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Introduction  21 

This document further describes the methods and findings of our work. We have 22 
included a more comprehensive description of the metrics we used here to estimate the 23 
contributions of anthropogenic warming to the Pan-Caribbean drought.  24 

S1. Climate data 25 

The observed and simulated climate products we used to calculate PET and scPDSI 26 
are listed in the Tables S1 and S2. Because of the relatively coarse horizontal 27 
resolution of the current gridded climate products, which varies from 0.5º to 2.5º (~55 28 
km to ~280 km, respectively) and fails to resolve many of the Lesser Antilles (Jury et 29 
al., 2007; Dai, 2011; 2013; van der Schrier et al., 2013; Cook et al., 2015), we used 30 
statistically-downscaled monthly precipitation data from the Global Precipitation 31 
Climatology Centre (GPCC) “combined product” (available at: 32 
https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html)(Schneider et al., 2015a,b), 33 
and temperature fields (Tmin, Tmean, and Tmax)  from the Berkeley Earth Surface 34 
Temperature (BEST) (Rohde et al., 2013). Wind speed and net radiation data were 35 
obtained from National Centers for Environmental Predictions–National Center for 36 
Atmospheric Research (NCEP–NCAR) (Kalnay et al., 1996) and the Japanese 55-year 37 
(JRA-55) (Ebita et al., 2011) reanalyses, and were bi-linearly interpolated to a 38 
common resolution of 4 km. The validation of downscaled products and further details 39 
of the downscaling and bias-correction procedures we used are described in the 40 
Supporting Information and in Herrera and Ault (2017). We also computed alternate 41 
PET and scPDSI records based on data from the Climatic Research Unit version 42 
TS4.01 (CRU vTS4.01) (Harris et al., 2014) and found that results were nearly 43 
identical to those reported here. To carefully assess the role of radiative flux on 44 
drought variability, we used observed surface radiation (up and down, shortwave and 45 
long wave) and cloud-cover data from the Clouds and Earth’s Radiant Energy System 46 
(CERES) (Loeb et al., 2012) at 1º geographic resolution spanning January 47 
2001/December 2016. CERES data were not used to calculate PET nor scPDSI, but 48 
rather to conduct a complementary analysis of observed radiative fluxes during the 49 
Pan-Caribbean drought.    50 

Simulated temperature data (Tmin and Tmax) were obtained from the Coupled Model 51 
Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012) and are listed in Table 52 
S2. Models were selected based solely on the availability of monthly Tmin and Tmax data 53 
during the study interval. We used temperature data from the archive’s historical 54 
simulations from 1950 to 2005, appended to the Representative Concentrations 55 
Pathway 8.5 (RCP8.5) to cover 2006/2016. Pre-industrial control and naturally-forced 56 
historical simulations were used as a benchmark to estimate the contribution of 57 
anthropogenic-forcing to scPDSI and PET-anomalies. CMIP5 data of precipitation, net 58 
radiation, wind speed, and soil moisture were further used to assess the consistency of 59 
scPDSI with simulated soil moisture in terms of interannual variability and long-term 60 
trends. CMIP5 model data used in this work were obtained from https://esgf-61 
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node.llnl.gov/search/esgf-llnl/, and in contrast to GPCC and BEST, CMIP5 climate 62 
data were not downscaled.  63 

S2. The self-Calibrating Palmer Drought Severity Index 64 

The original PDSI consists of a simple water balance model that uses precipitation and 65 
PET as moisture supply and demand, respectively, coupled with a two-layer soil 66 
model (Palmer, 1965). Despite its successful use in diagnosing drought during recent 67 
decades, the PDSI yields inconsistent results across climates  (Alley, 1984). This issue 68 
is largely due to the constant duration factors in the original PDSI formulation, which 69 
were empirically derived from stations in the central US (Palmer, 1965; Alley, 1984; 70 
Wells et al., 2004). scPDSI addresses this limitation by automatically calculating 71 
duration factors based on local climate conditions during a determined calibration 72 
period (Wells et al., 2004). The PDSI’s calibration period is the interval used to 73 
establish the normal hydroclimatic conditions for a specific location (Palmer, 1965), 74 
and hence partially controls the variance of the index. scPDSI is calculated with the 75 
same basic formulation as the original PDSI as: 76 

X" = 	pX"&' + qZ",                                                       (1) 77 

where X" is the index value in month i, X"-' is the index of the previous month, p and q 78 
are the duration factors, and Z" is the current moisture anomaly. The duration factors 79 
determine the autocorrelation of the PDSI by assigning different weights toX"-' and Z" 80 
to determine the current index. As suggested in Dai (2011; 2013), we used a 81 
1950/1980 calibration period in our scPDSI computations because the anthropogenic 82 
signal is more pronounced after the 1980s. However, because the JRA-55 reanalysis 83 
spans 1958/near present, we used a 1958/1980 period in our estimations with JRA-55. 84 
Further details on how we calculated scPDSI are described by Herrera and Ault 85 
(2017). 86 

S3. The FAO reference evapotranspiration 87 

We used a modified version of the original Penman-Monteith (PM) method, as used 88 
by the UN Food and Agricultural Organization (FAO) (Allen et al., 1998). We 89 
selected this method because it requires fewer inputs for its computation as compared 90 
to the original PM method (Penman, 1948; Monteith, 1965; Allen et al., 1998), which 91 
is advantageous for regions where climate data are sparse such as the Caribbean. The 92 
theoretical basis of the FAO-PM method lies in an idealized grass-surface with a 93 
permanent water supply and 0.12 m height. It also assumes a soil resistance of 70 s m-94 
1, and a surface albedo of 0.23 (Allen et al., 1998). Formally, PET is calculated with 95 
the following equation: 96 

,-. = 	
/.1/2∆ 45&6 78

9::
;<=>?.@A

B=(DE&DF)

∆78('7/.H1B=)
,                                                 (2) 97 
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where, 98 

IJ 	= I'/
KL	('J2)

KL	(MM'.H)
  99 

,-. is the crop reference evapotranspiration (mm day−1), Rn is the net radiation (MJ 100 
m−2 d−1), T is the average temperature at 2 m height (ºC), G is the soil heat flux density 101 
(MJ m−2 d−1), IJ is the wind speed measured (or estimated from	I'/) at 2 m height (m 102 
s−1), U'/ is the wind speed measured at 10 m height (m s−1), RS − RU(eW-eX) is the 103 
vapor pressure deficit measured at 2 m height (kPa), ∆ is the slope of the vapor 104 
pressure curve (kPa ºC−1), γ is the psychrometric constant (kPa ºC−1), 900 is the 105 
numerator coefficient for the reference crop (kJ−1 kg K d−1), and 0.34 is the 106 
denominator coefficient for the reference crop (s m−1) (Allen et al., 1998). In contrast 107 
to previous studies that used this method for calculating PET (Cook et al., 2015; 2016; 108 
Karnauskas et al., 2016), we estimated gridded saturated vapor pressure (es) using our 109 
downscaled and bias-corrected Tmax and Tmin products with the following equation 110 
(Allen et al., 1998):      111 

R . = 0.6108R]^
'_.J_	`

`7JH_.H
,                                                (3) 112 

where R .  is the vapor pressure (kPa) as a function of the air temperature, and T is 113 
the air temperature in degrees Celsius (ºC). The actual vapor pressure (ea) was also 114 
obtained with Eq. (3) but using our downscaled Tmin instead of dew-point temperature 115 
because we wanted to be consistent with (es), which was estimated with our 116 
downscaled temperature datasets. Also, we found that this simplification did not have 117 
meaningful impact on the results, as, when we calculated PET from reanalysis data, 118 
the Caribbean PET record was similar regardless of whether we calculated (ea) from 119 
Tmin or specific humidity. Furthermore, since we used our downscaled temperature 120 
datasets for these computations, the topographic influence to vapor pressure was 121 
therefore taken into account. This PET dataset is the same we used in Herrera and Ault 122 
(2017), and is currently available upon request.  123 

S4. Anthropogenic contributions to drought severity  124 

The contributions of anthropogenic warmth to the Pan-Caribbean drought were 125 
estimated using an array of observed gridded climate data, which were combined to 126 
validate the consistency of our findings. Specifically, we used the following 127 
combinations of (a) precipitation, (b) temperature (Tmin, Tmean, and Tmax), and (c) net-128 
radiation (if available), total cloud cover, and wind speed to calculate PET and 129 
scPDSI: 130 
a. GPCC “combined product”, b. BEST, and c. JRA-55 reanalysis. 131 
a. GPCC “combined product”, b. BEST, and c. NCEP-NCAR reanalysis. 132 
a., b., and c. CRU TS4.01 133 
a. and b. CRU TS4.01, and c. JRA-55 reanalysis. 134 
From each combination, we obtained the following contributions: 135 
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(1) ~14%, (2) ~16%, (3) ~15%, (4) ~13%, 136 
with a mean of ~14.5% and standard deviation of ~1.12%.  137 
 
Contributions on each grid-cell were estimated using the following Equation: 138 

 139 
C	 = 1 −

bcdefgh

bcdeij
∗ 100 ,       (4) 140 

 141 
where C is the anthropogenic contribution, PDSIdet is PDSI calculated with adjusted 142 
temperatures (i.e., after the removal of the anthropogenic warming signal), while 143 
PDSIor is PDSI calculated using unadjusted temperature records. 144 

S5. Statistical downscaling and validation of downscaled products  145 

The downscaling method applied in this work is the same as in Herrera and Ault 146 
(2017), which similar to the “delta method” implemented by Mosier et al. (2014). To 147 
downscale temperature, we first calculated the anomalies of BEST dataset at its native 148 
resolution (1º lat/lon). Anomalies of maximum, minimum, and mean monthly 149 
temperatures were calculated with respect to the 1950–1980 climatology because the 150 
anthropogenic signal on temperature is more pronounced after the 1980s (Dai and 151 
Zhao, 2016; Zhao and Dai, 2016). These anomalies were then bilinearly interpolated to 152 
4 km, and were then added to the WorldClim climatologies to generate downscaled 153 
temperature products with a spatial resolution of 4 km. Finally, we adjusted the annual 154 
temperature seasonality (WorldClim’s standard deviation) so they match the 155 
WorldClim annual cycle. 156 
 
To downscale precipitation, we applied a two-step using CHIRPS: 1) we re-gridded 157 
the original GPCC V7 dataset to match the resolution of CHIRPS (0.05º or ~6 km), 158 
and we then corrected the variances and means of GPCC so that they match with 159 
CHIRPS during the overlapping period from January 1981 to December 2015; 2) 160 
precipitation anomalies were calculated as the monthly fraction with respect to the 161 
1950–1980 climatology; 3) these anomalies were bilinearly-interpolated and then 162 
aggregated to the WorldClim climatology to get a final downscaled product of 4 km 163 
(Herrera and Ault, 2017). 164 
 
As in Herrera and Ault (2017), we validated our downscaled products before using 165 
them in our anthropogenic contribution estimations. To do so, we calculated the 166 
Spearman rank correlation and root-mean-square-errors (RMSE) between 38 weather 167 
stations and underlying grid cells for precipitation, and with 20 stations for mean 168 
temperature (Fig S3). Most of the weather stations used are from the Global Historical 169 
Climatology Network (GHCN), versions 2 and 3. As shown in Fig. S4, correlation 170 
coefficients between downscaled monthly precipitation and GHCN station range 171 
between r = 0.76 and r = 0.97, with an average of 0.89 over the Caribbean and 172 
northern South America. In terms of RMSE, we found the lowest value with the 173 
Maracaibo–Los Pozos station in Venezuela (RMSE = 27mm), and the highest in 174 
Caucagua, also in Venezuela (RMSE = 79mm). In terms of correlation coefficients 175 
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and RMSE values with temperature fields (Tmin, Tmean, and Tmax), these were close to 176 
what we found with precipitation. The higher biases in mean temperature were found 177 
over mountainous regions in Hispaniola Island (RMSE = 0.91ºC), and northern South 178 
America (RMSE = 0.89ºC). Similar results were observed with monthly minimum and 179 
maximum temperature means, with RMSE ranging from 0.79º to 1.12ºC.  180 

S6. ENSO-Caribbean drought 181 

Some of the worst droughts in the Caribbean have been linked to the warm phase of El 182 
Niño–Southern Oscillation (ENSO; Peters, 2010; Blunden et al. 2016), including the 183 
1997–1998, 2009–2010, and the 2013–2016 Pan-Caribbean drought. Although the 184 
dynamics between ENSO and Caribbean drought is not yet well constrained, previous 185 
studies have suggested that a persistent subsidence over northern South America could 186 
be responsible of the precipitation deficits observed during El Niño (Giannini et al. 187 
2001a,b). In contrast, the usually wetter conditions observed in northwestern Cuba 188 
(e.g., Herrera and Ault, 2017), could be due to an increased intrusion of frontal 189 
systems during the boreal winter, when El Niño reaches its maximum intensity (e.g., 190 
Schultz et al. 1998; Giannini et al. 2001a,b). However, as described in Jury et al. 191 
(2007) and Herrera and Ault (2017), there is a seasonal dependency on ENSO effects 192 
to Caribbean precipitation. For example, during El Niño years precipitation deficits in 193 
the Caribbean are noticeable in early boreal autumn (ASO), when El Niño usually 194 
strengthens. In contrast, spring-summer (MJJ) of the year when El Niño is 195 
diminishing, it is usually associated to an even above-normal precipitation (Giannini et 196 
al. 2001a; Jury et al. 2007; Herrera and Ault, 2017).  In addition, there is also a major 197 
geographic variability on ENSO effects to Caribbean precipitation (Jury et al. 2007; 198 
Herrera and Ault, 2017) (Fig. S5). ENSO seems to have a stronger influence in 199 
Western Caribbean precipitation variability (e.g., Cuba, Jamaica, and western 200 
Hispaniola Island), while the North Atlantic Oscillation (NAO)––although weaker––201 
seems to have a more pronounced influence in Eastern-southeastern Caribbean (e.g., 202 
SE Lesser Antilles) (Jury et al. 2007). This is consistent with a recent study, in which 203 
the authors have found that ENSO effects to drought variability in Puerto Rico is not 204 
significant (Torres-Varcárcel, 2018). 205 

S7. Observed surface radiative flux anomalies  206 

Radiative changes during the Pan-Caribbean drought appear to have also played a role 207 
in its severity. Between 2013 and 2016, the average downwelling long-wave radiation 208 
(RLI) anomaly was 1.03 Wm-2, while the downwelling short-wave radiation (RSI) was 209 
1.84 Wm-2. However, in 2015 when the drought peaked, RLI anomaly averaged 2.59 210 
Wm-2 and RSI anomaly 3.22 Wm-2. Above-normal anomalies in upwelling long and 211 
short-wave radiative fluxes (RLO and RSO) were also observed during the drought, 212 
with 1.2 and 0.11 Wm-2, respectively. Given the relatively short time span covered by 213 
CERES (2001–present) it was not possible to assess the direct impact of anthropogenic 214 
climate change on surface radiative flux anomalies using this dataset. However, these 215 
analyses provide further insights into the radiative characteristics of the Pan-Caribbean 216 
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drought. Additionally, CERES’ cloud’s fraction and optical depth reveal a below-217 
normal cloud coverage and a persistent decrease in deep-convection across the 218 
Caribbean (Figs. S7 and S8), consistent with observed radiative flux and precipitation 219 
anomalies during the Pan-Caribbean drought.  220 
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SUPPORTING FIGURES 235 
 

 
 
Figure S1. Water balance estimates using data from the Global Land Data 236 
Assimilation System (GLDAS). The metrics used here: (a) soil moisture anomalies 237 
(GLDAS Soil moisture), the self-calibrating Palmer Drought Severity Index (scPDSI; 238 
GLDAS scPDSI) and the Standardized Precipitation-Evapotranspiration Index (SPEI; 239 
GLDAS SPEI 9 months). All water balance metrics are consistent in terms of 240 
hydroclimate trends and variability during the 1979–2017 period. scPDSI and SPEI 241 
were calculated using precipitation data from GLDAS (b), and temperature from the 242 
Berkeley dataset (c). Precipitation and temperature anomalies are shown in mm and 243 
Celsius degrees, respectively. 244 
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Figure S2. Coefficient of variation in precipitation anomalies during some of the 245 
worst droughts in the Caribbean. In 2013–2016, lower coefficients of variation are 246 
observed over the regions with the highest anthropogenic contributions on the drought. 247 
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Figure S3. (a) Spearman rank correlation coefficients and (b) RMSE between our 248 
downscaled precipitation product and GHCN station data. The intervals of these 249 
correlations and RMSEs vary depending on the length of GHCN used. However, we 250 
selected stations with at least 20 years of continuous data.  251 
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Figure S4.  Simulated scPDSI and soil moisture anomalies during 1950–2016 from 252 
CMIP5. scPDSI significantly correlates with soil moisture anomalies in spite of the 253 
simple water balance model it uses. The significant correlations between these 254 
moisture balance indicators suggest that CO2 fertilization plays a minor role in 255 
affecting PET in the Caribbean during the 1950–2016 interval. 256 
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Figure. S5.  Drought ranks of scPDSI estimated with the observed trend in 257 
temperature and adjusted temperatures. (a) Drought rankings of using the observed 258 
temperature trend. The hatching refers to the area where the Pan-Caribbean drought 259 
was record breaking any year between 2013 and 2016, which is nearly 32%. (b) As in 260 
(a) but using adjusted temperatures to calculate PET and scPDSI. In this case, the area 261 
where the Pan-Caribbean drought was record-breaking is ~21%. 262 
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Figure S6. Correlations coefficients between our downscaled scPDSI and sea surface 263 
temperature anomalies (SSTAs) in the Niño-3.4 region. (a) In MJJ, (b) in ASO. (c), 264 
(d) As in (a) and (b) but with SSTAs in the tropical North Atlantic. The hatched areas 265 
are statistically significant correlations at the 95% level. 266 
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Figure S7. Radiative flux anomalies during the Pan-Caribbean drought observed from 267 
the NASA’s CERES data. As expected during dry intervals, there is an increase in 268 
incoming short-wave radiation likely due to lower than normal cloud cover. However, 269 
during the recent Pan-Caribbean drought anomalously high incoming long-wave 270 
radiation was observed, which is mostly due to the rise of anthropogenic greenhouse 271 
gas concentrations, with an averaged departure of 0.8 W m-2 between January 2013 272 
and December 2016 (as estimated relative to the 2001–2016 CERES climatology).  273 
 
 
 

 
Figure S8. Cloud fraction and cloud optical depth anomalies during the Pan-274 
Caribbean drought observed from the NASA’s CERES data. During the Pan-275 
Caribbean drought a below-normal cloud fraction is observed across the Caribbean. 276 
However, the persistent decrease in deep convection, as evaluated from below-normal 277 
cloud optical depth anomalies, is the main characteristic of the drought. As in FIG. S6 278 
we estimated these anomalies as departures from the 2001–2016 CERES climatology. 279 
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SUPPORTING TABLES 280 
 
Table S1. Observed climate datasets.  281 

Variable Dataset Native 
resolution 

Period used Reference 

Precipitation *GPCC 1º 1949–2016 Schneider et al. (2014) 
*CHIRPS 0.05º 1981–2016 Funk et al. (2015) 
*CRU TS4.01 0.5º 1949–2016 Harris et al. (2014) 
WorldClim 
(Climatology) 

~1 km 1950–2000 Hijmans et al. (2005) 

*CHELSA 
(Climatology) 

~1 km 1979–2013 Karger et al. (2016) 

Temperature *BEST 1º 1949–2016 Rohde et al. (2013) 
*NCEP–NCAR 
Reanalysis  

2.5º 1949–2016 Kalnay et al. (1996) 

*CRU TS4.01 0.5º 1949–2016 Harris et al. (2014) 
WorldClim 
(Climatology) 

~1 km 1950–2000 Hijmans et al. (2005) 

Net radiation *JRA-55 
Reanalysis  

~1.25º 
 

1958–2016 Ebita et al. (2011) 
 

*NCEP–NCAR 
Reanalysis 

~1.8º 1949–2016 Kalnay et al. (1996) 
 

*CRU TS4.01 0.5º (Climatology) Harris et al. (2014) 
*CERES  1º 2001–2016 Loeb et al. (2012) 

Wind speed 
 
 

*NCEP–NCAR 
Reanalysis  

2.5º 1981–2010 
(Climatology) 

Kalnay et al. (1996) 
 

*CRU TS4.01 0.5º 1949–2016 Harris et al. (2014) 
Vapor pressure 
 

Derived from 
*BEST 

1º 1949–2016 
 

Rohde et al. (2013) 
 

*CRU TS4.01 0.5º 1949–2016 Harris et al. (2014) 
Elevation WorldClim ~1 km         -     - Hijmans et al. (2005) 
Available Water 
Holding 
Capacity 

*IGBP–DIS 0.08º         -     - Global Soil Data Task 
Group (2000) 

Radiative fluxes *CERES 1º 2001–2016 Loeb et al. (2012) 
*GPCC: Global Precipitation Climatology Centre Version 7. 
*CRU: Climatic Research Unit version TS4.01 
*CHIRPS: Climate Hazards Group InfraRed Precipitation with Station data. 
*CHELSA: Climatologies at High resolution for Earth’s land Surface Areas. 
*BEST: Berkeley Earth Surface Temperature. 
*NCEP–NCAR: National Centers for Environmental Predictions–National Center for 
Atmospheric Research. 
*IGBP–DIS: International Geosphere-Biosphere Programme Data and Information Services. 
*CERES: Clouds and Earth’s Radiant Energy Systems.  
*JRA-55: Japanese 55-year Reanalysis. 

282 
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Table S2. List of the CMIP5 models used in this work. From these models, we use monthly means of daily maximum and minimum 283 
temperature data at 2 m (tasmax and tasmin, respectively), radiation data (rlds, rlus, rsds, and rsus), and soil moisture data (mrso) from 284 
historical period (1949–2005), RCP8.5 (2006–2016), and pre-industrial control (1949–2016). We use one member from each model. 285 
 

Model Resolution 
(lat./lon.) 

 Variables used 
Tasmx Tasmin Pr Rlds Rlus Rsds Rsus mrso sfcWind 

BCCM-CSM1-1-M 1.1215º x 1.125º x x x       
CESM1-BGC 0.9424º x 1.25º x x x       
CESM1-CAM5 0.9424º x 1.25º x x x       
CNRM-CM5 1.4008º x 1.4063º x x x x x x x x x 
CNRM-CM5-2 1.4008º x 1.4063º x x x x x x x  x 
CMCC-CESM 3.711º x 3.75º x x x       
CMCC-CM 0.7484º x 0.75º x x x       
CMCC-CMS 1.8652º x 1.875º x x x       
GFDL-CM3 2º x 2.5º x x x       
GFDL-ESM2G 2.0225º x 2.5º x x x       
GFDL-ESM2M 2.0225º x 2.5º x x x       
GISS-E2-H 2º x 2.5º x x x       
GISS-E2-R 2º x 2.5º x x x       
GISS-E2-H-CC 2º x 2.5º x x x       
GISS-E2-R-CC 2º x 2.5º x x x       
HADGEM2-CC 1.25º x 1.875º x x x x x x x x x 
HADGEM2-ES 1.25º x 1.875º x x x x x x x  x 
INMCM4 1.5º x 2º x x x x x x x x x 
IPSL-CM5A-LR 1.8947º x 3.75º x x x x x x x x x 
IPSL-CM5A-MR 1.2676º x 2.5º x x x x x x x  x 
IPSL-CM5B-LR 1.8947º x 3.75º x x x x x x x x x 
MIROC-ESM-
CHEM 

2.7905º x 2.8125º x x x x x x x x x 

MIROC-ESM 2.7905º x 2.8125º x x x x x x x x x 
MRI-CGCM3 1.1215º x 1.125º x x x x x x x x x 
MPI-ESM-LR 1.8652º x 1.875º x x x x x x x x x 
MPI-ESM-MR 1.8652º x 1.875º x x x x x x x x x 
MRI-ESM1 1.1215º x 1.125º x x x x x x x  x 
NORESM1-M 1.8947º x 2.5º x x x       
NORESM1-ME 1.8947º x 2.5º x x x       

286 
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Table S3. Relative changes in drought area over land: “% of land affected” refers to the 287 
percentage of land under each drought category; “% relative contribution” refers to the 288 
estimated relative anthropogenic contribution to the area of each drought category; while 289 
“Total land area” is the area of each island/region obtained or calculated from CIA 290 
(2013).  291 
 

Region/Island Mild-drought area 
(scPDSI between –1.00 and     

–1.99)  

Severe-drought area 
(scPDSI between –3.00 and         

–3.99) 

Total 
land 
area 

(km2) 
 Percentage  

of land 
affected 

Percentage  
relative 
contribution 

Percentage   
of land 
affected 

Percentage  
relative 
contribution 

 

Caribbean* 67 7 28 20 239681 
Cuba 59 18 22 25 109820 
Hispaniola 76 6 33.5 23 76420 
Jamaica 65 11 25.9 24 10831 
Lesser 
Antilles* 

39 19 37.85 13 9236 

Puerto Rico 68 9 13.6 22 8870 
* Not including Trinidad and Tobago and Barbados. 292 
 
 


