
As previously indicated both the network structure and seed chosen can have strong

effects on the propagation dynamics. As we aim to show the impact of the mechanism of

propagation both of these effects have been controlled for during in the results presented

in the main manuscript. However to make sure our results generalize this section will

vary these dimensions, as discussed in our experimental design, and discuss our finding.

Network structures

In the main text the results of the synthetically generated scale-free network have been

presented. However, as discussed in our experimental design, a similar set of

experiments has also been conducted on two additional real world networks. The first, a

Facebook Ego-network [1], which covers a giant component of friendship ties, based on

the social circles on Facebook platform, with n = 4.039 and e = 88.234. The second, the

Autonomous systems AS-733 network [2], which describes the communication among a

set of autonomous systems, and is based on BGP (Border Gateway Protocol) logs, with

6.474 nodes and 12.572 edges. The results of these simulations are presented in Table A

in which network 1 is the the original synthetically generated network, network 2 is the

Facebook network, and network 3 is the AS-733 network. This table provides various

insights into the impact of network structure. For example by considering the

no-intervention scenarios one can observe that the level of prevalence at equilibrium

varies across network structures, clearly supporting the role of network structure on

propagation dynamics found in a wide range of previous studies. Similarly, in line with

previous work in the propagation domain, by comparing any of the interventions across

networks it becomes evident that the effectiveness of interventions (both relative and

absolute) strongly varies and is conditional upon the network structure.

However, most importantly for the value of the RTR model: when the impact of the

decomposition (the relative difference from the baseline scenario) is compared across

networks, one finds that the effect of decomposing the process into the

Radiation-Transmission-Reception sub-processes on network interventions is robust

across networks. This indicates that regardless of the network structure, the

decomposition of the mechanism plays a consistent role in determining intervention

effectiveness.
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A. This table provides an overview of all intervention effects, for each scenario and each network.

Scenario Intervention Unperturbed prevalence Reduction in prevalence due Difference in Intervention effect

to the intervention (the relative effect) compared to the baseline scenario 4

Network 1 Network 2 Network 3 Network 1 Network 2 Network 3 Network 1 Network 2 Network 3

1 None 0.697 0.793 0.055 - - - - - -

2 None 0.697 0.793 0.055 - - - - - -

3 None 0.697 0.793 0.055 - - - - - -

4 None 0.697 0.793 0.055 - - - - - -

1 Rad 0.697 0.793 0.055 0.156
(22.4%)

0.039
(5.0%)

0.017
(30.5%)

176.5% 189.6% 165.0%

2 Rad 0.697 0.793 0.055 0.084
(12.0%)

0.020
(2.5%)

0.010
(17.6%)

94.6% 95.2% 94.9%

3 Rad 0.697 0.793 0.055 0.057
(8.2%)

0.013
(1.6%)

0.007
(12.2%)

64.6% 61.7% 66.7%

4 Rad 0.697 0.793 0.055 0.088
(12.7%)

0.021
(2.6%)

0.010
(18.5%)

100.0% 100.0% 100.0%

1 Rec 0.697 0.793 0.055 0.057
(8.1%)

0.013
(1.6%)

0.007
(12.2%)

64.1% 62.4% 66.2%

2 Rec 0.697 0.793 0.055 0.156
(22.4%)

0.039
(5.0%)

0.017
(30.5%)

175.9% 190.0% 165.2%

3 Rec 0.697 0.793 0.055 0.084
(12.0%)

0.019
(2.5%)

0.010
(17.6%)

94.6% 93.7% 95.1%

4 Rec 0.697 0.793 0.055 0.089
(12.7%)

0.021
(2.6%)

0.010
(18.5%)

100.0% 100.0% 100.0%

1 Tra 0.697 0.793 0.055 0.084
(12.0%)

0.020
(2.5%)

0.010
(17.6%)

94.5% 95.1% 95.1%

2 Tra 0.697 0.793 0.055 0.057
(8.2%)

0.013
(1.6%)

0.007
(12.2%)

64.3% 63.1% 66.4%

3 Tra 0.697 0.793 0.055 0.156
(22.4%)

0.039
(5.0%)

0.017
(30.5%)

176.1% 190.5% 165.7%

4 Tra 0.697 0.793 0.055 0.088
(12.7%)

0.021
(2.6%)

0.010
(18.5%)

100.0% 100.0% 100.0%
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Seeding Strategy

It is known that the chosen seed can have a substantial impact on propagating dynamics

of processes. To control for the potential impact of the chose seed two seeding strategies

are explored. Random seeding has been used as the default strategy, in this strategy a

single seed is randomly selected for each simulation. The second strategy explored is

labeled the betweenness strategy, in this strategy seeding is ’optimized’ by selecting the

actor with the highest betweenness centrality as the seed in each simulation. It is often

considered as one of the more basic and intuitive targeted seeding strategies. A third

strategy called LeaderRank [3], in which the K-coreness of the network is leveraged, and

the actor with the highest LeaderRank [3] is selected as the seed for each simulation,

has also been explored. However, for our experimental setting, which uses one single

seed to initialize the propagation process, it was found that the LeaderRank seeding

strategy resulted in exactly the same optimal seed as betweenness. This is not to say

that LeaderRank and betweennees will always results in the same seeding strategy, most

likely the strategies will diverge once a seeding strategy based on multiple seeds is taken

into account. Yet for our experimental setup both strategies where found them to give

identical results. As most nuanced seeding strategies aim to at least partially leverage

the betweenness, in cases with single seed such strategies are likely to similarly rank the

highest betweenness node as the top influencer. Consequently, such strategies yield the

same results as the betweenness strategy, and hence we restrict our comparison to two

strategies, Fig. B presents this comparison. While it describes one specific scenario and

intervention (Scenario 1 under a radiation intervention) the plot is indicative of the

results overall (Table C), as the plots for the other sub-processes and interventions show

an identical picture. These results indicate that the chosen seeding strategy impacts the

rate at which propagation occurs only in the early stages, the dynamics equilibrium in

prevalence remains unchanged. As in our experimental design interventions are

implemented at a stage where the dynamic equilibrium has been reached, we find that

the seeding strategy does not affect the intervention outcomes.
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C. This table provides an overview of the differences between the seeding
strategies for all scenarios and interventions in network 1.

Network Scenario Intervention Seedtype Unperturbed
prevalence

Ending
Prevalence

Intervention
Effect

1 1 None Random 0.697 0.697 0.000

1 1 None Betweenness 0.697 0.697 0.000

1 2 None Random 0.697 0.697 0.000

1 2 None Betweenness 0.697 0.697 0.000

1 3 None Random 0.697 0.697 0.000

1 3 None Betweenness 0.697 0.697 0.000

1 4 None Random 0.697 0.697 0.000

1 4 None Betweenness 0.697 0.697 0.000

1 1 Rad Random 0.697 0.541 0.156

1 1 Rad Betweenness 0.697 0.541 0.156

1 2 Rad Random 0.697 0.613 0.084

1 2 Rad Betweenness 0.697 0.613 0.083

1 3 Rad Random 0.697 0.640 0.057

1 3 Rad Betweenness 0.697 0.640 0.057

1 4 Rad Random 0.697 0.608 0.088

1 4 Rad Betweenness 0.697 0.608 0.088

1 1 Rec Random 0.697 0.640 0.057

1 1 Rec Betweenness 0.697 0.640 0.057

1 2 Rec Random 0.697 0.541 0.156

1 2 Rec Betweenness 0.697 0.541 0.156

1 3 Rec Random 0.697 0.613 0.084

1 3 Rec Betweenness 0.697 0.613 0.084

1 4 Rec Random 0.697 0.608 0.089

1 4 Rec Betweenness 0.697 0.608 0.088

1 1 Tra Random 0.697 0.613 0.084

1 1 Tra Betweenness 0.697 0.613 0.084

1 2 Tra Random 0.697 0.640 0.057

1 2 Tra Betweenness 0.697 0.640 0.057

1 3 Tra Random 0.697 0.541 0.156

1 3 Tra Betweenness 0.697 0.541 0.156

1 4 Tra Random 0.697 0.608 0.089

1 4 Tra Betweenness 0.697 0.608 0.088
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Fig B. This figure shows the mean prevalence (y-axis) in scenario 1 (α =
0.4, φ = 0.6 and η = 0.8) in network 1 with an intervention in Radiation
under two seeding strategies. The green solid line shows the prevalence for
the random seeding strategy, while the dashed red line describes the
betweenness seeding strategy.
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3. Lü L, Zhang Y, Yeung C, Zhou T. Leaders in Social Networks, the Delicious

Case. Plos ONE; 2011,6(6). doi10.1371/journal.pone.0021202.

PLOS


