
The definition of propagation allows it to cover processes in a wide range of fields

and disciplines. As many discipline have converged into their own standards and sets of

rules for modeling the specific propagation process there exists a forest of different

propagation models in literature. In general four basic classes of models can be

identified; SIS/SIR models [1], Bass(-like) models [2], threshold models [3, 4] and

cascade models [5].

SIS/SIR models

By far the largest class of models of propagation are based on SIS/SIR type of models.

These model stem from the field of epidemics and owe their name to the different

compartment, or states, an actors in the system can be in. Actors are either Susceptible,

Infected or Removed, hence resulting name SIS/SIR model. In this type of model each

change of compartment is given by a rate, the process by which actors change from

Susceptible to Infected is given by means of an infection rate (λ), and a process by

which actors change from Infected to Susceptible/Removed by the recovery rate (ρ), or

death rate (γ), these processes are considered to be stochastic and dependent on the

interactions among actors. Even though many extensions of the traditional SIR/SIS

models exist (most of them add extra state to the model, for example by allowing actors

the be exposed, or temporary immune) for convenience the simple SIS model will be

elaborated in order to introduce the logic of tis class of propagation model.

The population in this type of model is divided in different compartments of actors,

each with a different state. These compartments interact at a certain rate which is

based on the size of the population in each of the available compartments. By

considering the average rates by which the actors change from one state to another, this

models allow writing the dynamics of propagation as a set of differential equations.

Assume a set of N actors which are either susceptible (S) or infected (I) such that

N = S + I. In this case the SIS model is described by:

∆I

∆t
= −ρI +

βSI

N
(1)

∆S

∆t
= −βSI

N
+ ρI (2)

In which β is the rate of interaction.
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This model assumes random interactions among actors, essentially considering a

scenario with homogenous mixing. More complicated extensions have been developed

which include the notion that there is a network underlying the propagation process.

The network causes actors to have a certain amount of connections, which affects their

ability to both infect others, and be infect by others, resulting in the following

formulation [6]:

∆I

∆t
= −ρI + I〈k〉λ(N − I) (3)

∆S

∆t
= ρI − I〈k〉λ(N − I) (4)

In which 〈k〉 is the average number of edges (connections) per vertex (actor).

Even more complex variations of this model can also capture heterogeneity in the

network structure [6, 7], but the logic of the model remains the same throughout. These

models leverage the assignment of actors to groups, which are called compartments,

based on their state and number of connections. It is assumed that all actors in the

same compartment behave similarly. Consequently these models are called mean-field

models. Mean-field models can be roughly divided in three camps [8]:

� Individual-based mean-field approach (IBMF): In which it is assumed that every

actor belongs to compartment of the system with a certain probability, and that

all actors within a compartment behave similarly.

� Degree-based mean-field approach (DBMF): Here compartments are based on the

number of ties an actor has. It is assumed that every actor with the same number

of ties, its degree, behaves statistically similar.

� Generating function approach: A special case method for scenarios in which

infected actors are removed after infection. Which builds on the notion that the

likelihood of finding a tie is related to the probability of transmission of the

disease, which is constant for the complete population.

[8] provide an mathematical representation of these models and an extensive overview

of their characteristics and differences. Each of these approaches leverages the same

logic, it considers the average propagation behavior per compartment in the system, by
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going over the dynamics of each group one will get the dynamics of the system as a

whole. The main argument for doing so is that this allows these models to step away

from the apparent chaotic behavior of the individual actor level [9]. Also combining set

of actors, significantly reduces the complexity of the formulation of the propagation

behavior. The mean-field approach further enable using an analytical methodology to

untangle the propagation dynamics, which in turn has resulted in closed form solutions

to many propagation problems [8].

Cascade models

A second class of propagation models is cascade models (e.g. [10]). Similar to the SIS

models this type of model considers a stochastic process in which an ‘infected’ actor will

propagate its behavior towards it connected neighbors. Potentially resulting in the

occurrence of cascades of such behavior. An important characteristic of cascade models

is that they are build on the notion of momentum. This means that once an actor

changes state, it will sent out a signal towards a neighbor only once! Regardless of the

outcomes of this step it loses its momentum after this initial shock and will become

inactive thereafter.

As [5] puts it ‘The basic cascade model therefore can be described by a process which

starts with an initial set of active I0 actors. The propagation process unfolds in discrete

steps according to the following randomized rule. When node i first becomes active in

time step t, it is given a single chance to activate each currently inactive neighbor j; it

succeeds with a probability pi,j —a system-wide parameter— independently of the history

thus far ’.

Threshold models

The third class of propagation models, threshold models (e.g. [4]) assume a different

type of propagation mechanism. These models assume that adoption of a certain state

is a consequence of the states of its connected neighbors. In each time step all actors

will therefore reconsider their state. Each actor will look at its direct neighbors and

change state if a large enough proportion of the neighbors has adopted an alternative

state. Whether the proportion of the neighbors is big enough to change state, depends

on the adoption threshold of the focal actor.
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[11] describe the most basic threshold model, the linear threshold model, in which it

is assumed that each actor has an individual threshold for changing its behavior. This

means that for each actor the proportion of neighbors needed differs, they al have a

different randomly chosen threshold. This model consists of two elements:

� A set of edges E with a positive weight wij on each edge from i to j, which

indicates the influence of actor i on j . It is dictated that
∑

w∈N(j) wij ≤ 1 ,

where N(j) is the set of nodes with edges to j.

� A set of thresholds Θ, containing a threshold θi for each node i. θi is chosen

uniformly at random from [0, 1]

Due to some external event a set of nodes will initially adopt the alternate behavior,

these nodes are claimed to be active. At any discrete time step t = 1, 2, 3, . . . any

inactive node j becomes active if the fraction of active neighbors exceeds its threshold:

∑
A∈N(j)

wij ≥ θj (5)

Where A is the set of active nodes. While far more complicated threshold models can

be considered, an indeed models considering also the absolute number of

neighbors [11,12] are quite common, all threshold models follow this fundamental logic

of updating the state of actors based on the state of the connected neighbors.

Bass-like models

The fourth class of models are the Bass-like models. The models often used in the field

of marketing derive their name from the traditional Bass model [2] which was used to

describe the adoption of innovation among actors. It consists of a differential equation

describing the process of how such adoption occurs. The basic premise of the model is

that adoption is driven by two forces, random adoptions, and influence from other

actors. Each actor is classified as innovator or as imitator. Innovators are those which

have a high probability to adopt a innovation at random, and imitators are those which

are more likely to adopt due to influence. The speed and timing of adoption depends on

their degree of innovativeness and the degree of imitation among adopters.

The basic Bass model is formulated as:
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f(t)

1− F (t)
= p+ qF (t) (6)

In which f(t) is the change in the proportion of adopters, F (t) is the proportion of

adopters, p is the rate of innovation (random adoption) and q is the rate of imitation.

It should be noted that the Bass model does not mention a structure of interactions,

and hence this model ignores the impact of the network structure. It effectively assumes

that actors have full information on the state (changes) of actors in the system, which

can be translated into assuming a completely connected network, in which each actor is

connected to each other actor.

The generic RTR-model

Equations 1, 2 and 3 (in the main manuscript) describe the RTR-model in its most

generic form. Note that this model is far more complex than traditional models and as

such allows for capturing mechanisms of propagation, that include threshold effects,

heterogeneous actors, temporal effects and complex interactions among sub-processes.

In comparing the RTR model with traditional models which assume far less complex

mechanisms, such model complexity is often unnecessary, and for that reason the

general RTR model can be tuned down to describe simpler mechanism. In the following

sections we will do so while relating the RTR model to traditional models.

The binary state RTR-model

By making additional assumptions the complexity of the generic RTR-model can

significantly be reduced. The generic RTR-model describes the state of vertex as a

continuous variable while many studies have assumed a propagation processes in which

the state of a vertex can be described by a binary variable in which actors can have one

of two states (si,t ∈ {0, 1}). For example when considering the spread of disease in

which actors are either sick or not, an actor adopts an innovation or certain behavior or

it does not. A binary state version of the RTR-model can be easily obtained by

adjusting the reception sub-process and incorporating the notion that any change in

state will be of size 1, and that once actors are in state 1 their state cannot further

increase their state. The radiation and reception functions in binary state model can
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consequently be rewritten. For Radiation we get:

t∑
t′=t−T+1

∑
(Ai,t′ × P out

i,t′ × (τrad)(t−t
′)+1) =


1 if ∆si,t ≥ u

0 if ∆si,t < u

(7)

In which u once again is the radiation threshold.

Similarly the reception sub-process can be formulated as:

∆si,t =



1 if sj,t = 0 and
t∑

t′=t−Trec+1

∑
(P in

j,t′ ×Ψj,t′ × (τrec)
(t−t′)+1) ≥ q

0 if sj,t = 0 and
t∑

t′=t−Trec+1

∑
(P in

j,t′ ×Ψj,t′ × (τrec)
(t−t′)+1) < q

0 if sj,t = 1

(8)

As the transmission function does not take into account the state of the vertices it will

remain as described in the generic RTR-model.

Clearly, studying scenarios in which the only potential change in state does not pass

the radiation threshold (∆si,t = 1 < u) is trivial as they will never result in propagation.

However, to make sure the model mutually exclusive and collectively exhaustive this

option is not to be excluded from the model description.

The stochastic binary state RTR-model

Taking a closer look at the propagation literature indicates that all commonly adopted

models of propagation consider the propagation process to be stochastic rather than

deterministic, as has been done so far when describing the RTR-model. The SIS/SIR

models, commonly studied in epidemiology and underlying a large part of the

propagation literature, considers a stochastic process and binary states. While the

binary state RTR-model previously introduced is deterministic, this version of the model

can easily be converted into a stochastic version very similar to the SIS/SIR models.

The binary nature of the state of the vertices makes it trivial to consider the size of

a change in state or the size of the signal. What matters is a whether there is a signal

or not. From this idea, the step towards considering the probability that such a signal is

present is relatively small. Such a switch would effectively change the emphasis of the
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model from size of the signal (read deterministic) towards the probability that a signal

occurs (read stochastic).

In a stochastic version of the RTR-model the radiation likelihood describes the

probability that a change in state (which can only be of size 1) will be larger than the

radiation threshold, and thus yields any signal towards the outgoing edge(s). This

probability is only influenced by a function of the radiation properties

(A∗i,t = f(Ai,t) = (α∗i,e,t)|e ∈ Eout
i,t = f(Ai,t)) of the actor sending the signal(i) and the

memory in the system. Therefore it can be formulated as:

pouti,e,t ∼ Bern(p) in which p = 1−
t∏

t′=t−Trad+1

(1− (∆si,t′ × α∗i,e,t′ × (τrad)(t−t
′)+1)

(9)

When the propagation process is assumed to be stochastic the transmission sub-process

describes the chance that a radiated signal is transmitted over an edge. This chance

depends on the presence of an incoming signal, a function of the edge specific

characteristic (φ∗e,t = g(φe,t)) and the memory in the transmission. It can therefore be

formulated as:

pine,j,t ∼ Bern(p) in which p = 1−
t∏

(t′=t−Ttra+1)

(1− (φ∗e,t′ × pouti,e,t′ × (τtra)(t−t
′)+1))

(10)

The reception sub-process in a stochastic propagation scenario refers to the chance that

the sum of the incoming signals aggregates into a signal that in fact surpasses the

reception threshold. It will consequently can result in a state change of the receiving

actor. This clearly depends on the state of the receiving actor (as it need to be able to

change state) and a function of the reception parameters

(Ψ∗j,t = h(Ψj,t′) = (η∗e,j,t)|e ∈ Ein
j,t)) and the memory in the reception sub-process.

Rewriting the binary reception formulation (equation 7) into a stochastic version yields:

∆sj,t =


∼ Bern(p) if sj,t = 0

0 if sj,t = 1

(11)
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In which p = 1−
t∏

t′=t−Trec+1

∏
(1− (P in

j,t′ ×Ψ∗j,t′ × (τrec)
(t−t′)+1)).

The SIS/SIR models can be denoted as a special case of this general stochastic form

with two addition assumptions. First, it assumes no memory in the system. Second, it

assumes that radiation is caused by the state itself rather than the change of this state

(once an actor is sick it has a chance to radiate). Capturing SIR/SIR models by

implementing these two assumptions allow us to reduce equation 9 to:

pouti,e,t ∼ Bern(p) in which p = si,t × α∗i,e,t =⇒ (12)

pouti,e,t =


∼ Bern(α∗i,e,t) if si,t = 1

0 if si,t = 0

(13)

Combining this with the notion that in stochastic processes the incoming signals are of

size 1 or 0 (pouti,e,t ∈ {1, 0}) and that the latter case is a trivial as there is nothing to

propagate allows for rewriting transmission in these settings as:

pine,j,t ∼ Bern(φ∗e,t) if pouti,e,t = 1 (14)

And using the same logic (pine,j,t ∈ {1, 0}) the reception sub-process for the SIS/SIR

models can be rewritten as:

∆sj,t =


∼ Bern(1−

∏
(1−Ψ∗j,t)) if si,t = 0

0 if si,t = 1

(15)

Generalizability of the RTR-model

The previous paragraph shows that the RTR-model can be easily adjusted to mimic

SIS/SIR like propagation models. However, as previously indicated, there is a variety of

models for studying propagation: The SIS type of models (discussed above), bass [2]

type of models, threshold type of models [3, 4] and cascade models [5]. Each of model

types can be considered as special case of the binary RTR-model.
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Bass-like RTR-model

Bass-like models [2] consider propagation to be a function of the previous adoption and

a default adoption likelihood on a system level. It argues that a focal actors probability

to adopt (read reception) is a function of the proportion of previous adopters. This can

be interpreted as a special case of the reception process in which the reception of actors

is a function of the signals coming from all actors in the network. In order to be able to

receive signals from all actors this effectively assumes a fully connected network graph

underlying the propagation process.

The Bass model does not differentiate between the three sub-processes and hence does

not make specific claims about radiation or transmission. From the way the model is

described it can be substantiated that this type of model assumes that the state of all

actors in the system is known. Effectively, this implies that any actor in the adopted

(infected) state radiates a signal by default and that this signal is transmitted by default

as well. Consequently all other actors are ‘informed’ about this state. In terms of the

three sub-processes these Bass-like models hence assume radiation to be a function of

the state, and a 100% chance to radiate. It can hence be formalized in a similar form as

the SIS model:

pouti,e,t ∼ Bern(p) in which p = si,t × α∗i,t =⇒ (16)

pouti,e,t =


∼ Bern(α∗i,e,t) if si,t = 1

0 if si,t = 0

(17)

In which it is assumed that α∗i,e,t = 1.

Similarly the transmission process is the result of the signals radiated and is assumed

to always be successful, consequently any signal coming in will result in a signal going

out. Transmission can hence be formulated the same way as in the SIS model:

pine,j,t ∼ Bern(φ∗e,t) if pouti,e,t = 1 (18)

In which it is assumed that φ∗e,t = 1.

The reception sub process is only in part similar to the SIS scenario. The first part

of the bass model considers imitation, the influence of previous adopters. It is a
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function of the signals incoming, which given the completely connected graph

underlying the propagation includes signals from all other actors in the system. This

would imply a formulation can be used similar to the SIS model. However, as previously

discussed bass-like models also capture innovation, which assumes there is also the

default probability of adoption without these incoming signals.

There are two ways in which this secondary effect can be added. First, one could

add a extra independent part to the reception function (this is what Bass did in his

original model). This would however add an addition parameter to the model, but there

is a more elegant solution. One could also introduce an additional control vertex in the

graph. This vertex, like all other vertices, would be connected to all other vertices in

the system. By making the reception likelihood for all edges coming from this control

vertex independent of the other signals an additional ‘random’ adoption force can be

introduced. The benefit of this approach is that the logic and formulations applied in

the SIS setting apply to the Bass model as well, and hence reception in bass-like models

can be formulated as:

∆si,t =


∼ Bern(1−

∏
1−Ψ∗i,t) if si,t = 0

0 if si,t = 1

(19)

By adjusting the ηi,e,t ∈ Ψ∗i,t for the edges coming from the control vertex the influence

of the default adoption effect can be varied. One could even vary this across alters,

hence such formulation directly increases the flexibility of the traditional bass-like

models.

Threshold RTR-model of propagation

The threshold type of models (e.g. [4]) assume a somewhat different type of process

dynamics. These models assume that the adoption occurs after a certain proportion of

the connected alters have previously adopted. Literature on threshold models commonly

limits itself to describing an adoption (read reception) process, implicitly assuming

(similar to the previously introduced Bass models) that radiation and transmission will

take place by default. Therefore the radiation and transmission functions can be

assumed to be the same as in the previously considered Bass model (equation 16 and
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18).

Unlike the previously discussed bass (and SIS) models threshold models are

deterministic in nature. While this has no implication for the formulation of the

radiation and transmission sub-processes (as they already are assumed to always occur)

it does change the way the reception is formulated. This process should be deterministic

rather than stochastic. Note that the general model of propagation was in fact

deterministic, and hence the binary state version of this model (equation 8) describes

such a process already. As the formulation of the general model already included the

notion of limited susceptibility to signals and hence included a threshold the threshold

model is already captured by the binary state version of the RTR-model. The only

additional assumption being made is that the reception threshold of each actor (qi) is a

function of its number of neighbors (Ein
i,t)

Cascade RTR-model of propagation

The last general type of propagation model, the cascade models [5], is different from the

previously discussed models. It can be considered as a special case of the stochastic

binary RTR-model. In cascade models an external perturbation is considered which

consequently can result in a cascading dynamics. Like in the binary RTR-model this

perturbation changes the state of one (or more) vertices to ’active’ (or infected) and

consequently this change in activity will cascade to all of its alters (read radiate) with

certain probability of success. The logic in this process is similar to the one described in

the stochastic binary radiation process (equation 9). Key assumption in the cascading

models is however that a vertex will only try to activate its alters once, effectively

incorporating the constraint of no memory in the radiation process. Therefore the

equation 9 can be simplified, and the radiation for a cascade model can be described as:

pouti,e,t ∼ Bern(p) in which p = ∆si,t × α∗i,e,t (20)

As the cascade models assume a setting without recovery (∆si,t ∈ {0, 1}) a constraint

should be added to the equation, resulting in:
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pouti,e,t =


pouti,e,t ∼ Bern(α∗i,e,t) if ∆si,t = 1

0 if ∆si,t = 0

(21)

The other sub-processes are not completely neglected in the cascade models. While

there is no specific mention of transmission, it is assumed that each signal radiated will

lead to a change in state of the alter. Consequently this type of model assumes that

both transmission and reception will always occur. Transmission can therefore be

formulated as:

pouti,e,t = pine,j,t with e = (i, j) (22)

While in cascades models the assumption is that radiation will result in propagation,

neglecting the reception sub-process, these models do explicitly mention what happens

when multiple changes in state would occur in a alters neighborhood (implicitly

suggesting there is some reception sub-process). In such cases cascading models assume

that each signal is processed sequentially (in a random order). As such it can be

formalized as:

∆sj,t = Bern(1−
∏

e∈Ein
i ,t

(1− (Bern(ηe,i,t × pine,i,t)))) (23)

While the order of calculations is different compared to the RTR version —each

incoming signal separately has a success chance, and then the product of success per

signal is taken, versus, combining the signals (taking the product) and then consider the

success chance of the combination— the fact that the general RTR-model assumes no

distortion during aggregation (simply uses the product) means these functions coincide.
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