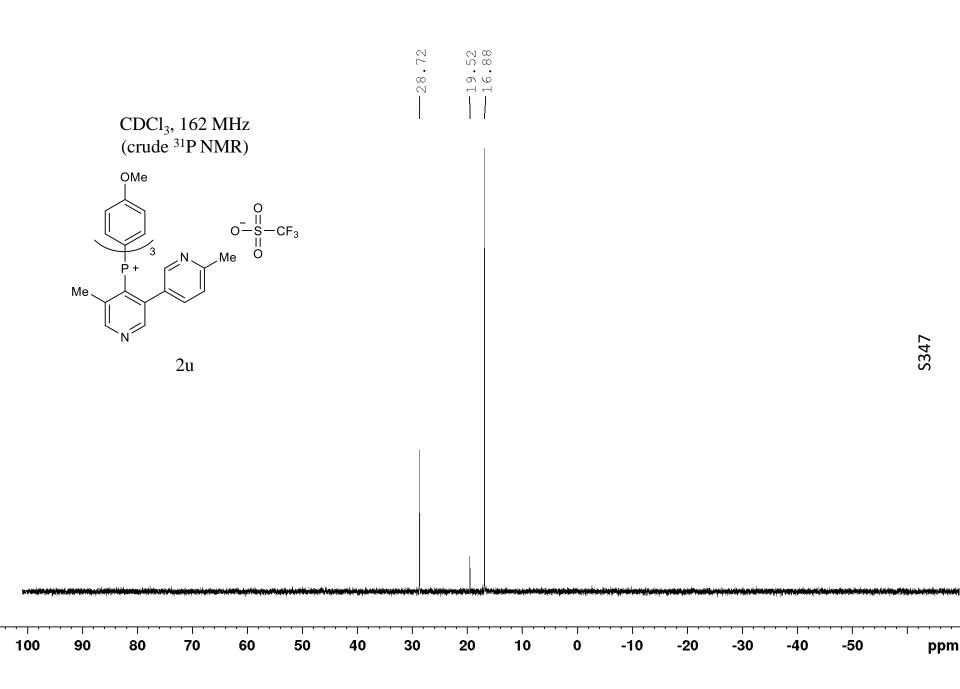

S338

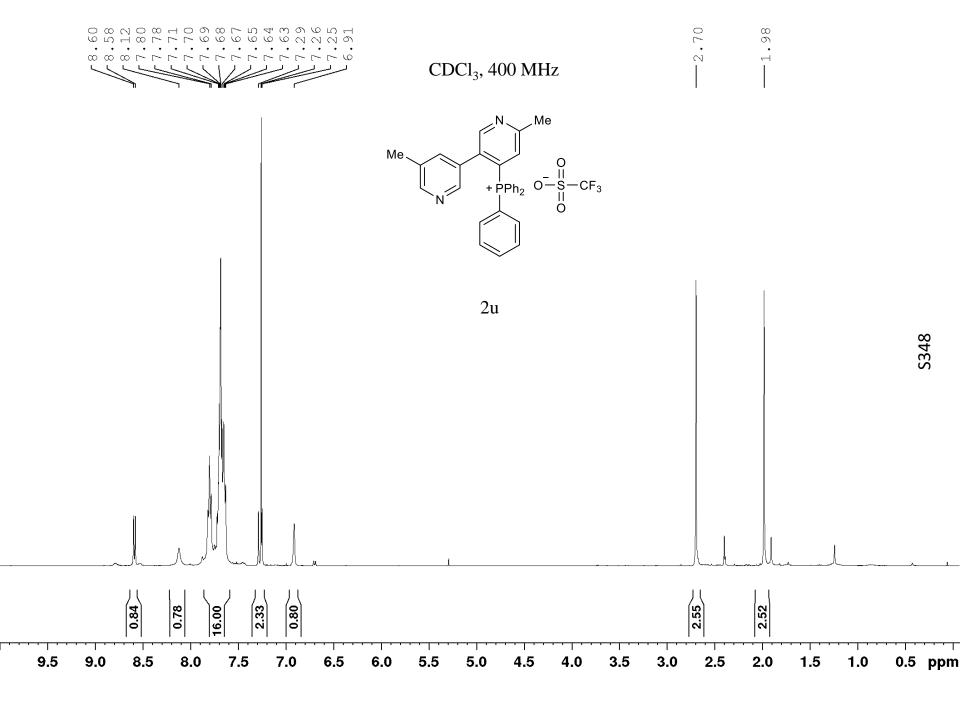

-40 ppm

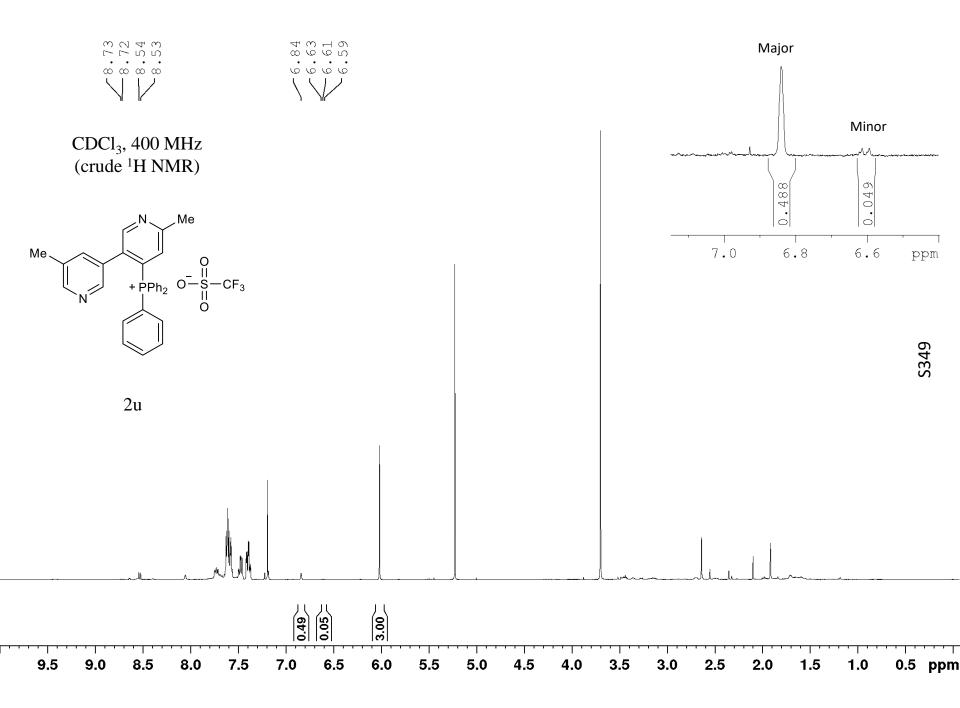


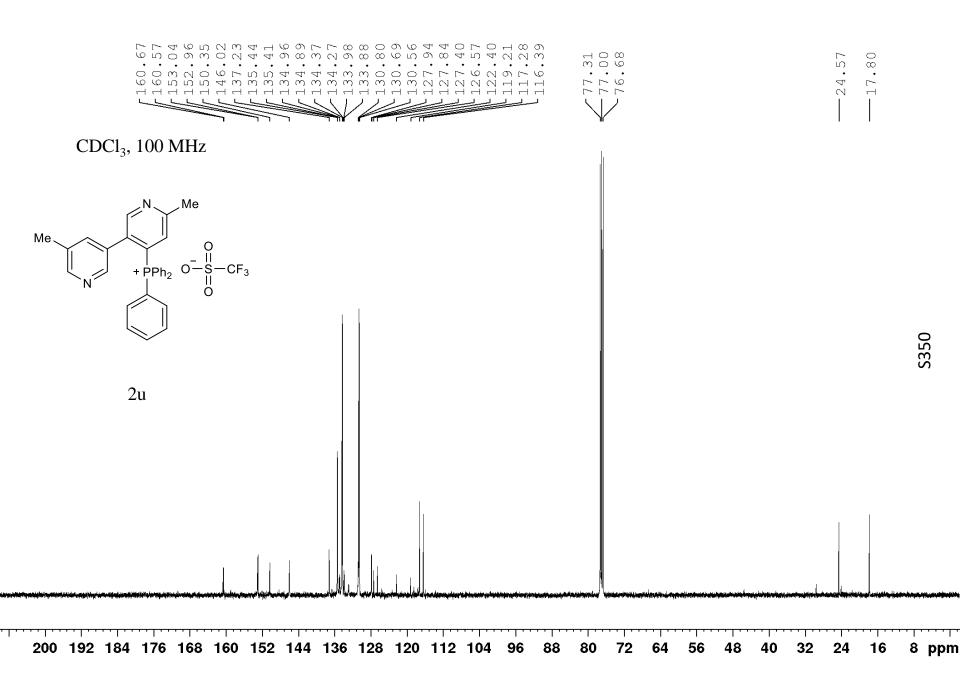


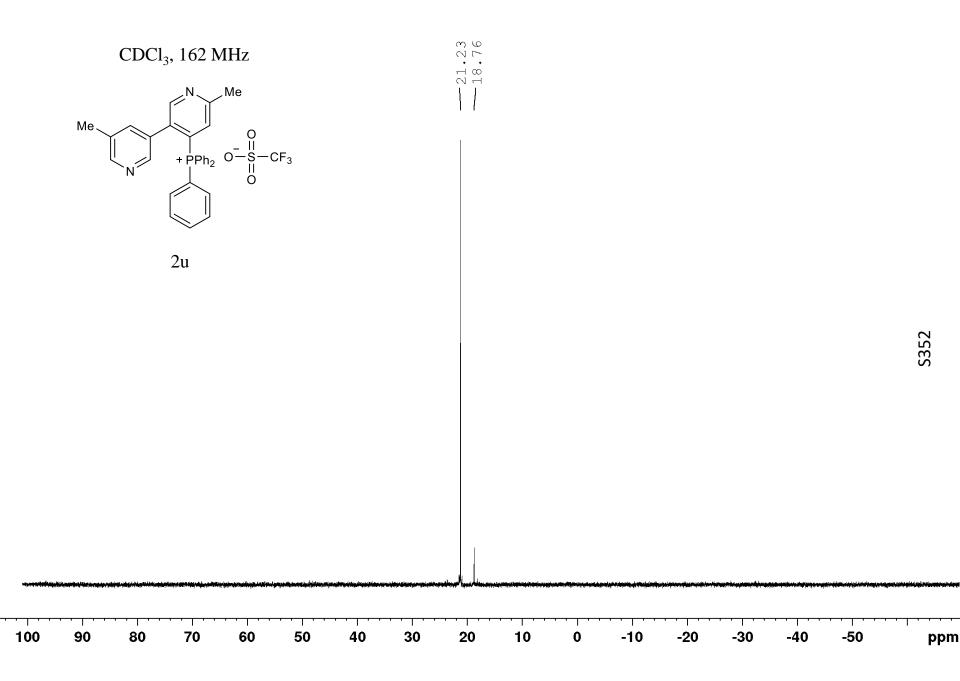


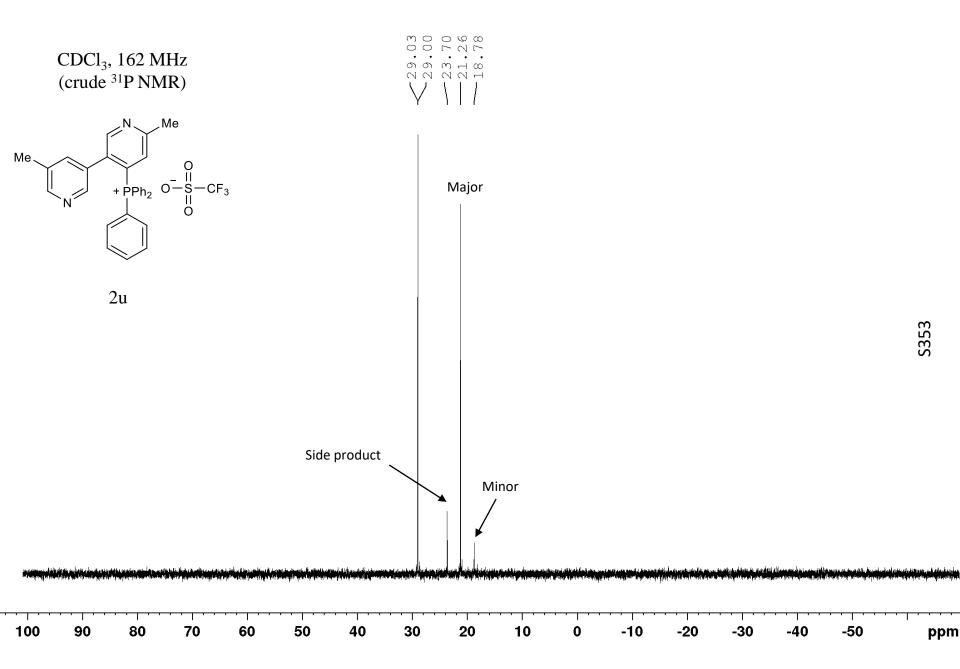


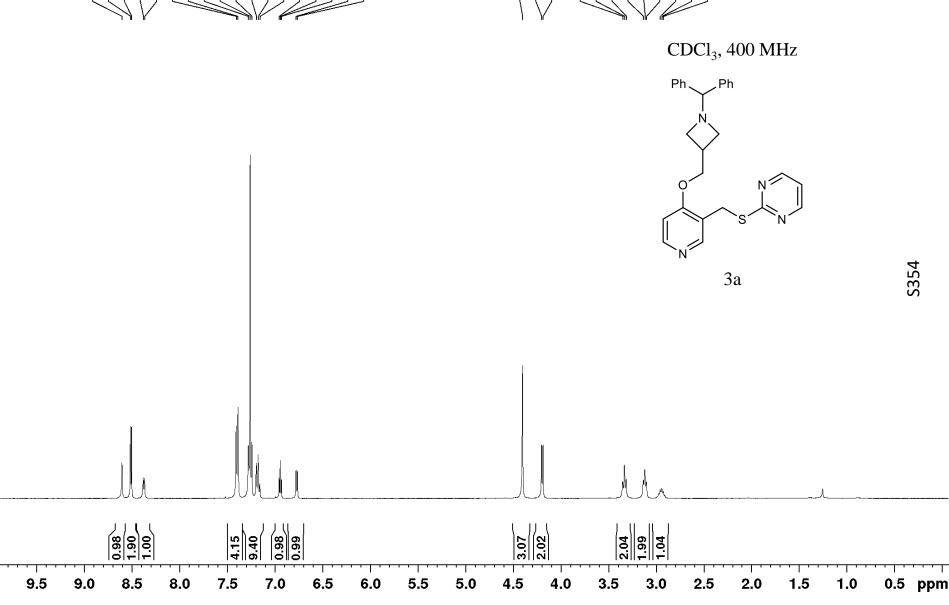






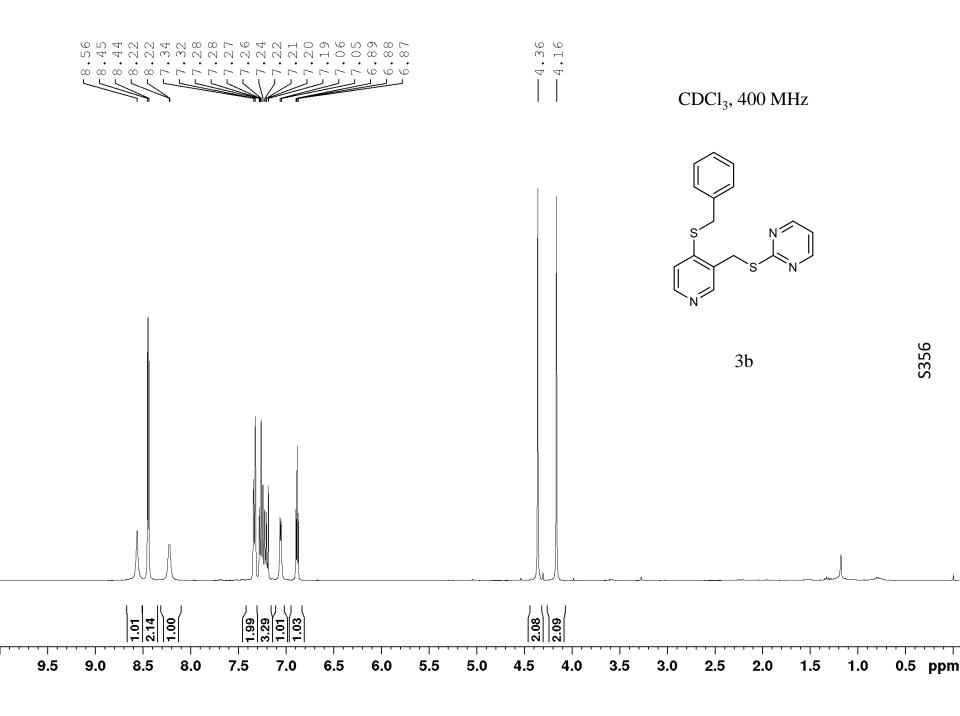


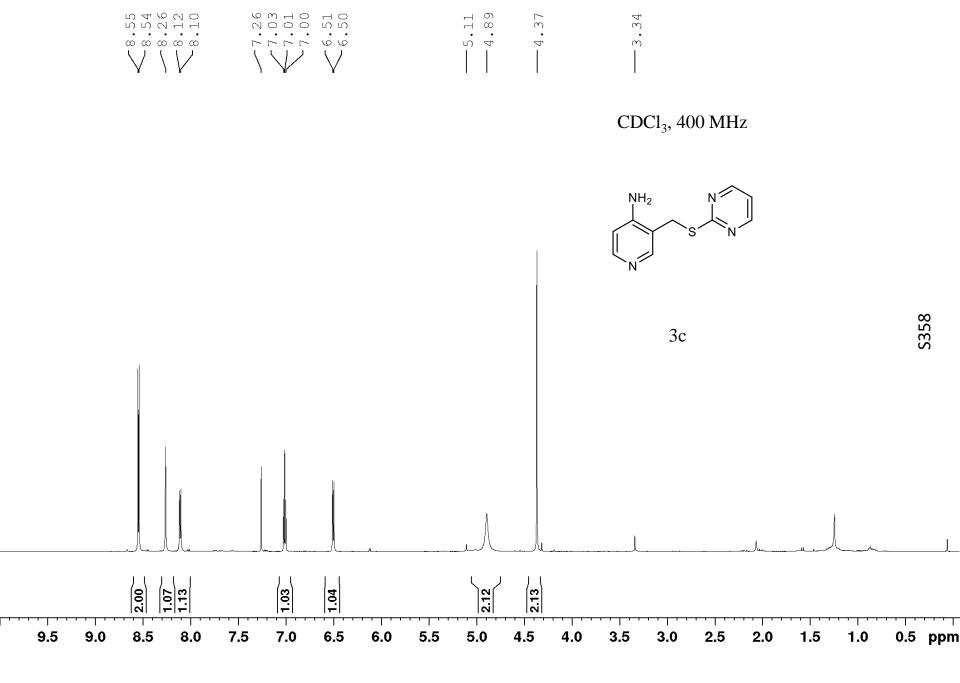




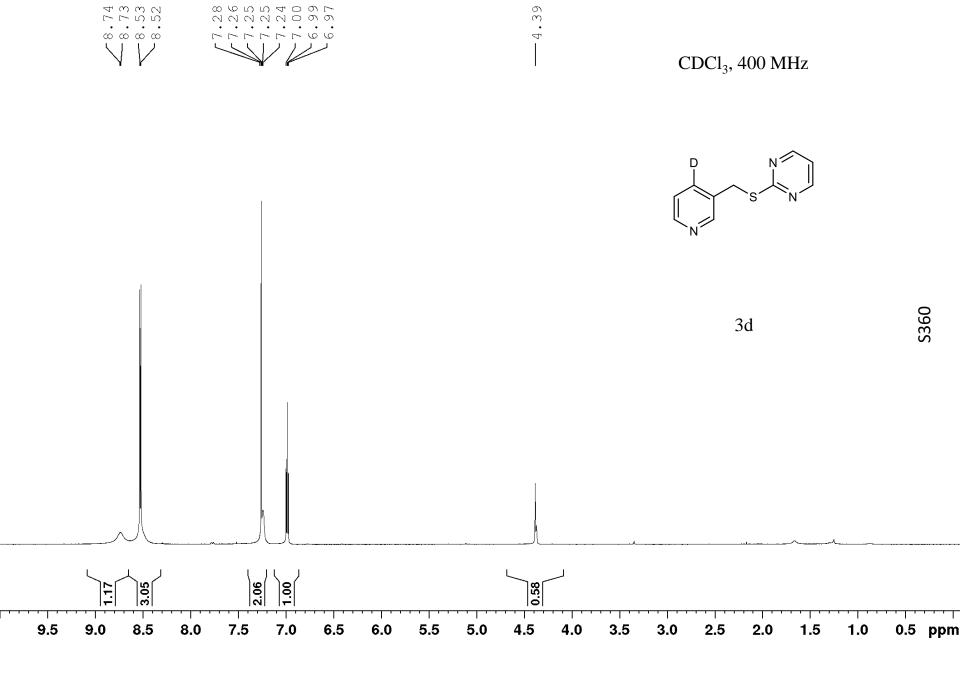
$CDCl_3, 365 \text{ MHz}$ $Me \qquad \qquad$		
2u		S351
0 10 0 -10 -20 -30 -40 -50 -60 -70	-80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190	.

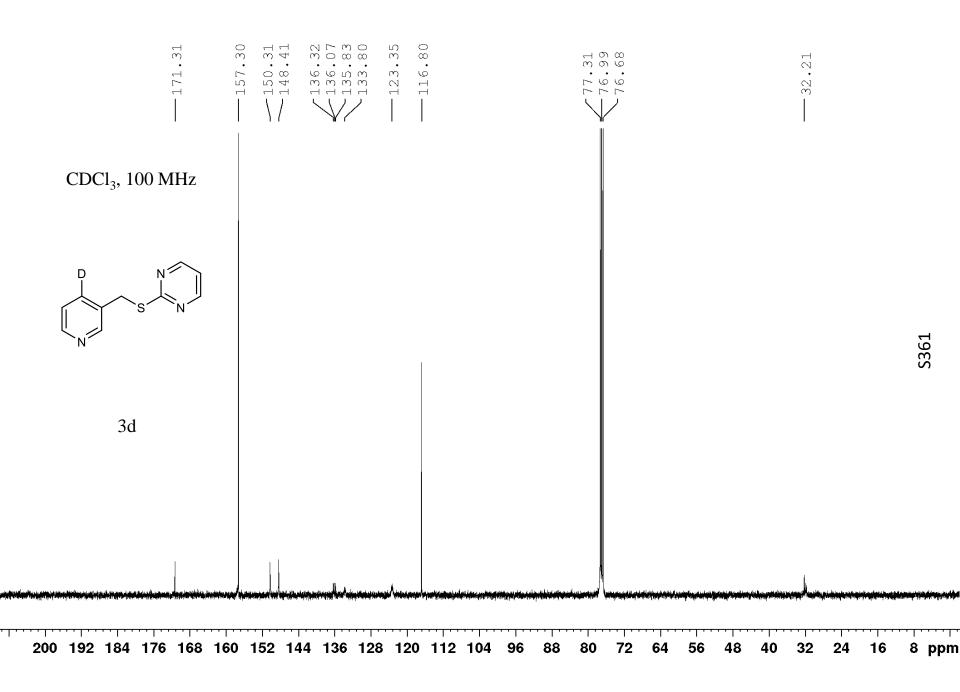
.

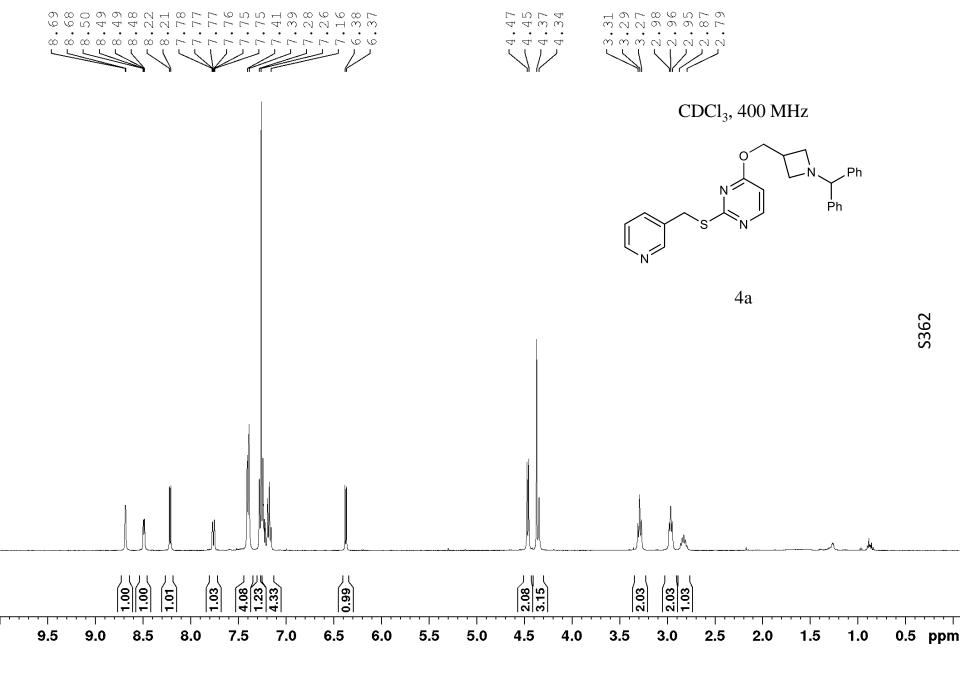


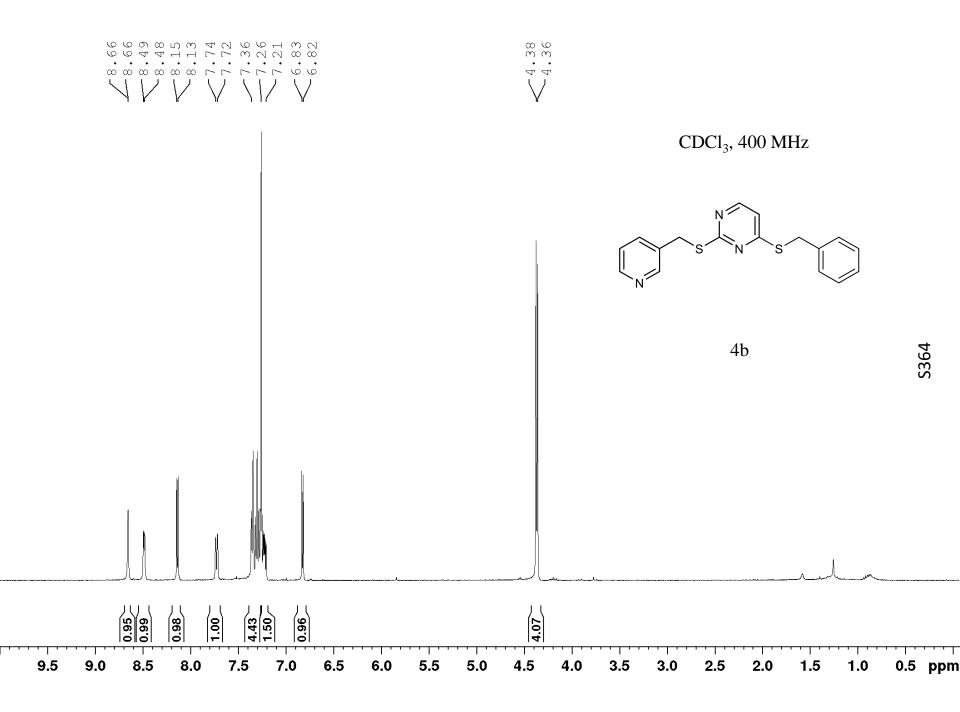


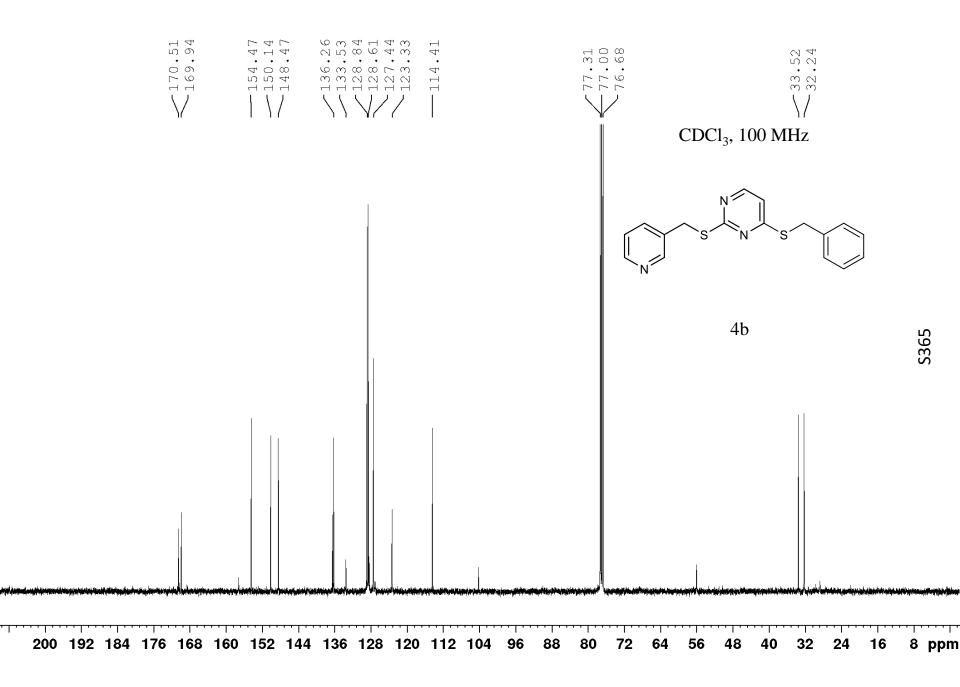
8.61 8.522 8.338 8.337 8.337 8.337 8.337 7.41 7.26 6.339 6.96 6.96 6.994 6.78 6.993 6.76 6.933 4.40 4.20 4.19 4.19 3.31 3.31 3.31 3.31 3.31 3.31 2.94 2.94 2.93

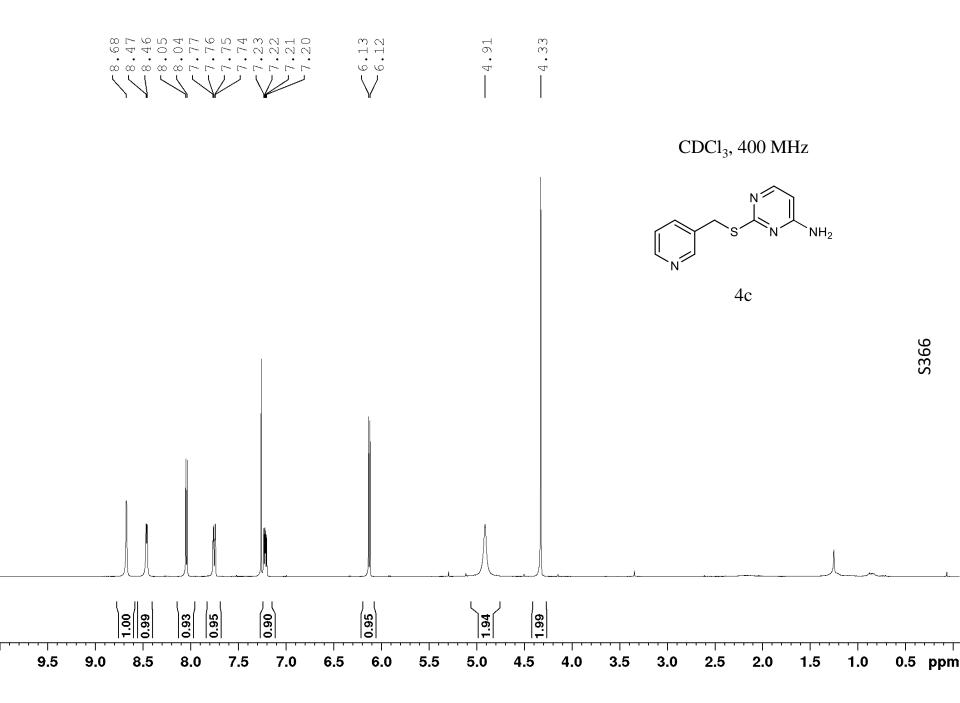

		S355
		55
		S3
		.

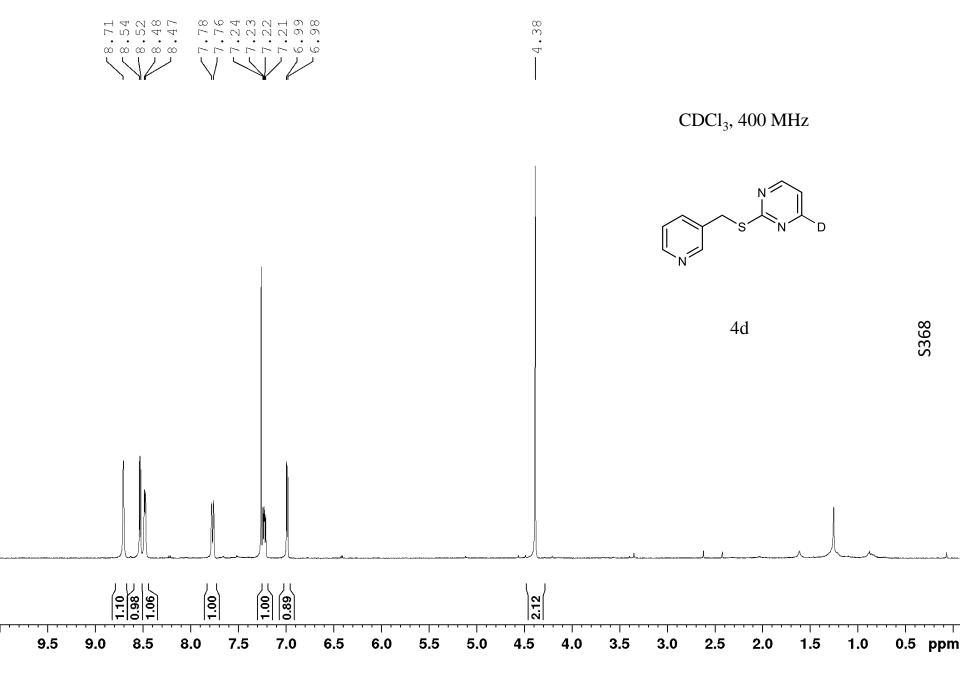


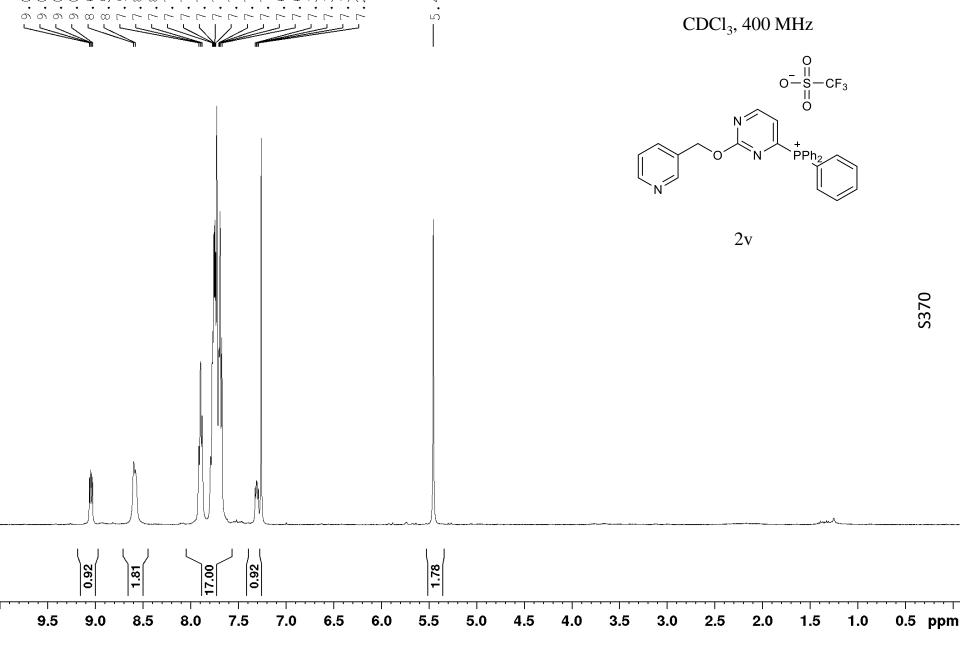

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \overbrace{77.31}^{77.31} \\ \overbrace{76.68}^{76.68} $	
CDCl ₃ , 100 MHz			
		J	S357
3b			
·····	60 152 144 136 128 120 112 10	4 96 88 80 72 64 56	

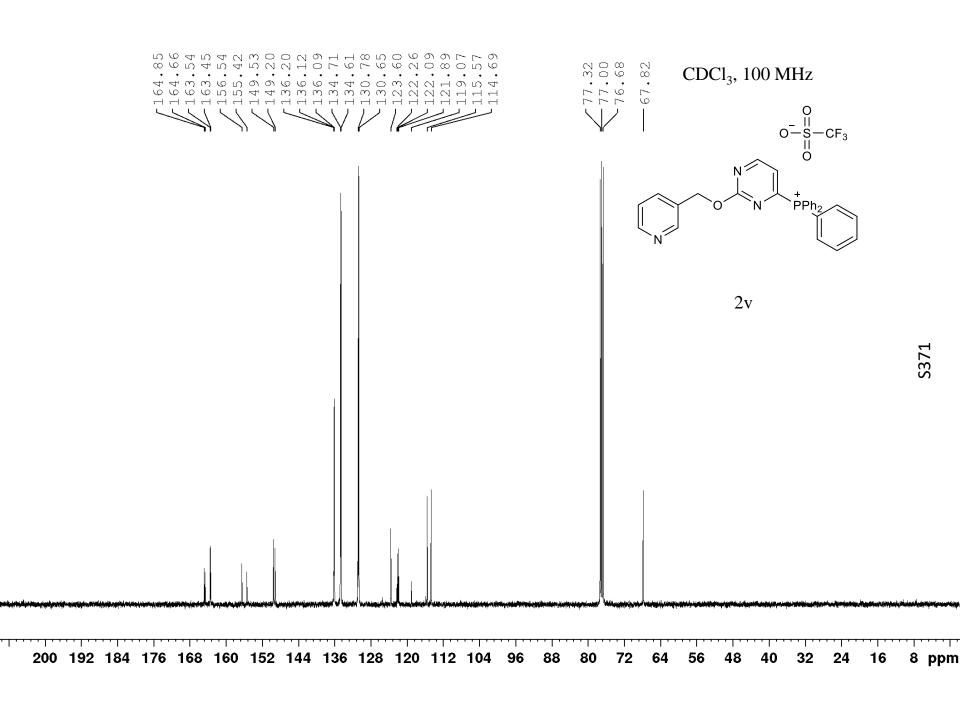

88 17 1	•	157.33	⊃.		116.57	•		77.32	77.20 77.00 76.68		CDC	l ₃ , 10	00 MI	Hz			
										ĺ	NH ₂	<u></u>					
												3c					S359
200 192 184 176	168 160) 152	144 136	128 120) 112		96	88 8	0 72		· · · · · · · · · · · · · · · · · · ·		40		····· 24	······ 16	8 ppm



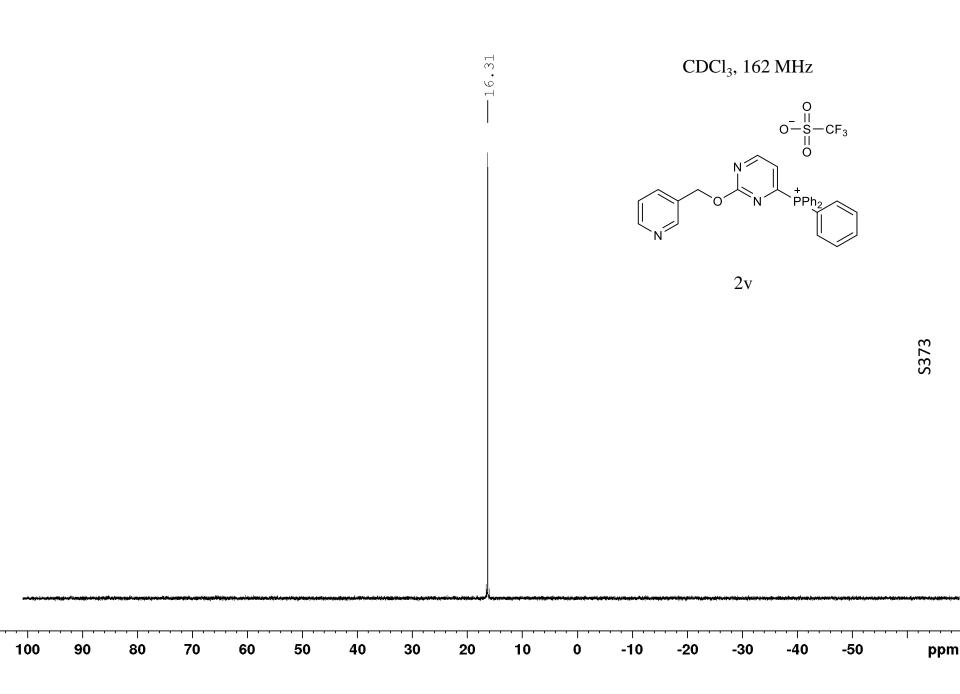


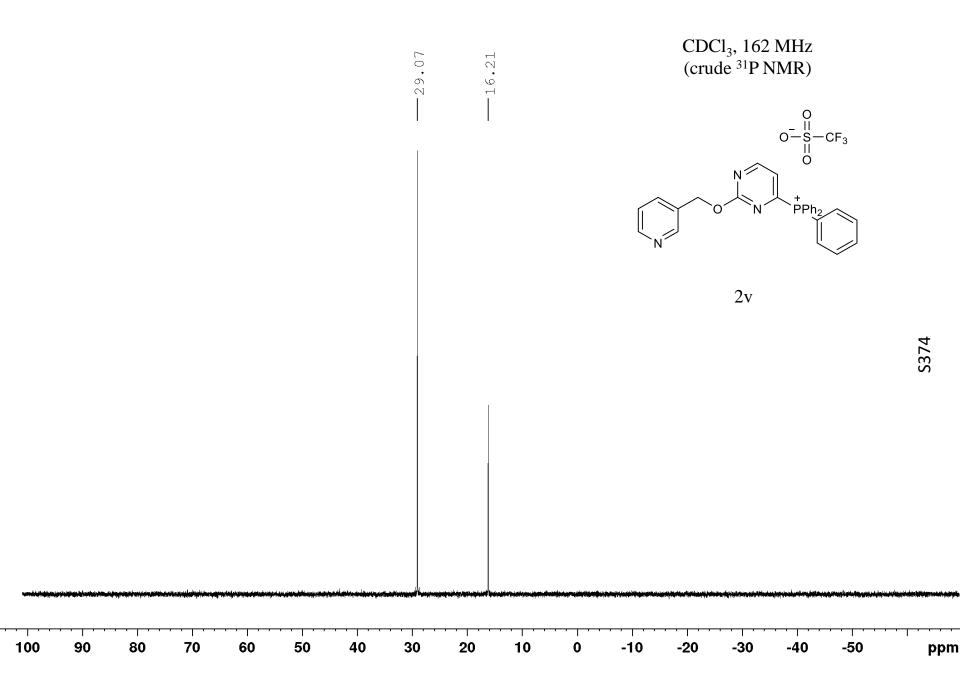

	- 157.14 $- 150.04$ $- 141.94$ $- 141.94$ $- 136.17$ $- 136.17$ $- 128.30$ $- 128.30$ $- 126.97$ $- 128.25$		77.81 77.31 76.68 68.63 55.97		
				h, 100 MHz h h h h h h h h	
			` №	4a	S363
200 192 184 176 168 ⁻	160 152 144 136 128 120 1	12 104 96	88 80 72 64 56 4	8 40 32 24 10	6 8 ppm

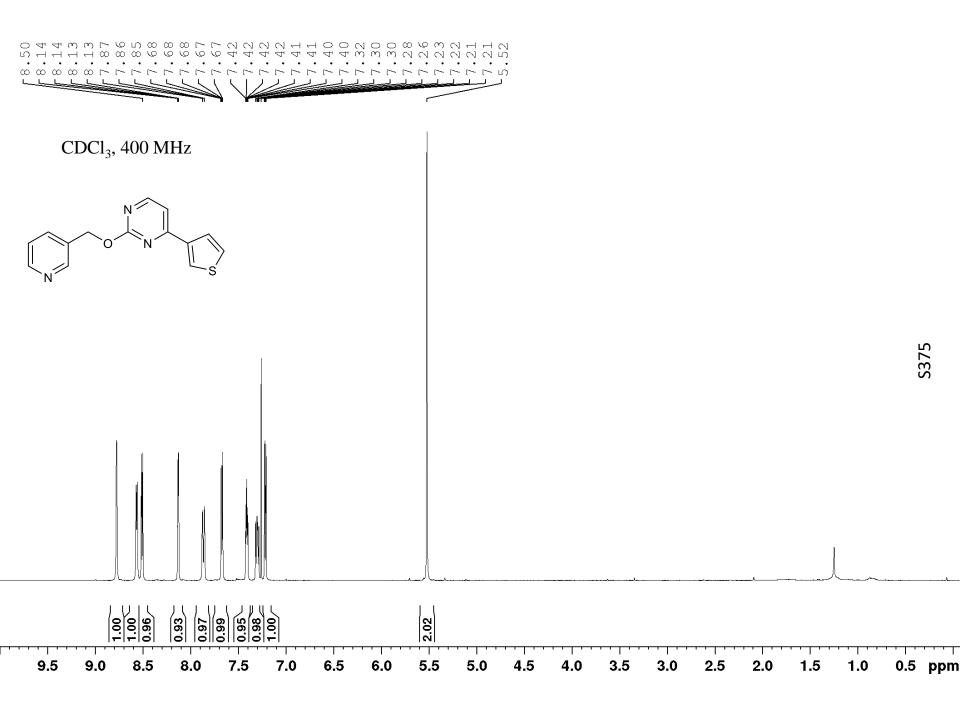




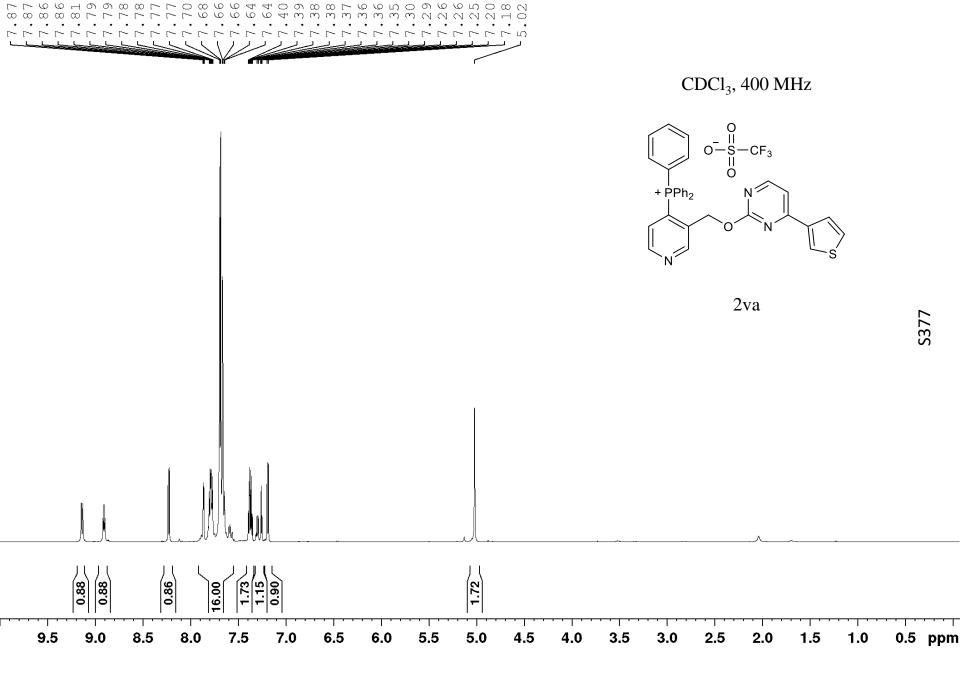
		~~ ·		148.21					77 · TOT		< 77.32	76.68									
	I	I	1 1	I	1 1	I						Í	CE		N	MHz	ŇH ₂				
												ų	N		4c					5367	
				I																	
de bine de la seconda de se				(here by state a state of the state		Stand Science in Sector	ang beng samp samp samp samp samp samp	Mar for any first first sector of the	and the second second	ng ng ning katalagan		ing in a staff by large by the		ter by the balance	n gyfrag Mar y Bar tyw	darran kanan kanan		un weiter auf	nflag-sile/devisit/set	the subject of the party of	goland y faigh a fu
200 192 184 176	168	160	152	144	136	128 12	20 11	12 104		88	80	72	64	56	48	40	32	24	16		ppm

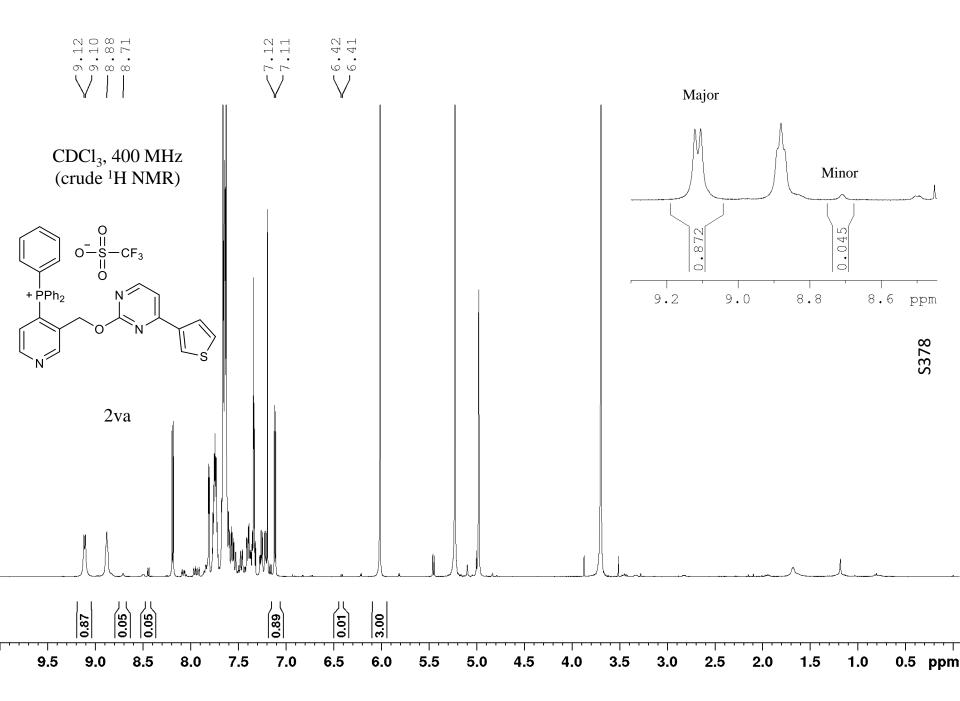

 157.25 157.15 156.87 156.87 156.59 148.35	236.3 23.6 23.6 23.6 23.6 23.6 23.6 23.6	 $\stackrel{\text{TE } 0.08}{\longrightarrow} \stackrel{\text{CDCl}_3, 100 \text{ MHz}}{\longrightarrow}$	
		$ \begin{array}{c} $	
			S369
	na para da	 	

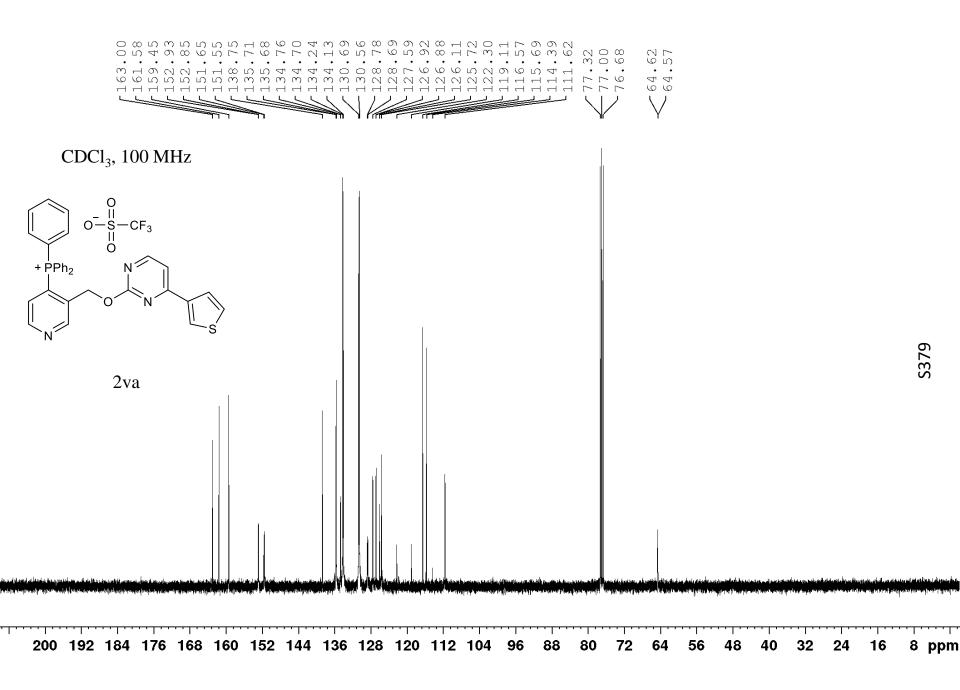




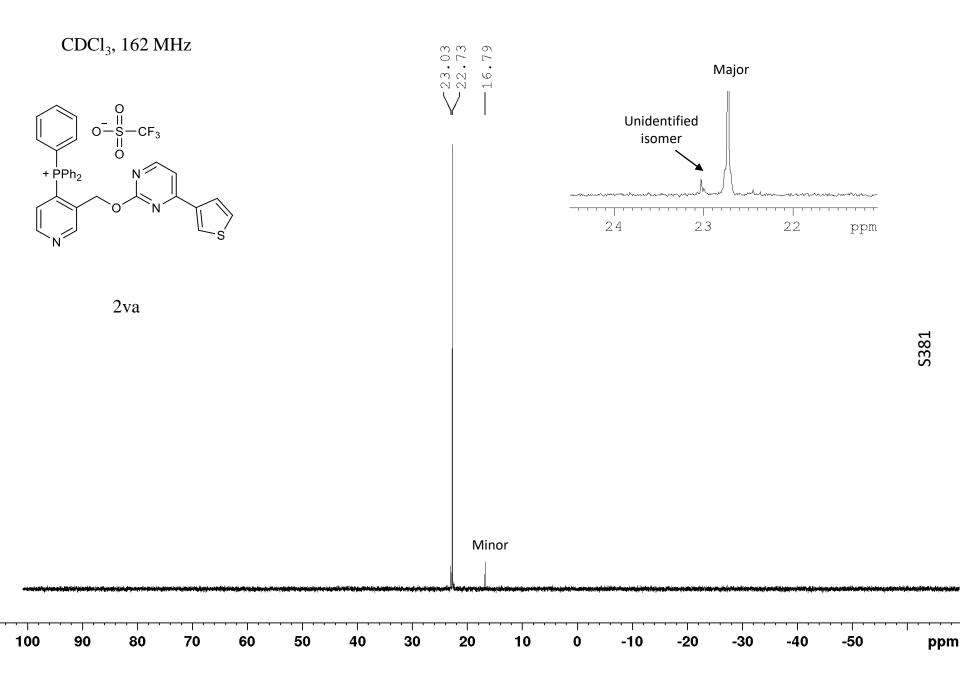
- 78.21	$O_{-S}^{-} CF_{3}$	
	N N N N N N N N N N N PPh ₂	
	2v	

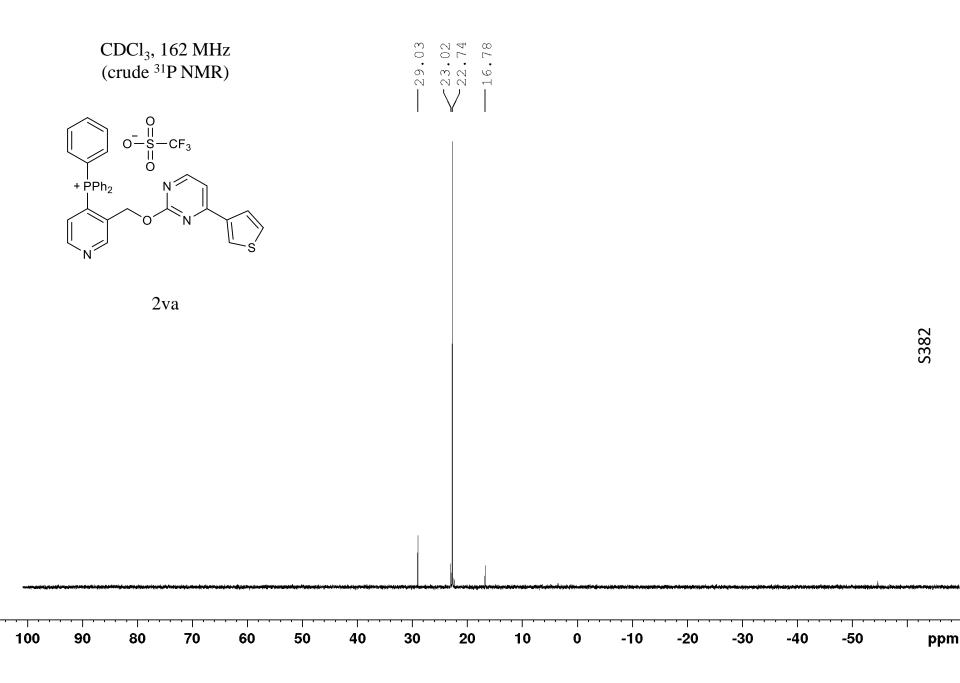

.

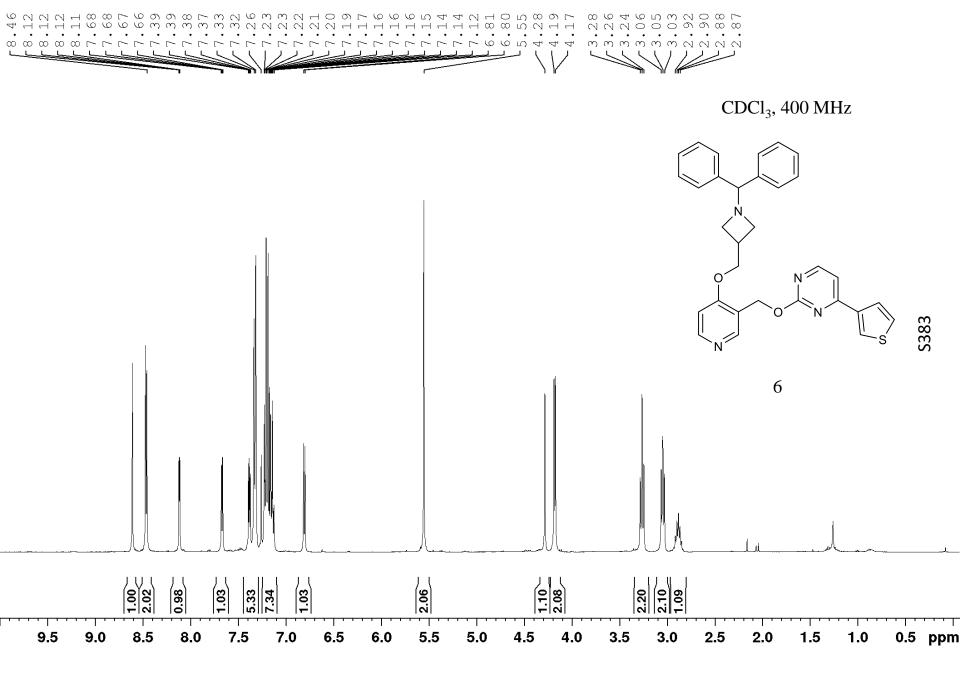


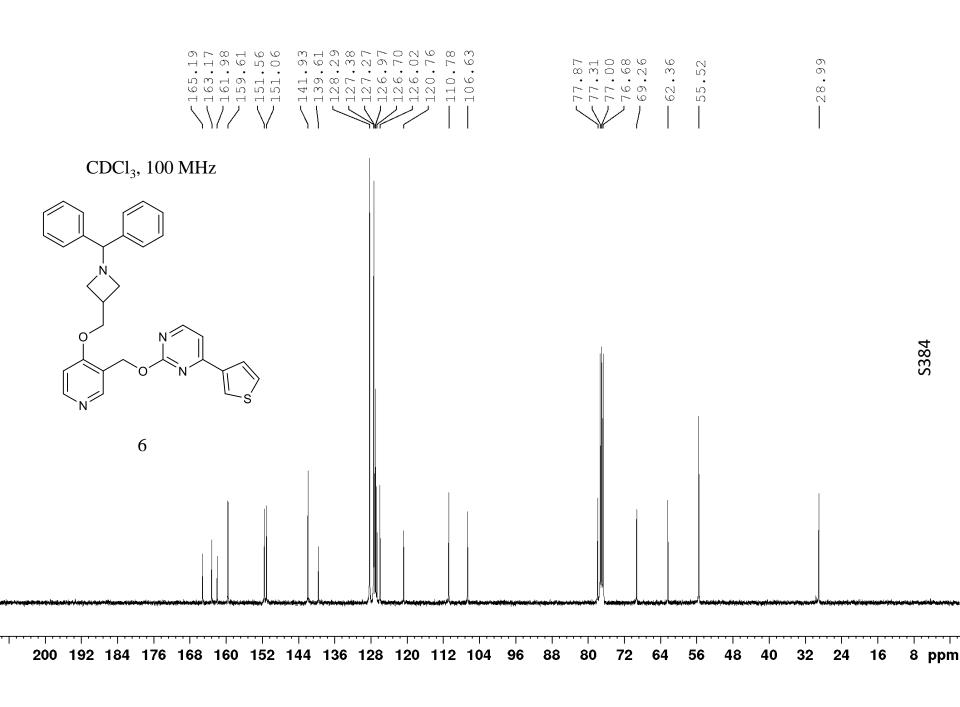


CDC1 100 MH ²	149.66 149.66 149.37 135.98 132.28 127.36 126.00 123.41	— 111.02 ~77.31		
CDCl ₃ , 100 MHz				
				S376
fandel seisen en dem staat gesten as en in 184 jandere keinen de seisen de seisen as en annen en seisen er seis New seinen en verste seisen bevork den segliet de segliet as seisen an er staat verste seisen er seisen as seis New seinen en verste seisen bevork de segliet de segliet de seisen an er seisen er seisen er seisen as seisen s		an na shi a na shi a ka shi a na shi a na kara da na da na da na da na da na da na shi ka shi ka shi ka shi ka Na shi ka shi Na shi ka shi	alle viele set stelle geste Kink for her helden die verhieden werden werden set en beste Terreproduktionen in der beginnte verhieden set her	send ku za na hudi til a ha ina di un didanten ska slavnota e ka ze portet por portet hada bu nda na dasada bu Nennya yang sa tengan tengan sa maginte kayang ng pangan gan gan gan tengan yana yang sa mana ba na dasan teng Nennya yang sa tengan tengan sa maginte kayang ng pangan gan gan gan tengan yang sa mana sa mana sa sa mana ten
200 192 184 176 168 160	152 144 136 128 120	112 104 96 88 80	72 64 56 48	40 32 24 16 8 ppm








CDCl ₃ , 365 MHz	-78.04	
$ \begin{array}{c} $		
2va		S380
	,,	

.

