SUPPLEMENTARY MATERIAL

NF1 Mutations are Recurrent in Adult Acute Myeloid Leukemia and Confer Poor Outcome

Ann-Kathrin Eisfeld,¹ Jessica Kohlschmidt,^{1,2} Krzysztof Mrózek,¹ Alice Mims,³

Christopher J. Walker,¹ James S. Blachly,³ Deedra Nicolet,^{1,2} Shelley Orwick,³

Sophia E. Maharry,¹ Andrew J. Carroll,⁴ Bayard L. Powell,⁵ Jonathan E. Kolitz,⁶

Eunice S. Wang,⁷ Richard M. Stone,⁸ Albert de la Chapelle,¹ John C. Byrd,³

and Clara D. Bloomfield¹

¹The Ohio State University Comprehensive Cancer Center, Columbus, OH;

²Alliance for Clinical Trials in Oncology Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH;

³Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH;

⁴ Department of Genetics, University of Alabama at Birmingham, Birmingham, AL;

⁵ Department of Internal Medicine, The Comprehensive Cancer Center of Wake Forest University, Wake Forest University, Winston-Salem, NC;

⁶Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY;

⁷Roswell Park Cancer Institute, Buffalo, NY;

⁸Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA

Running title: NF1 mutations in AML

PARTICIPATING INSTITUTIONS

The following Cancer and Leukemia Group B (CALGB)/Alliance for Clinical Trials in Oncology (Alliance) institutions participated in this study and contributed at least five patients. For each of these institutions, the current or last principal investigator and the cytogeneticists who analyzed the cases are listed as follows:

The Ohio State University Medical Center, Columbus, OH: Clara D. Bloomfield, Karl S. Theil, Diane Minka and Nyla A. Heerema; Wake Forest University School of Medicine, Winston-Salem, NC: Heidi Klepin, P. Nagesh Rao, Wendy L. Flejter and Mark Pettenati; North Shore University Hospital, Manhasset, NY: Daniel R. Budman, Prasad R. K. Koduru, Ayala Aviram-Goldring and Chandrika Sreekantaiah; Roswell Park Cancer Institute, Buffalo, NY: Ellis G. Levine and AnneMarie W. Block; Dana Farber Cancer Institute, Boston, MA: Harold J. Burstein, Ramana V. Tantravahi, Leonard L. Atkins, Cynthia C. Morton and Paola Dal Cin; University of Iowa Hospitals, Iowa City, IA: Daniel A. Vaena and Shivanand R. Patil; Washington University School of Medicine, St. Louis, MO: Nancy L. Bartlett, Michael S. Watson, Eric C. Crawford, Jaime Garcia-Heras, Peining Li and Shashikant Kulkarni; University of Chicago Medical Center, Chicago, IL: Hedy L. Kindler, Diane Roulston, Katrin M. Carlson, Yanming Zhang and Michelle M. LeBeau; Duke University Medical Center, Durham, NC: Jeffrey Crawford, Sandra H. Bigner, Mazin B. Qumsiyeh, John Eyre and Barbara K. Goodman; University of North Carolina, Chapel Hill, NC: Thomas C. Shea and Kathleen W. Rao; University of Maryland Cancer Center, Baltimore, MD: Martin J. Edelman, Joseph R. Testa, Maimon M. Cohen, Judith Stamberg and Yi Ning; Ft. Wayne Medical Oncology/Hematology, Ft. Wayne, IN: Sreenivasa Nattam and Patricia I. Bader; Dartmouth Medical School, Lebanon, NH: Konstantin Dragnev, Doris H. Wurster-Hill and Thuluvancheri K. Mohandas; Christiana Care Health Services, Inc., Newark, DE: Gregory Masters, Digamber S. Borgaonkar, Jeanne M. Meck, Kathleen Richkind, Eduardo Cantu and Peter Papenhausen; Rhode Island Hospital, Providence, RI: Howard Safran, Teresita Padre-Mendoza, Jennifer A. Ahearn, Hon Fong L. Mark, Shelly L. Kerman and Aurelia Meloni-Ehrig; Weill Medical College of Cornell University, New York, NY: Scott Tagawa, Ram S. Verma, Prasad R.K. Koduru, Andrew J. Carroll and Susan Mathew; Western Pennsylvania Hospital, Pittsburgh, PA: John Lister and Gerard R. Diggans; SUNY Upstate Medical University, Syracuse, NY: Stephen L. Graziano, Larry Gordon and Constance K. Stein; University of Vermont Cancer Center, Burlington, VT: Claire Verschraegen, Elizabeth F. Allen and Mary Tang; Massachusetts General Hospital, Boston, MA: David Ryan, Justin Gainor, Leonard L. Atkins, Cynthia C. Morton and Paola Dal Cin; Moores University of California San Diego Cancer Center, San Diego, CA: Barbara A. Parker, Renée Bernstein and Marie L. Dell'Aquila; Walter Reed National Military Medical Center, Bethesda, MD: Mary Kwok, Rawatmal B. Surana, Digamber S. Borgaonkar, Karl S. Theil and Kathleen E. Richkind; Eastern Maine Medical Center, Bangor, ME: Thomas H. Openshaw, Laurent J. Beauregard and Sarah South; Long Island Jewish Medical Center, Lake Success, NY: Daniel R. Budman, Prasad R. K. Koduru, Ayala Aviram-Goldring and Chandrika Sreekantaiah; University of Massachusetts Medical Center, Worcester, MA: William V. Walsh, Philip L. Townes, Vikram Jaswaney, Michael J. Mitchell and Patricia Miron; Mount Sinai School of Medicine, New York, NY: Lewis R. Silverman and Vesna Najfeld; University of Alabama at Birmingham, Birmingham, AL: Robert Diasio and Andrew J. Carroll; University of Tennessee Cancer Center, Memphis, TN: Harvey B. Niell and Sugandhi A. Tharapel; University of California at San Francisco, San Francisco, CA: Charalambos Andreadis and Kathleen E. Richkind; University of Minnesota, Minneapolis, MN: Bruce A. Peterson, Diane C. Arthur and Betsy A. Hirsch; University of Nebraska Medical Center, Omaha, NE: Apar Ganti and Warren G. Sanger; University of Missouri/Ellis Fischel Cancer Center, Columbia, MO: Clint Kingsley, Jeffrey R.

Sawyer, Tim Hui-Ming Huang and Linda M. Pasztor; University of Puerto Rico, San Juan, Puerto Rico: Eileen I. Pacheco, Leonard L. Atkins, Cynthia C. Morton and Paola Dal Cin; University of Illinois, Chicago, IL: Arkadiusz Z. Dudek, Maureen M. McCorquodale, Kathleen E. Richkind and Valerie Lindgren.

TREATMENT PROTOCOLS

Patients in this study received intensive cytarabine/daunorubicin-based therapy on one of the following Cancer and Leukemia Group B (CALGB) frontline treatment protocols: 19808 (n=224; ref. 1), 10503 (n=190; ref. 2), 9720 (n=126; ref. 3), 9621 (n=114; ref. 4), 10201 (n=107; ref. 5), 8525 (n=58; ref. 6), 9222 (n=56; ref. 7), 10603 (n=43; ref. 8), 10502 (n=15; ref. 9), 8923 (n=12; ref. 10), 9022 (n=10; ref. 11), 8821 (n=9; ref. 12).

Patients enrolled on CALGB 19808 were randomly assigned to receive induction chemotherapy with cytarabine, daunorubicin, and etoposide with or without PSC-833 (valspodar), a multidrug resistance protein inhibitor (1). On achievement of complete remission (CR), patients were assigned to intensification with high-dose cytarabine and etoposide for stem-cell mobilization followed by myeloablative treatment with busulfan and etoposide supported by autologous peripheral blood stem-cell transplantation (HSCT). Patients enrolled on CALGB 10503 were assigned to receive induction chemotherapy consisting of cytarabine, daunorubicin, and etoposide. Upon achievement of CR, patients received high-dose cytarabine and etoposide for stem-cell mobilization followed by myeloablative treatment with busulfan and etoposide supported by autologous peripheral HSCT. Patients not eligible for HSCT received high-dose cytarabine (HiDAC). After intensification, patients received the DNA methyltransferase inhibitor decitabine for maintenance (2). Patients on CALGB 9720 received induction chemotherapy consisting of cytarabine in combination with or without the multidrug resistance protein modulator PSC-833 (3). Patients enrolled on CALGB 9621 were treated similarly to those on CALGB 19808, as previously reported (4). Patients on CALGB 10201 received induction chemotherapy consisting of cytarabine and daunorubicin, with or without the BCL2 antisense oblimersen sodium. The consolidation regimen included two cycles of cytarabine $(2 \text{ g/m}^2/\text{d})$ with or without oblimersen (5). Patients on CALGB 8525 were treated with induction chemotherapy consisting of cytarabine in combination with daunorubicin and were randomly assigned to consolidation with different doses of cytarabine followed by maintenance treatment (6). Patients on protocol CALGB 9222 received induction chemotherapy consisting of cytarabine in combination with daunorubicin followed by consolidation with one cycle of HiDAC. Different doses of mitoxantrone were explored, and the consolidation treatment was randomized to three cycles of monotherapy with HiDAC or consolidation with one cycle of HiDAC, a cycle of cyclophosphamide and etoposide, and one cycle of mitoxantrone and diaziquone (7). In CALGB 10603, cytarabine and daunorubicin followed by consolidation with high-dose cytarabine was applied with or without PKC-412 (8). For the patients on CALGB 10502, bortezomib was added to both induction consisting of cytarabine and daunorubicin and to consolidation with two cycles of intermediate-dose cytarabine (9). The patients enrolled on CALGB 8923 was treated with induction chemotherapy consisting of cytarabine in combination with daunorubicin and was randomly assigned to receive postremission therapy with cytarabine alone or in combination with mitoxantrone (10). Patients enrolled onto CALGB 9022 received induction chemotherapy consisting of cytarabine in combination with daunorubicin followed by consolidation with one cycle of HiDAC, a cycle of cyclophosphamide and etoposide, and one cycle of mitoxantrone and diaziquone (11). After induction consisting of cytarabine in combination with daunorubicin, the patients enrolled on CALGB 8821 received intensive post remission therapy with cytoxan/etoposide and diazaquone/mitoxantrone (12).

DEFINITION OF CLINICAL END POINTS

Complete remission (CR) required an absolute neutrophil count $\geq 1.5 \ge 10^{9}$ /l, platelet count $\geq 100 \ge 10^{9}$ /l, no leukemic blasts in the blood, bone marrow (BM) cellularity >20% with maturation of all cell lines, no Auer rods, <5% BM blast cells, and no evidence of extramedullary leukemia, all of which had persisted for at least one month. Relapse was defined by $\geq 5\%$ BM blasts, circulating leukemic blasts, or the development of extramedullary leukemia. Disease-free survival was measured from the date of CR until the date of relapse or death; patients alive and relapse-free at last follow-up were censored. Overall survival was measured from the date on study until the date of death, and patients alive at last follow-up were censored (13).

MUTATIONAL PROFILING

The mutational status of 80 protein coding genes (*AKT1*, *ARAF*, *ASXL1*, *ATM*, *AXL*, *BCL2*, *BCOR*, *BCORL1*, *BRAF*, *BRD4*, *BRINP3*, *BTK*, *CBL*, *CCND1*, *CCND2*, *CSNK1A1*, *CTNNB1*, *DNMT3A*, *ETV6*, *EZH2*, *FBXW7*, *FLT3* [for *FLT3* tyrosine kinase domain mutations (*FLT3*-TKD) and *FLT3* internal tandem duplications (*FLT3*-TTD)], *GATA1*, *GATA2*, *GSK3B*, *HIST1H1E*, *HNRNPK*, *IDH1*, *IDH2*, *IKZF1*, *IKZF3*, *ILR7*, *JAK1*, *JAK2*, *JAK3*, *KIT*, *KLHL6*, *KMT2A*, *KRAS*, *MAPK1*, *MAPK3*, *MED12*, *MYD88*, *NF1*, *NOTCH1*, *NPM1*, *NRAS*, *PHF6*, *PIK3CD*, *PIK3CG*, *PLCG2*, *PLEKHG5*, *PRKCB*, *PRKD3*, *PTEN*, *PTPN11*, *RAD21*, *RAF1*, *RUNX1*, *SAMHD1*, *SETBP1*, *SF1*, *SF3A1*, *SF3B1*, *SMARCA2*, *SMC1A*, *SMC3*, *SRSF2*, *STAG2*, *SYK*, *TET2*, *TGM7*, *TP53*, *TYK2*, *U2AF1*, *U2AF2*, *WT1*, *XPO1*, *ZMYM3*, *ZRSR2*) was determined by targeted amplicon sequencing using the MiSeq platform (Illumina, San Diego, CA). DNA library preparations were performed according to the manufacturer's instructions. Briefly, samples were pooled and run on the MiSeq machine using the Illumina MiSeq Reagent Kit v3. Sequenced reads were aligned to the hg19 genome build using the Illumina Isis Banded Smith-Waterman aligner. Single nucleotide variant and indel calling were performed using MuTect and VarScan, respectively (14,15). The MuCor algorithm was used as the baseline for integrative mutation assessment (16). We only considered non-synonymous variants not listed in either the 1000 Genome database or dbSNP142-common variants. All called variants underwent visual inspection of the aligned reads using the Integrative Genomics Viewer (Broad Institute; ref. 17). All variants that occurred with VAFs of <0.10 were considered wild-type; all variants that were sequenced to a depth of <15 reads were excluded from the analysis. In addition, variants were excluded when they occurred only in 1 read direction if sequenced in both directions, if the region contained many variants with low QC scores, or if they occurred in all analyzed samples including run controls. In addition, samples with high background noise were entirely excluded from analysis. Samples were considered non-evaluable for a specific gene if $\geq 85\%$ of the amplicons covering the target regions within the coding sequence of the gene were sequenced to a depth of <15 reads. Testing for the presence or absence of FLT3 internal tandem duplication (FLT3-ITD) was performed using the Pindel algorithm on the targeted sequencing data. Furthermore, testing for CEBPA mutations was performed with Sanger sequencing methods (18), thus adding up to a total of 81 genes analyzed in our study. In accordance with the revision of the World Health Organization classification, only patients with biallelic CEBPA mutations were considered as CEBPA mutated.

SUPPLEMENTARY REFERENCES

- Kolitz JE, George SL, Marcucci G, Vij R, Powell BL, Allen SL, *et al.* P-glycoprotein inhibition using valspodar (PSC-833) does not improve outcomes for patients under age 60 years with newly diagnosed acute myeloid leukemia: Cancer and Leukemia Group B study 19808. *Blood* 2010;**116**:1413-21.
- Blum W, Sanford BL, Klisovic R, DeAngelo DJ, Uy G, Powell BL, *et al.* Maintenance therapy with decitabine in younger adults with acute myeloid leukemia in first remission: A phase 2 Cancer and Leukemia Group B study (CALGB 10503). *Leukemia* 2017;**31**:34-9.
- Baer MR, George SL, Caligiuri MA, Sanford BL, Bothun SM, Mrózek K, *et al.* Low-dose interleukin-2 immunotherapy does not improve outcome of patients age 60 years and older with acute myeloid leukemia in first complete remission: Cancer and Leukemia Group B study 9720. *J Clin Oncol* 2008;26:4934-9.
- Kolitz JE, George SL, Dodge RK, Hurd DD, Powell BL, Allen SL, *et al.* Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of Cancer and Leukemia Group B study 9621. *J Clin Oncol* 2004;22:4290-301.
- 5. Marcucci G, Moser B, Blum W, Stock W, Wetzler M, Koltiz JE, *et al.* A phase III randomized trial of intensive induction and consolidation chemotherapy ± oblimersen, a pro-apoptotic Bcl-2 antisense oligonucleotide in untreated acute myeloid leukemia patients >60 years old. *J Clin Oncol* 2007;25:360s (abstract 7012).

- 6. Mayer RJ, Davis RB, Schiffer CA, Berg DT, Powell BL, Schulman P, *et al.* Intensive postremission chemotherapy in adults with acute myeloid leukemia. *N Engl J Med* 1994**;331**:896-903.
- 7. Moore JO, George SL, Dodge RK, Amrein PC, Powell BL, Kolitz JE, *et al.* Sequential multiagent chemotherapy is not superior to high-dose cytarabine alone as postremission intensification therapy for acute myeloid leukemia in adults under 60 years of age: Cancer and Leukemia Group B study 9222. *Blood* 2005;**105**:3420-7.
- 8. Stone RM, Fischer T, Paquette R, Schiller G, Schiffer CA, Ehninger G, *et al.* Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. *Leukemia* 2012;**26**:2061-8.
- 9. Attar EC, Johnson JL, Amrein PC, Lozanski G, Wadleigh M, DeAngelo DJ, et al. Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. J Clin Oncol 2013;**31**:923-9.
- 10. Stone RM, Berg DT, George SL, Dodge RK, Paciucci PA, Schulman P, *et al.* Granulocytemacrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. *N Engl J Med* 1995;**332**:1671-7.
- 11. Moore JO, Dodge RK, Amrein PC, Kolitz J, Lee EJ, Powell B, *et al.* Granulocyte-colony stimulating factor (filgrastim) accelerates granulocyte recovery after intensive postremission chemotherapy for acute myeloid leukemia with aziridinyl benzoquinone and mitoxantrone: Cancer and Leukemia Group B study 9022. *Blood* 1997;**89**:780-8.

- Schiffer CA, Davis RB, Schulman P, Cooper B, Coyle T, Lee E, *et al.* Intensive post remission therapy of acute myeloid leukemia (AML) with cytoxan/etoposide (CY/VP16) and diazaquone/mitoxantrone (AZQ/MITO). *Blood* 1991;**78**(suppl):460 (abstract 1829).
- Cheson BD, Cassileth PA, Head DR, Schiffer CA, Bennett JM, Bloomfield CD, et al. Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol 1990;8:813-9.
- Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, *et al.* Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. *Nat Biotechnol* 2013;**31**:213-9.
- DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, *et al.* A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat Genet* 2011;43:491-8.
- 16. Kroll KW, Eisfeld A-K, Lozanski A, Bloomfield CD, Byrd JC, Blachly JS. MuCor: mutation aggregation and correlation. *Bioinformatics* 2016;**32**:1557-8.
- Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, *et al.* Integrative genomics viewer. *Nat Biotechnol* 2011;**29**:24-6.
- Marcucci G, Maharry K, Radmacher MD, Mrózek K, Vukosavljevic T, Paschka P, *et al.* Prognostic significance of, and gene and microRNA expression signatures associated with, *CEBPA* mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: A Cancer and Leukemia Group B study. *J Clin Oncol* 2008;26:5078-87.

Supplementary Figure S1. Lollipop plot depicting *NF1* mutations detected in 1,021 AML patients (top part), and previously described germline *NF1* mutations in patients with neurofibromatosis type 1 (bottom part).

Supplementary Figure S2. Sanger sequencing traces of *NF1* Thr676-mutated samples with available DNA, as well as three *NF1* Thr676 wild-type controls. The variant allele fractions (VAF) observed in the corresponding Miseq sequencing are indicated on the right side of each trace.

Supplementary Figure S3. Copy number variations (CNVs) in *NF1*-mutated samples. Shown are the B-allele frequency (BAF) and LogR ratio (LOG RR) plots from SNP-array genotyping. Copy number loss is shown in red and copy neutral loss of heterozygosity (homozygous stretches > 1Mb) is shown in purple.

		Copy-neutral LOH
	Sample no. 17 (VAF = 0.72)	
BAF		
LOG RR	le soger e provins e sougensplan and the provinsion of	e sen nin sen der som en sen sen sen sen sen sen sen sen sen
	Sample no. 5 (VAF = 0.60)	
BAF	n an	n na ser na ser
LOG RR	an a	n a san siya sa an ^k anan kanan sa
	Sample no. 38 (VAF = 0.55)	
BAF	an berar a saaraa saya madadaa waxay ahaa ahaa	a sur a star materia a constructiva da por terra da por servicio da por servicio da por servicio da por servic
LOG RR	an a	n og var som förarte en som
	Sample no. 4 (VAF = 0.53)	
BAF	n and a state and an and a state of the stat	an a
RR RR	en al a provinsi a constructiva e constructiva e problem conta majo a construito pode constructiva e a	n a ser dise tanan separata seria ana tanàn any amin'ny amin'ny amin'ny amin'ny amin'ny amin'ny amin'ny amin'ny
	Sample no. 29 (VAF = 0.51)	
BAF	a hara ta an	and a second free star in the second s
LOG RR	en alle and a second a second description of the second description of the second description of the second des	n sega gipendentektikken da nang tantaken metakking sa madak T
	Sample no. 15 (VAF = 0.50)	
BAF	na - Martin Contra da Antonio de Carlos d La composición de Carlos	a na sa
LOG RR	19. – Malforda I., dala amin' di kanganang dikenaraka dia 19. Julya palampinang sasa 19. – 19.	e se
17	012 012 0111 012 012 012 011 011 011 011	
Base Pos	iten 28.115.649 28.475.660 28.839.460 29.201.400	28.46.328 28.45.246 30.247.466 30.449.686 31.011.666 31.3
Cytogene5 Sequenc	ения на на на пробла на пробл Пробла на пробла на про	ta file food for the characteristics. ■ ■■■■■###############################
		NF1

Supplementary Figure S4. a, Kaplan-Meyer curves depicting disease-free (upper panel) and overall survival (lower panel) of patients <60 years of age with (red) and without NF1 mutations (blue). b, Kaplan-Meyer curves depicting disease-free (upper panel, no *P*-values are provided due to the small sample size in the NF1 mutated group) and overall survival (lower panel) of patients \geq 60 years of age with (red) and without *NF1* mutations (blue).

Sample ID	<i>NF1</i> amino acid change ^{a,b}	Mutation type	VAF	Read depth	Co-mutated genes (VAF)	Karyotype
	L94P	Missense	0.39	57	DNMT3A-	
1	T2204I	Missense	0.45	475	R882 (0.38), EZH2 (0.74),	45,XX,-7[6]/46,XX,-7,+21[11]
	S404Sfs	Frameshift	0.36	33	TET2 (0.42)	
2	N226T	Missense	0.36	100	BRD4 (0.52), FLT3-TKD (0.38), NPM1 (0.31)	46,XX[20]
3	R304*	Nonsense	0.27	624	<i>KRAS</i> (0.15)	46,XY,inv(16)(p13.1q22)[1]/47,idem,+8[19]
4	H389R	Missense	0.53	197	ASXL1 (0.40), NRAS (0.25), SRSF2 (0.46), TET2 (0.43)	47,XX,+8[9]/46,XX[11]
	S465R	Missense	0.22	251	<i>KIT</i> (0.18).	
	D919E	Missense	0.10	739	NPM1 (.43),	
5	T676Tfs	Frameshift	0.18	123	<i>PTPN11</i> (0.25),	46,XY[19] ^c
	I2548M	Missense	0.20	227	SMARCA2	
	A1224V	Missense	0.60	88	(0.20)	

Supplementary Table S1. Characteristics of patients with acute myeloid leukemia harboring NF1 mutations

6	Y489C	Missense	0.31	207	NPM1 (.21), NRAS (0.21), TYK2 (0.43)	46,XX[20]
7	K498Kfs	Frameshift	0.24	286	TET2 (0.39), TP53 (0.55) 44,XX,-5,trp(8)(q24.3q13),del(16)(q22),add(17)(p11), -21[12]/44,idem,add(11)(q23)[9]/46,XX[1]	
8	P504Pfs	Frameshift	0.41	310	RUNX1 (0.35), SETBP1 (0.42), SF3B1 (0.88)	46,XY[20]
9	T676Tfs	Frameshift	0.42	272	RAF1 (0.47), TP53 (0.80)	46,XY,add(1)(p11.2),-5,der(7)t(1;7)(p11.2;q22),i(8)(q10), add(17)(p11.2),-21,+mar1,+mar2[3]/46,idem,add(18)(q21), -mar2,+mar3[10]/46,idem,+8,-i(8)(q10),i(11)(q10)[2]/ 46,XY[4] ^c
10	T676Tfs	Frameshift	0.41	345	<i>FLT3-</i> ITD, <i>NPM1</i> (0.43), <i>WT1</i> (0.42)	46,XY[20]
11	T676Tfs	Frameshift	0.78	409	ASXL1 (0.31), EZH2 (0.94), STAG2 (0.75), TET2 (0.49)	47,XY,+8[5]/46,XY,del(16)(q13q24)[14]/46,XY[2]
12	T676Tfs	Frameshift	0.14	516	NPM1 (0.44), SMC1A (0.17), XPO1 (0.15)	46,XX[20]

13	T676Tfs	Frameshift	0.42	676	<i>FLT3-</i> TKD (0.17), <i>NPM1</i> (0.29), <i>RAD21</i> (0.35), <i>WT1</i> (0.17)	46,XX[20]	
14	T676Tfs	Frameshift	0.25	293	<i>PRKCB</i> (0.18), <i>TP53</i> (0.68)	47,X,-Y,dic(5;17)(q11;p13),+11,add(15)(p13),-16,+21, +add(22)(p11.2),+r[20]	
15	T676Tfs	Frameshift	0.5	135	JAK3 (0.49)	48,XY,del(5)(q31),inv(7)(q22q36),der(11)add(11)(p13)add (q13),-17,der(18)del(18)(p11.2)add(18)(q21),+mar1,+ma +mar3[19]/46,XY[1]	
16	T676Tfs	Frameshift	0.73	458	TP53 (0.81)	45,XY,del(5)(q15q34),-7,+11,der(16)t(16;17)(q13;q11.2),- idic(22)(p11.2)[20]	
17	T676Tfs	Frameshift	0.72	410	BCOR (0.85), BCORL1 (0.76), DNMT3A- R882 (0.41), IDH2 (0.44)	46,XY[20]	
18	T676Tfs	Frameshift	0.38	325	DNMT3A-non- R882 (0.38), IKZF1 (0.51), SF1 (0.41), TP53 (0.51)	43,XX,-3,add(5)(q11.2),der dic(7;11)(11pter→11q11: :7p11.1→7q21::7q31→7q31::?::11q14→11qter),-17[13]/ 86,idemx2[8]	
19	T676Tfs	Frameshift	0.80	222	HNRNPK (0.50), IL7R (0.45), ZRSR2 (0.36)	46,XX,del(9)(q22q32),del(12)(p12p13),add(14)(q11.2), dup(17)(q21q25)[12]/46,XX[10] ^c	

20	T676Tfs	Frameshift	0.41	282	<i>IKZF1</i> (0.41), <i>PTPN11</i> (0.38), <i>SF3B1</i> (0.34)	46,XY,inv(3)(q21q26.2)[5]/46,idem,del(7)(p13p15)[13] ^c	
21	T676Tfs	Frameshift	0.15	374	PTPN11 (0.47)	48,XY,+X,+11[19]/46,XY[1]	
22	T676Tfs	Frameshift	0.11	1152	<i>DNMT3A</i> - R882 (0.42), <i>FLT3</i> -ITD	46,XX[30]	
23	C680Cfs	Frameshift	0.21	467	BCORL1 (0.49)	46,XX,der(16)inv(16)(p13.1q22)del(16)(q22)[16]/ 47,idem,+22[10]/46,XX[4]	
24	F710FL	In-frame Indel ^D	0.14	534	<i>PIK3CD</i> (0.64), <i>TP53</i> (0.51)	46,XX,inv(16)(p13q22)[19]/46,XX[1]	
25	T862S	Missense	0.44	340	EZH2 (0.88), FLT3-ITD, GATA1 (0.49), PTPN11 (0.15), RUNX1 (0.49)	46,XX,del(7)(q22q34)[12]/46,XX,del(7)(q32q34)[8]	
26	M968K	Missense	0.78	37	<i>DNMT3A</i> -non- R882 (0.45), <i>HIST1H1E</i> (0.77), <i>TP53</i> (0.96)	46,XX,del(12)(p12p13)[2]/65,XX,+3,+3,+8,+8,+9,+11,+12 del(12)(p12p13),+13,+14,+15,+18,+18,+19,+20,+22,+22, +3mar[3]/65,XX,+3,+3,+8,+8,+9,i(9)(p10),+11,+12, del(12)(p12p13),+13,+14,+15,+18,+18,+19,+20,+22,+22, +3mar[4]/46,XX[2] ^c	

27	L1102F	Missense	0.32	242	<i>DNMT3A</i> -non- R882 (0.25), FLT3- <i>ITD</i> , <i>IDH2</i> (0.21), <i>WT1</i> (0.16)	47,XX,+8[20]/46,XX[1]
28	L1102F	Missense	0.19	169	ASXL1 (0.11), DNMT3A-non- R882 (0.26), FLT3-ITD, IDH2 (0.28), WT1 (0.11)	46,XX,?del(16)(q12.1)[18]/46,XX[3] ^c
29	L1208W	Missense	0.51	867	<i>FLT3</i> -TKD (0.33), <i>NPM1</i> (0.51), <i>WT1</i> (0.75)	46,XX[30]
30	Y489C G1219R	Missense Missense	0.72 0.34	393 542	ASXL1 (0.31), IKZF1 (0.46)	46,XX,t(2;3)(p21;q27)[28]
31	R1306*	Nonsense	0.82	169	ASXL1 (0.32), PHF6 (0.89), RUNX1 (0.40), WT1 (0.43)	46,XY[20]
32	R1362*	Nonsense	0.26	139	<i>IDH2</i> (0.29), <i>NPM1</i> (0.34)	46,XY[20]
33	H1374Y	Missense	0.47	486	CEBPA	46,XY[18] ^c
34	P1400Q	Missense	0.42	627	ASXL1 (0.43), RAD21 (0.43), TET2 (0.32), ZRSR2 (1.00)	45,X,-Y,t(8;21)(q22;q22)[20]

35	A1403fs	Frameshift	0.16	429	NPM1 (0.40), SMC1A (0.35), TET2 (0.53)	47,XY,+8[2]/46,XY[37]
36	L1486S	Missense	0.39	23	DNMT3A- R882 (0.37), HNRNPK (0.46), IDH2 (.45) KRAS (0.31), NPM1 (.41) SMARCA2 (0.52)	47,XY,+21[43]/46,XY[7]
37	S1567*	Nonsense	0.40	364	FLT3-ITD, IKZF1 (0.30), SF3A1 (0.44), SF3B1 (0.47)	46,XY,i(6)(p10)[13]/46,XY[5]
38	S1817C	Missense	0.55	750	GATA2 (0.54), NRAS (0.37)	46,XX,add(5)(q11.2)[3]
39	R1870Q	Missense	0.40	645	NPM1 (0.37), NRAS (0.14), TET2 (0.49)	46,XY,del(7)(q22q34),dup(12)(q15q24.1)[19]/46,XY[1]
40	A1966	Missense	0.34	35	BRD4 (0.27), TP53 (0.29)	45,XX,add(5)(q11.2),+8,qdp(11)(q21q25),del(12)(p12p12), del(16)(p11.2p13.3),add(17)(p13),-18,-20[19]/46,XX[3]
41	Y2264*fs	Nonsense	0.89	347	BCOR (0.81), CBL (0.81), GATA2 (0.41), SF3B1 (0.44)	46,XY,t(3;3)(q21;q26)[1]/45,idem,-7[18] ^c

42	T2454*	Missense	0.91	144	NPM1 (0.49)	46,XY[20]	
43	T2454*	Nonsense	0.79	194	NPM1 (0.53)	46,XY[20]	
44	W2473*	Nonsense	0.83	94	SAMHD1 (0.47), SF3B1 (0.44)	45,XY,inv(3)(q21q26),-7[13]/46,XY[4]	
45	R2496*	Nonsense	0.34	200	<i>FLT3-</i> ITD, <i>NPM1</i> (0.13), <i>SAMHD1</i> (0.20), <i>SF3B1</i> (0.19), <i>SMARCA2</i> (0.31), <i>TP53</i> (0.45)	47-49,XY,t(1;11)(q25;q21),+der(1)t(1;11)(q25;q21), del(5)(q31q35),-17,-18,+19,+20,del(20)(q11.2),+2mar[cp6] ^c	
46	T2513A	Missense	0.54	506	<i>DNMT3A</i> - R882 (0.50), <i>FLT3</i> -ITD, <i>NPM1</i> (0.51)	47,XY,+8[2]/46,XY[18]	
47	W2712R	Missense	0.13	32	<i>FLT3</i> -TKD (0.40), <i>IDH2</i> (0.47), <i>NPM1</i> (0.45), <i>SF3B1</i> (0.35), <i>SYK</i> (0.46)	46,XY[31]	

48	W2712R	Missense	0.10	39	AXL (0.49), BCOR (0.52), CBL (0.42), IDH1 (0.45), NPM1 (0.46), SMC3 (0.24)	46,XX[30]
49	W2712R	Missense	0.12	34	<i>FLT3-</i> ITD, <i>NPM1</i> (0.40), <i>RAD21</i> (0.46)	46,XY[20]
50	R2713W	Missense	0.10	48	NRAS (0.43) 46,XY,t(6;9)(p23;q34)[20]	
51	R2713W	Missense	0.15	34	ASXL1 (0.53) DNMT3A-non- R882 (0.47) ETV6 (0.52) IDH2 (0.44) SMC3 (0.48)	46,XX[20]
52	R2713W	Missense	0.17	35	<i>KIT</i> (0.42)	46,XY,inv(16)(p13q22)[17]/47,idem,+Y[3]

Abbreviation: VAF, variant allele fraction.

^a * denotes nonsense mutation; fs, frame shift mutation.
^b Patients #1,5 and 30 harbored three, five and two different *NF1* mutations, respectively.
^c A non-clonal cell or cells were also detected.
^d In-frame insertion/deletion, grouped together with missense mutations.

Supplementary Table S2. Variant allele fractions of *NF1* mutations compared with the largest

variant allele fractions of co-occurring mutations in other genes in patients with no evidence of

copy number variations (CNVs) in the NF1 gene

	NF1	The largest VAF of the	Difference between VAF of NF1	
Sample ID	mutation	co-occurring mutation	mutation and VAF of co-occurring	
1	VAF 0.45	0.40	mutation	
1	0.45	0.42	0.03	
2	0.36	0.52	-0.16	
40	0.53	0.46	0.07	
5 ^a	0.60	0.43	0.17	
6	0.31	0.43	-0.12	
7	0.24	0.55	-0.21	
8	0.41	0.42	-0.01	
9	0.42	0.47	-0.05	
10	0.41	0.43	-0.02	
12	0.14	0.44	-0.30	
13	0.42	0.35	0.07	
14	0.25	0.18	0.07	
15	0.50	0.49	0.01	
18	0.38	0.51	-0.13	
21	0.15	0.47	-0.32	
22	0.11	0.42	-0.31	
25	0.44	0.49	-0.05	
27	0.32	0.25	0.07	
28	0.19	0.26	-0.07	
29	0.51	0.51	0	
32	0.26	0.34	-0.08	
35	0.16	0.53	-0.37	
36	0.39	0.52	-0.13	
37	0.40	0.47	-0.07	
38	0.55	0.54	0.01	
39	0.40	0.49	-0.09	
40	0.34	0.29	0.05	
45	0.34	0.45	-0.11	
46	0.54	0.51	0.03	
47	0.13	0.47	-0.34	
48	0.10	0.52	-0.42	
49	0.12	0.46	-0.34	
51	0.15	0.53	-0.38	

Abbreviation: VAF, variant allele fraction.

Bold type and gray shading indicates patients in whom the *NF1* mutation was presumably found in the main clone. Patients with loss-of-heterozygosity encompassing *NF1* locus, *NF1*-mutated samples with VAF >0.60, or co-mutated genes with VAFs > 0.60 have not been considered.

^a indicates sample with multiple *NF1* mutations, for which the largest *NF1* mutation VAF is listed.

^b indicates hemizygous mutation.

Supplementary Table S3. Comparison of pretreatment clinical characteristics of acute myeloid leukemia patients with and without *NF1* mutations analyzed by targeted next-generation sequencing

Characteristic	NF1 mutated	NF1 wild-type	Pa
	(<i>n</i> =52)	(<i>n</i> =969)	1
Age, yr			0.49
Median	50	52	
Range	19-82	17-84	
Sex, <i>n</i> (%) of females	22 (42)	425 (44)	0.89
Race, <i>n</i> (%)			0.50
White	44 (92)	833 (88)	
Nonwhite	4 (8)	119 (13)	
Hemoglobin, g/dL			
Median	9.0	9.2	0.17
Range	3.0-13.0	2.3-25.1	
Platelet count, x 10 ⁹ /L			
Median	51	55	0.38
Range	7-317	4-850	
White blood cell count, x $10^9/L$			
Median	19.4	26.6	0.18
Range	1.3-156	0.4-475	
Bone marrow blasts, %			< 0.001
Median	52	67	
Range	10-86	0-99	
Blood blasts, %			0.18
Median	45	54	
Range	0-95	0-99	
Extramedullary involvement <i>n</i>			
(%)	11 (22)	235 (26)	0.74
ELN classification, <i>n</i> (%)			0.02
Favorable	22 (42)	425 (44)	
Intermediate	8 (15)	223 (23)	
Adverse	22 (42)	251 (26)	
Unclassifiable	0 (0)	70 (7)	

Characteristic	NF1 mutated (n=52)	<i>NF1</i> wild-type (<i>n</i> =969)	Pa
Cytogenetic groups, <i>n</i> (%)			0.002
Normal karyotype	19 (37)	526 (54)	
inv(16)/t(16;16)	4 (8)	73 (8)	
t(8;21)	1 (2)	40 (4)	
inv(3)/t(3;3)	3 (6)	9 (1)	
t(6;9)	1 (2)	5 (1)	
Sole +8	5 (10) ^b	$38 (4)^{c}$	
Complex karyotype	10 (19)	84 (9)	
Other abnormalities	9 (17)	194 (20)	

Abbreviations: ELN, European LeukemiaNet; *n*, number. ^a *P*-values for categorical variables are from Fisher's exact test, *P*-values for continuous variables are from the Wilcoxon rank sum test.

^b One patient (no. 11 in Supplemental Table S1) had a clone with sole del(16)(q13q24) in addition to a clone with sole +8.

^c Five patients had another abnormal clone(s) in addition to a clone with sole +8.

Supplementary Table S4. Frequencies of functional groups comprising mutations detected in

NF1 mutated versus NF1 wild-type patients

Functional group ^a	NF1 mutated	NF1 wild-type	P ^b
	(<i>n</i> =52)	(<i>n</i> =969)	
Chromatin remodeling, n (%)			0.06
Mutated	14 (27)	158 (16)	
Wild type	38 (73)	811 (84)	
Cohesin complex, n (%)		. ,	0.38
Mutated	8 (15)	113 (12)	
Wild type	44 (85)	856 (88)	
Kinases, n (%)	· · ·	i i	0.77
Mutated	17 (33)	341 (37)	
Wild type	35 (67)	588 (63)	
Methylation-related, n (%)			0.32
Mutated	20 (38)	449 (46)	
Wild type	32 (62)	520 (54)	
<i>NPM1</i> , <i>n</i> (%)		i	0.77
Mutated	18 (35)	362 (38)	
Wild type	34 (65)	603 (62)	
RAS pathway, n (%)			1.00
Mutated	13 (25)	237 (24)	
Wild type	39 (75)	732 (76)	
Spliceosome, <i>n</i> (%)			0.86
Mutated	10 (19)	180 (19)	
Wild type	42 (81)	784 (81)	
Transcription factors, <i>n</i> (%)			1.00
Mutated	10 (20)	181 (20)	
Wild type	40 (80)	703 (80)	
Tumor suppressors, <i>n</i> (%)			0.02
Mutated	15 (29)	152 (16)	
Wild type	37 (71)	817 (84)	

Abbreviations: *n*, number.

^a A given functional group is considered mutated if at least one gene belonging to this group is mutated. Functional groups comprise specific genes as follows: chromatin remodeling: *ASXL1*, *BCOR*, *BCORL1*, *EZH2* and *SMARCA2*; cohesin: *RAD21*, *SMC1A*, *SMC3* and *STAG2*; kinases: *AXL*, *FLT3-ITD*, *FLT3-TKD* and *KIT*, *TYK2*; methylation-related: DNMT3A, *IDH1*, *IDH2* and *TET2*; *NPM1*: *NPM1*; *RAS* pathway: *CBL*, *KRAS*, *NRAS* and *PTPN11*; spliceosome: *SF3B1*, *SRSF2*, U2AF1 and ZRSR2; transcription factors: CEBPA, *ETV6*, *GATA2*, *IKZF1*, *NOTCH1* and *RUNX1*; and tumor suppressor: PHF6, TP53 and WT1.

^b *P*-values are from Fisher's exact test.

Supplementary Table S5. Frequencies of co-existing single gene mutations detected in patients

Gene ^a	NF1 mutated	NF1 wild-type	P ^b
	(<i>n</i> =52)	(<i>n</i>=969)	
ASXL1, n (%)	-		0.39
Mutated	5 (10)	63 (7)	
Wild type	47 (90)	906 (93)	
BCOR, n (%)			0.74
Mutated	3 (6)	47 (5)	
Wild type	49 (94)	922 (95)	
BCORL1, n (%)			0.33
Mutated	2 (4)	21 (2)	
Wild type	50 (96)	948 (98)	
BRD4, n (%)			0.16
Mutated	2 (4)	12(1)	
Wild type	50 (96)	957 (99)	
CBL, n (%)			0.29
Mutated	2 (4)	19 (2)	
Wild-type	50 (96)	950 (98)	
$\overline{DNMT3A}, n$ (%)			0.51
Mutated	10 (19)	236 (24)	
R882	5	165	
Non-R882	5	72	
Wild type	42 (81)	733 (76)	
EZH2, n (%)			0.18
Mutated	3 (6)	26 (3)	
Wild type	49 (94)	943 (97)	
<i>FLT3</i> -ITD, <i>n</i> (%)			0.40
Mutated	9 (17)	221 (23)	
Wild type	43 (83)	738 (77)	
<i>FLT3</i> -TKD, <i>n</i> (%)			0.79
Mutated	4 (8)	70 (7)	
Wild type	48 (92)	890 (93)	
GATA2, n (%)			1.00
Mutated	2 (4)	44 (5)	
Wild type	50 (96)	925 (95)	
HNRNPK, n (%)			0.05
Mutated	2 (4)	5(1)	
Wild type	50 (96)	964 (99)	
<i>IDH1</i> , <i>n</i> (%)			0.62
Mutated	3 (6)	87 (9)	
Wild type	49 (94)	882 (91)	
<i>IDH2</i> , <i>n</i> (%)			0.82
Mutated	6 (12)	107 (11)	
Wild type	46 (88)	862 (89)	

with NF1 mutations compared to NF1 wild-type patients

Gene ^a	NF1 mutated	NF1 wild-type	P ^b
	(<i>n</i> =52)	(n=969)	
<i>IKZF1</i> , <i>n</i> (%)			0.005
Mutated	4 (8)	11 (1)	
Wild type	48 (92)	958 (99)	
<i>KIT</i> , <i>n</i> (%)			1.00
Mutated	2 (4)	43 (4)	
Wild type	50 (96)	926 (96)	
<i>KRAS</i> , <i>n</i> (%)			1.00
Mutated	2 (4)	36 (4)	
Wild type	50 (96)	932 (96)	
<i>NPM1</i> , <i>n</i> (%)			0.77
Mutated	18 (35)	362 (38)	
Wild type	34 (65)	603 (62)	
NRAS, n (%)			0.53
Mutated	5 (10)	130 (13)	
Wild type	47 (90)	839 (87)	
<i>PTPN11</i> , <i>n</i> (%)			0.55
Mutated	4 (8)	58 (6)	
Wild type	48 (92)	911 (94)	
<i>RAD21</i> , <i>n</i> (%)			0.10
Mutated	3 (6)	19 (2)	
Wild type	49 (94)	950 (98)	
<i>RUNX1</i> , <i>n</i> (%)			0.47
Mutated	3 (6)	100 (10)	
Wild type	49 (94)	869 (90)	
<i>SAMHD1</i> , <i>n</i> (%)			0.09
Mutated	2 (4)	8 (1)	
Wild type	50 (96)	961 (99)	
<i>SF3B1</i> , <i>n</i> (%)			0.002
Mutated	7 (13)	29 (3)	
Wild type	45 (87)	940 (97)	
<i>SMARCA2</i> , <i>n</i> (%)			0.14
Mutated	3 (6)	23 (2)	
Wild type	49 (94)	946 (98)	
<i>SMC1A</i> , <i>n</i> (%)			0.68
Mutated	2 (4)	30 (3)	
Wild type	50 (96)	939 (97)	
<i>SMC3</i> , <i>n</i> (%)			0.68
Mutated	2 (4)	30 (3)	
Wild type	50 (96)	939 (97)	
<i>TET2</i> , <i>n</i> (%)			1.00
Mutated	7 (13)	137 (14)	
Wild type	45 (87)	832 (86)	
<i>TP53</i> , <i>n</i> (%)			0.007
Mutated	9 (17)	62 (6)	
Wild type	43 (83)	907 (94)	

Gene ^a	<i>NF1</i> mutated (<i>n</i> =52)	<i>NF1</i> wild-type (<i>n</i> =969)	P ^b
WT1, n (%)			0.26
Mutated	6 (12)	66 (7)	
Wild type	46 (88)	903 (93)	
ZRSR2, n (%)			1.00
Mutated	2 (4)	48 (5)	
Wild type	50 (96)	921 (95)	

Abbreviation: *n*, number.

^a Listed are only those genes that were found mutated in at least two *NF1*-mutated patients. ^b *P*-values relate to the comparison of *NF1*-mutated versus *NF1* wild-type patients. *P*-values are from Fisher's exact test.

Supplementary Table S6. Comparison of the pre-treatment clinical characteristics of patients with NF1 Thr676, other NF1 frameshift

Characteristic	NF1	NF1 nonsense and	NF1 missense	Pb
	Thr676 mutation	s ^a frameshift mutations	Mutations ^a	
	(<i>n</i> =14)	other than Thr676 ^a	(<i>n</i> =26)	
		(<i>n</i> =12)		
Age, yr				0.78
Median	51	49	50	
Range	19-70	23-73	22-82	
Sex, n (%) of females	5 (36)	3 (25)	14 (54)	0.23
Race, <i>n</i> (%)				0.65
White	11 (85)	0 (0)	23 (92)	
Nonwhite	2 (15)	10 (100)	2 (8)	
Hemoglobin, g/dL				0.05
Median	8.1	9.1	9.2	
Range	6.4-10.5	3.0-13.0	4.9-12.1	
Platelet count, x 10 ⁹ /L				0.95
Median	54	51	50	
Range	14-191	7-317	15-277	
White blood cell count, x $10^9/L$				0.02
Median	7.9	14.8	27.2	
Range	1.8-99.9	3.3-115.2	1.3-155.9	
Blood blasts, %				0.72
Median	36	53	45	
Range	14-91	12-82	0-95	
Bone marrow blasts, %				0.33
Median	41	51	62	
Range	17-82	12-80	10-86	
Extramedullary involvement, n		1 (9)		0.007
(%)	0 (0)		10 (40) ^c	

and nonsense mutations, and patients harboring NF1 missense mutations

Characteristic	NF1 Thr676 mutations ^a (n=14)	NF1 nonsense and frameshift mutations other than Thr676 ^a (n=12)	NF1 missense Mutations ^a (n=26)	P ^b
ELN classification, <i>n</i> (%)				0.07
Favorable	2 (14)	5(42)	15 (58)	
Intermediate	3 (21)	1 (8)	4 (15)	
Adverse	9 (64)	6 (50)	7 (27)	

Abbreviation: *n*, number.

^a Patients harboring multiple *NF1* mutations were classified in the following way: Patient #1 (harboring 2 missense mutations and 1 frameshift mutation) was classified as frameshift mutation, patient #5 (harboring 4 missense mutations and 1 Thr676 mutation) was classified as Thr676 mutation, and patient #30 (harboring 2 missense mutations) was classified as missense mutation). Patient #24 (harboring an in-frame insertion/deletion) was classified as missense mutation.

^b P-values for categorical variables are from Fisher's exact test, P-values for continuous variables are from Wilcoxon rank sum test. ^c Five patients had lymphadenopathy (including one patient with skin infiltrates and another with hepatosplenomegaly), four patients had splenomegaly (including the aforementioned patient with hepatomegaly and lymphadenopathy, and another with hepatomegaly), and one patient had gum hypertrophy. Supplementary Table S7. Comparison of the frequencies of gene mutations in functional groups among patients with NF1 Thr676,

Functional group ^a	NF1 Thr676 mutations ^B (n=14)	<i>NF1</i> nonsense and frameshift mutations other than Thr676 ^b (n-12)	NF1 missense Mutations ^b (n=26)	P ^c
Chromatin remodeling n (%)		(#-12)		0.11
Mutated	2 (14)	6 (50)	6 (23)	0.11
Wild type	12 (86)	6 (50)	20(77)	
Cohesin complex. n (%)	(**)		()	0.28
Mutated	3 (21)	0(0)	5 (19)	
Wild type	11 (79)	12 (100)	21 (81)	
Kinases, n (%)				0.40
Mutated	3 (21)	3 (25)	11 (42)	
Wild type	11 (79)	9 (75)	15 (58)	
Methylation-related, n (%)				0.53
Mutated	4 (29)	4 (33)	12 (46)	
Wild type	10 (71)	8 (67)	14 (54)	
<i>NPM1</i> , <i>n</i> (%)	· ·		i i	0.26
Mutated	3 (21)	3 (25)	12 (46)	
Wild type	11 (79)	9 (75)	14 (54)	
RAS Pathway, n (%)				0.59
Mutated	2 (14)	3 (25)	8 (31)	
Wild type	12 (86)	9 (75)	18 (69)	
Spliceosome, <i>n</i> (%)				0.12
Mutated	2 (14)	5 (42)	3 (12)	
Wild type	12 (86)	7 (58)	23 (88)	
Transcription factors, <i>n</i> (%)				0.38
Mutated	2 (14)	4 (36)	4 (16)	
Wild type	12 (86)	7 (64)	21 (84)	

other NF1 frameshift and nonsense mutations, and patients harboring NF1 missense mutations

Functional group ^a	NF1 Thr676 mutations ^B (n=14)	NF1 nonsense and frameshift mutations other than Thr676 ^b (n=12)	NF1 missense Mutations ^b (n=26)	P ^c
Tumor suppressors, n (%)				0.44
Mutated	6 (43)	3 (25)	6 (23)	
Wild type	8 (57)	9 (75)	20 (77)	

Abbreviation: *n*, number.

^a A given functional group is considered mutated if at least one gene belonging to this group is mutated. Functional groups comprise specific genes as follows: chromatin remodeling: *ASXL1*, *BCOR*, *BCORL1*, *EZH2* and *SMARCA2*; cohesin: *RAD21*, *SMC1A*, *SMC3* and *STAG2*; kinases: *AXL*, *FLT3-ITD*, *FLT3-TKD* and *KIT*, *TYK2*; methylation-related: DNMT3A, *IDH1*, *IDH2* and *TET2*; *NPM1*: *NPM1*; *RAS pathway*: *CBL*, *KRAS*, *NRAS* and *PTPN11*; spliceosome: *SF3B1*, *SRSF2*, *U2AF1* and *ZRSR2*; transcription factors: *CEBPA*, *ETV6*, *GATA2*, *IKZF1*, *NOTCH1* and *RUNX1*; and tumor suppressor: PHF6, TP53 and WT1.

^c*P*-values are from Fisher's exact test.

Supplementary Table S8. Outcomes of younger AML patients with NF1 mutations according

to variant allele fractions.

Outcome	<i>NF1</i> mutated VAF≥0.50 n=13	<i>NF1</i> mutated VAF <0.50 n=21	P ^a
Complete remission, n (%)	6 (46)	17 (81)	0.06
Relapse rate, n (%)	5 (100) ^b	6 (35)	0.04
Disease-free survival			0.09
Median, years	0.6	1.9	
% Disease-free at 1 year (95% CI)	40 (5-75)	65 (38-82)	
% Disease-free at 3 years (95% CI)	0	47 (23-68)	
Overall survival			0.03
Median, years	0.8	2.4	
% Alive at 1 year (95% CI)	46 (19-70)	71 (47-86)	
% Alive at 3 years (95% CI)	23 (6-47)	48 (26-67)	

Abbreviation: VAF, variant allele fraction.

^a*P*-values for categorical variables are from Fisher's exact test, *P*-values for the time to event variables are from the log-rank test. The median follow-up for those alive is 9.0 years, range: 5.1-16.4 years (n=10). The median follow-up for those who have not had an event is 9.7 years, range: 5.1-16.4 years (n=7). ^b Follow-up data not available for one patient who achieved a CR.

Supplementary Table S9. Outcomes of younger (aged <60 years) AML patients with and

without NF1 Thr676 mutations.

Endpoint	NF1 <u>Thr676</u> (n=10) ^a	NF1 wild-type (n=586) ^a	Pb
Complete remission, <i>n</i> (%)	5 (50)	463 (79)	.04
Disease-free survival ^c			
Median, years	1.4	1.4	
% Disease-free at 1 year (95% CI)	60 (13-88)	57 (52-61)	
% Disease-free at 3 years (95% CI)	0	38 (34-42)	
Overall survival ^c			.01
Median, years	0.8	2.2	
% Alive at 1 year (95% CI)	50 (18-75)	71 (67-75)	
% Alive at 3 years (95% CI)	20 (3-47)	45 (41-49)	

Abbreviations: CI, confidence interval; *n*, number.

^a Among patients who achieved a CR, only those who received at least one cycle of postremission chemotherapy according to protocol were included in the outcome analysis.

^b*P*-values for complete remission are from Fisher's exact test, *P*-values for disease-free and overall survival are from the log-rank test.

^c Patients who received allogeneic hematopoietic stem cell transplantation in first CR were excluded from disease-free survival and overall survival analyses.