Web table 1. All Included Studies Assessing the Association between Firearm-Related Laws and Homicides, Suicides and Unintentional firearm deaths, 1950-2014. | Reference -
Country | Law | Unit of
analysis/
sample
size/years | Study
design/type of
analysis ^a | Measurement of exposure (laws) and outcome firearm (death) | Potential limitations | Associatio n measure | Results | |--|--|--|---|--|---|---------------------------------|---| | Lott and
Mustard, 1997.
United States
(1) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties/sta tes 1977-1992, follow-up length = 16 years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure data: For SI laws: Based on Cramer and Kopel (2), with corrections made by authors. For waiting periods: Bureau of Alcohol, Tobacco, and Firearms ordinances Outcome: Firearm deaths: FBI UCR | Sampling: County level covariates with missing data exclude counties from analysis Exposure measurement: Coding errors in exposure variable (as described by Ayres and Donohue 2003 (3)) Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) Confounders: No adjustment for other potential confounders; Risk of collinearity due to adjustment for a vast number of confounders | Change in log of homicide rates | SI laws were associated with a reduction in the number of homicides at the county level (beta=-7.65%, p<0.05). SI laws were associated with a reduction in the number of homicides using the aggregated state level data (beta=-8.62%, p<0.05) | | Bronars and
Lott, 1998.
United States
(6) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties/sta tes No details on the number of counties 1977-1992, Follow-up length = 16 years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure data: As in Lott and Mustard 1977 (1) Outcome: FBI UCR | Outcome: Not reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) Confounders: No adjustment for other potential confounders | Change in log of homicide rates | SI laws were associated with a 6.57% reduction in homicide rates (p<0.05). In neighboring counties without SI laws there was a non-significant increment in homicides (4.5%, p<0.05). Allowing for trend-rate effects of own county laws showed that SI laws were associated with 16.1% reduction in counties with the laws, and with 9.4% increase in homicides in neighboring counties without SI laws. Models allowing for trends in neighbor's SI laws showed similar results | |---|--|---|---|---|---|--|---| | Bartley and
Cohen, 1998.
United States
(7) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties/sta tes 1977-1992, follow-up length = 16 years | Greatest: Cross-
sectional time-
series/Weighted
least squares,
Extreme bound
analyses | Exposure and outcome data: As in Lott and Mustard 1977 (1) | Sampling: County level covariates with missing data exclude counties from analysis Outcome: Not reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) Exposure: coding errors as suggested by Ayres and Donohue 2003 (3) and 2009 (8) | Change in
log of
homicide
rates | Extreme bound analyses shows that the implementation of SI laws were associated with significant reductions in homicide rates when including (or not) arrest rates, adding trends in models and when models included only larger counties, or all counties (however, using all counties, no significant associations were observed after excluding the arrests rate variable) | | Mustard, 2001.
United States
(9) | Shall
issue/Right
to carry
concealed
weapons | U.S. states.
50 states
and D.C.
1984-1996,
follow-up
length = 13
years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure data: From
Cramer and Kopel
1995 (2), data on SI
laws from Lott 1998
(10),
Outcome data: FBI
UCR | Other: Disaggregated results for single units are not provided Confounders: No adjustment for other potential confounders | Change in log of homicide rates | SI laws were not associated with reductions in the likelihood of a state having a felonious police death in logit modes (trend in post-SI laws period= -3.11, p<0.05; F-statistic for differences between pre/post-law trends = 5.37, p<0.05), and with total death rates per police officer in tobit models (trend in post-SI laws period = -1.48, p>0.05; F-statistic= 5.20, p<0.05). No significant associations were found for SI laws with handgun death rates per police officer. Waiting periods laws were not associated with reductions in felonious police deaths, deaths or handgun deaths per police officer. Poisson models showed similar results overall. | |--|--|--|---|---|--|---------------------------------|--| | Olson and
Maltz, 2001.
United States
(11) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties with population of 100,000 or more/U.S. states. 1977-1992, follow-up length = 16 years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure data: As in Lott and Mustard 1997 (1) Outcome data: FBI UCR and Supplementary Homicide Reports (SHRs) | Sampling: Convenience sample Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Change in log of homicide rates | In dummy models SI laws were not associated with a reduction of homicides (-6.52%, p>0.05), but were associated with reductions in firearm homicides (-20.9%, p<0.05). In trend models, trends in pre and post-law periods were significantly different (F statistic= 5.42, p=0.05) | | Plassmann and
Tideman,
2001. United
States (12) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties/sta tes. 1977-1992, Follow-up length = 16 years | Greatest: Cross-
sectional time-
series/Weighted
least squares,
Tobit, Probit
and Poisson
regression
models | Exposure and outcome data: Described as in Lott and Mustard 1997 (1) | Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) Confounders: No adjustment for other potential confounders | Change in log of homicide rates | SI laws were associated with reduction in the rate of homicide in Poisson models (10.55% reduction, p<0.05). In weighted least square models, there was no association between the
laws and homicides when models included all observations, or when included fewer independent variables, or counties with at least one crime (1.83% to -1.98%; p>0.05). At the state level, 3 states showed increments and 1 state showed reductions in homicide rates associated with SI laws | |--|--|--|--|--|--|---------------------------------|---| | Plassmann and
Whitley, 2003.
United States
(13) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties. No details on the number of counties 1977-2000, follow-up length = 24 years | Greatest: Cross-
sectional time-
series/Weighted
least squares
and Poisson
models | Exposure data: As in Lott and Mustard 1977 (1) Outcome data: FBI UCR | Exposure measurement: Coding errors in exposure variable (as described in Ayres and Donohue 2003 (3)) Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) Confounders: Risk of collinearity due to adjustment for a vast number of confounder | Change in log of homicide rates | The law was associated with changes in homicides at the county level in dummy models (dummy law exposure variable) (beta=-6.2%, p<0.05), but not associated in pre vs. post-law trends/spline models (differences between trends=-0.02, p>0.05), and in hybrid models (both dummy and spline models) (differences in trends=-0.02, p>0.05). Results from Poisson regression showed SI laws were associated with reductions in homicides in dummy models (beta=-4.5%, p<0.01), spline models (beta=-0.01, p<0.01) | | Helland and
Tabarrok,
2004. United
States (14) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties/sta tes. 1977-1992 and 1977-1997, follow-up length = 16 years and 21 years | Greatest: Cross-
sectional time-
series/ empirical
standard error
function
randomly
generated from
"placebo" laws -
Weighted least
squares | Exposure and outcome data: As in Lott and Mustard 1997 (1) | Sampling: County level covariates with missing data exclude counties from analysis Exposure measurement: Coding errors in exposure variable (as described in Donohue 2004 (15)) Outcome measurement: No reliable county data (as described in Martin and Legault 2005 (4) and Maltz 2006 (5) Confounders: No adjustment for other potential confounders | Change in log of homicide rates | In dummy models SI laws were not significantly associated with reductions in homicide rates (-7.8% reduction, p>0.05, Placebo SE= 4.8%). In spline/trends models, SI laws were associated with significant reductions in homicide rates (4.7% reduction, p<0.05, Placebo SE= 1.6%) | |---|--|--|---|---|---|---------------------------------|--| | Lott, 2000.
United States
(16) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties/sta tes 1977-1994, follow-up length = 17 years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure data: For SI laws: Based on Cramer and Kopel (2), with corrections made by authors. Outcome: Firearm deaths: FBI UCR | Sampling: County level covariates with missing data exclude counties from analysis Exposure measurement: Coding errors in exposure variable (as described in Donohue 2004 (15)) Outcome measurement: No reliable county data (as described in Martin and Legault 2005 (4) and Maltz 2006 (5) Confounders: No adjustment for other potential confounders; Risk of collinearity due to adjustment for a vast number of confounder | Change in log of homicide rates | SI laws were associated with a reduction in the number of homicides at the county level (dummy model: beta=-7.7%, p<0.05; trend model= -3%, p<0.05). Using the aggregated to state-level data SI laws were associated with an 8.62% reduction in homicides (p<0.05). | | Duggan, 2001.
United States
(17) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties 1977-1992, Follow-up length = 16 years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure and outcome data: As described in Lott and Mustard 1997 (1) | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for other potential confounders | Change in log of homicide rates | Initial reductions in homicides associated with SI laws were no longer observed when including only year and county fixed effects variables, or county-year observations with non-missing crime data (0.9% to 5.3%, reductions in homicides, p>0.05) | |--|--|---|---|--|---|--|--| | Duwe, 2002.
United States
(18) | Shall
issue/Right
to carry
concealed
weapons | U.S.
counties
1976-1999,
follow-up
length = 24
years | Greatest: Cross-
sectional time-
series/Poisson
regression,
negative
binomial
regression | Exposure: As in
Marvell 1999 (19)
Outcome data: Mass
public shooting data
collected from
newspapers databases | Other: Disaggregated results for single units are not provided | Change in log of homicide rates, Incident rate ratio | Results from negative binomial (dummy) models indicate that SI laws were not significantly associated with mass public shootings (IRR ranging from 0.57 to 0.85, p>0.05) or the number of people killed in these (IRR ranging from 0.66 to 0.72, p<0.05). The laws were also not associated with these outcomes in trend models. | | Ludwig, 1998.
United States
(20) | Shall
issue/Right
to carry
concealed
weapons | U.S. States.
1977-1994,
follow-up
length = 18
years | Greatest: Cross-
sectional time-
series/Weighted
least squares -
difference-in-
difference-in-
difference
approach | Exposure data: As in Lott and Mustard 1997 (1) with corrections made by the author Outcome data: Vital statistics reports compiled by the U.S. Department of Health and Human Services | Confounders: No adjustment for other potential confounders | Change in log of homicide rates | SI laws were not associated with significant changes in adult homicide rates (1.4% increment, p>0.05). There was no significant association between the shallissue laws and adult homicide rates relative to juvenile homicide rates (beta=0.16, p>0.05). | | Moody, 2001.
United States
(21) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties/sta tes 1977-1992, Follow-up length = 16 years state data: 1971-1998, follow-up length = 28 years | Greatest: Cross-
sectional time-
series/semi-log
weighted
models and log
log models | Exposure and outcome data: As in Lott and
Mustard 1977 (1) | For models using the County data: Exposure measurement: Coding errors in exposure variable (as described by Ayres and Donohue 2003 (3)) Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) | Change in log of homicide rates | In semi-log weighted models using county data, SI laws were associated with reductions in homicides (beta=-0.04, p<0.05) (models included the prison population variable); however, results were not robust to the inclusion/exclusion of the arrest rate variable (p>0.05 in 2 of 3 models) and other model specifications. Similar analyses using aggregated state-level data showed significant reductions in 3 out of 8 models. | |--|--|---|--|---|--|---------------------------------|--| | Black and
Nagin, 1998
United States.
(22) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties population of 100,000 or more. 1977-1992 Follow-up length = 16 years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure and outcome data: As in Lott and Mustard 1997 (1) | Sampling: Convenience sample Exposure measurement: Coding errors in exposure variable (as described by Ayres and Donohue 2003 (3)) Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) | Change in log of homicide rates | SI laws were associated with a reduction in homicides (beta=-0.09, p<0.05); however at the state level, Florida was the only state with a significant reduction. When Florida was removed the association was no longer significant (beta=-0.013, p>0.05). Adjusting models for state specific trends also resulted in no significant results (beta=0.038, p>0.05) | | Kovandzic and
Marvell, 2003.
United States
(23) | Shall
issue/Right
to carry
concealed
weapons | 58 Florida
counties.
1980-2000,
follow-up
length = 21
years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure data: Florida Department of State, Department of Licensing Outcome data: FBI UCR and CDC vital statistics data | Sampling: Convenience
sample
Data analysis: No use of
alternative analytical strategies
to account for dynamic trends
of time series data | Change in log of homicide rates | The concealed permit rate was not significantly associated with a reduction in homicides (0.4%, p>0.05). Similar results were obtained using CDC data and Poisson models controlling for simultaneity bias and other model specifications. | | McDowall et
al. 1995,
United States
(24) | Shall
issue/Right
to carry
concealed
weapons | Miami, Jacksonvill e, Tampa, Portland area and Jackson. 1977-1992, follow-up length = different across the three states | Moderate:
Cross-sectional
time-series
without control
group/Interrupte
d time series
analysis -
ARIMA models | Exposure data: Florida.
Stat. ch. 790.06.
Oregon. Rev.
Stat.166.29 166.295.
Mississippi Code Ann.
45-9-101
Outcome data: NCHS | Sampling: Convenience sample Confounders: No adjustment for other potential confounders | Change in
number of
monthly
homicides
and rate of
homicides | Results from aggregated analyses indicate that SI laws were significantly associated with increments in homicide rates (beta=4.5, p<0.05). Background checks and waiting periods were not significantly associated with changes in homicide rates (beta=-3.25, p>0.05). Three of the five areas examined had significant increments in the number of homicides per month after SI laws were enacted. | |---|--|---|---|---|--|--|--| | Rubin and
Dezhbakhsh.
2003, United
States (25) | Shall
issue/Right
to carry
concealed
weapons | U.S.
counties
1977-1992,
Follow-up
length = 16
years | Greatest: Cross-
sectional time-
series/2 stage
least squares
regressions | Exposure and outcome data: As in Lott and Mustard 1997 (1) | Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) Confounders: No adjustment for other potential confounders | Change in log of homicide rates | Results show that for counties in 27 states, SI laws were not associated with variations in homicide rates. Only counties in 6 states had some evidence of SI being associated with homicide reductions. | | Martin and
Legault 2005,
United States
(4) | Shall
issue/Right
to carry
concealed
weapons | U.S. states.
1977-1992,
follow-up
length = 16
years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure data: As described in Lott and Mustard 1997 (1), and Ludwig 1998 (20). Outcome data: Data used in Lott and Mustard 1997 (1); FBI UCR | Data analysis: No additional models to account to time trends specifications Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Change in log of homicide rates | SI laws were not significantly associated with homicide rates using the state aggregated data (Model including arrest rate covariate: beta= -0.0554%, p>0.05) | | Ayres and
Donohue
2003. United
States (3) | Shall
issue/Right
to carry
concealed
weapons | U.S. states.
1977-1999,
Follow-up
length = 23
years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure and outcome data: As in Vernick and Hepburn 2003 (26), and as in Lott and Mustard 1997 (1) | County data analyses: Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) | Change in log of homicide rates | SI laws were not associated with homicide rates at the state level in dummy models (beta=3.5%, p>0.05) or hybrid models (dummy: beta=4.8%, p>0.05; trend/spline: beta=-1.5%, p>0.05) (models using data from 1977-1999, Vernick's coding, dummies for years data, and controlling for incarceration rates and state specific trends). Results were inconsistent across multiple model specifications. | |--|--|---|---|--|--|---------------------------------|---| | Ayres and Donohue, 2003. United States. (27) | Shall
issue/Right
to carry
concealed
weapons | U.S. counties/sta tes. 1977-2000, follow-up length = 24 years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure data: As in
Vernick and Hepburn
2003 (26); corrections
to errors in data used in
Plassmann and
Whitley 2003
(13)
Outcome data: FBI
UCR in Plassmann and
Whitley 2003 (13) | County data analyses: Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) | Change in log of homicide rates | SI laws were not associated with changes in homicide rates in dummy models (beta=-4.2%, p>0.05) or hybrid models (dummy: beta= -3.9%, p>0.05; trend/spline: beta= -0.6%, p>0.05) (models using county data, Vernick's coding and region-year effects). Models using state-level data showed that SI laws were associated with increments in homicides in the dummy model (beta= 7.7%, p<0.05) but not in the hybrid model (dummy: beta= 6.8%, p>0.05; trend/spline: beta= 0.1%, p>0.05) (models with Vernick's coding, dropping early legalizers and controlling for incarceration rates and state-specific trends). | | Donohue,
2004. United
States (15) | Shall
issue/Right
to carry
concealed
weapons | U.S. states.
1977-1999,
follow-up
length = 23
years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure and outcome data: As in Lott and Mustard 1997 (1) with corrections made by authors | Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) | Change in log of homicide rates | The association between SI laws and homicides was not robust to model specifications. Results from state-level data analyses adjusting for state specific trends showed an association only in the hybrid-trend model (beta=-3.5%, p<0.01); no significant associations were observed in other models (dummy: beta=-1.9, p>0.05; hybrid-dummy: beta=2.7%, p>0.05). | |--|--|---|---|---|---|---------------------------------|--| | Wellford et al.
2005. United
States (28) | Shall
issue/Right
to carry
concealed
weapons | U.S. states.
1977-2000
Follow-up
length = 24
years | Greatest: Cross-
sectional time-
series/ Weighted
least squares | Exposure and outcome data: Lott's revised new data covering the period 1977-2000 | Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) Other: Disaggregated results for single units are not provided | Change in log of homicide rates | In models using data from 1977-1992, the committee was able to replicate Lott and Mustard's 1977 study results; however, the association between SI laws and homicides was not robust to model specifications in dummy or trend models (e.g. dummy model with socioeconomic and demographic covariates: beta=-8.33, p<0.05; dummy model without covariates: beta=-1.95, p>0.05). | | Grambsch,
2008. United
States (29) | Shall
issue/Right
to carry
concealed
weapons | U.S. states.
1976-2001,
Follow-up
length = 26
years | Greatest: Cross-
sectional time-
series. Poisson
random variable
with log-linear
mean
specification | Exposure data: As in
Lott 2000 (16) and
Vernik and Hepburn
2003 (26)
Outcome data: FBI
UCR | Confounders: Adjustment for other potential confounders (e.g. incarceration rate) Other: Disaggregated results for single units are not provided | Change in log of homicide rates | Controlling for regression to the mean showed that the relative homicide rate increased more rapidly in the post-law period than in the pre-law period in both random (percent change= 0.5%, p>0.05) and fix effects model (percent change= 6%, p<0.05). | | Rosengart et al., 2005.
United States (30) | Shall issue laws, minimum age of 21 years for handgun purchase, minimum age of 21 years for private handgun possession, one gun a month laws, and junk gun ban laws | U.S. States
1979 to
1998,
Follow-up
length = 20
years | Greatest: Cross-
sectional time-
series/Poisson
regression | Exposure data: review of criminal statutes and codes, the Bureau of Justice Statistics and the Open Society Institute Outcome data: National Center for Health Statistics | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Other: Disaggregated results for single units are not provided | Rate ratios
for
homicide
rates | There was no association between SI laws and firearm homicides (RR =1.11; 95% CI=0.99; 1.24), or all homicides (RR =1.07; 95% CI =0.98 to 1.17). Bans of junk guns were associated with a decrease in total suicide rates (RR= 0.86; 95% CI= 0.77;0.96). Minimum age for purchase/possession and "one gun a month" laws were not associated with significant variations in the rates of firearm homicides or total homicides. Results were similar after varying model specifications: removing the state-law interaction and the state-year interaction terms | |---|---|--|--|---|---|--|---| | Hepburn et al,
2004. United
States (31) | Shall
issue/Right
to carry
concealed
weapons | U.S. States
1979-1998,
Follow-up
length = 20
years | Greatest: Cross-
sectional time-
series/Negative
binomial
regression and
generalized
estimating
equations | Exposure data: State legislative code and session law text Outcome data: WONDER | Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Incidence
rate ratio
(IRR) of
homicide
rates | No significant association between SI laws and homicide rates was observed for SI laws enacted between 1985 and 1991 only (IRR= 0.95, 95%CI= 0.85;1.07) or SI laws enacted between 1992 and 1997 only (IRR= 1.07, 95%CI= 0.96;1.19) Analyses by gender and age groups produced similar results. Changing the implementation of the law to 1 next year after enactment, also showed similar results | | Kovandzic et
al, 2005.
United States
(32) | Shall
issue/Right
to carry
concealed
weapons | 189 U.S. cities with population of 100,000 or more. 1980-2000, follow-up length = 21 years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure data: Authors provide a description on the implementation of the laws Outcome data: FBI reports | Sampling: Convenience sample Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data. | Change in log of homicide rates | SI laws were not significantly associated with variations in homicide rates at the city level (beta=0.011, p>0.05). Individual analysis for states showed that the implementation of the law is associated with increments and reductions in homicides (5 and 2 states, respectively). | |--|--|---|---|---|---|--
--| | La Valle,
2007. United
States (33) | Shall
issue/Right
to carry
concealed
weapons
Brady gun
law | 20 of the
U.S. largest
cities in the
U.S.
1990-2000,
follow-up
= 11 years | Greatest: Cross-
sectional time-
series/Generaliz
ed least squares
time series,
generalized
estimating
equations | Exposure data: Author provides a description on the implementation of the laws Outcome data: FBI UCR | Sampling: Convenience sample Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Change in log of homicide rates | Shall issue laws were not associate with a reduction in the rate of total or firearm homicides (beta=-0.02 for both overall and firearm homicides; p >0.05, onetailed). States that implemented the Brady law showed a significant reduction in the rate of overall homicides (beta=-0.120, p <0.05, one-tailed) and of firearm homicides (beta=-0.156, p <0.05, one-tailed). | | La Valle and
Glover, 2012.
United States
(34) | Shall
issue/Right
to carry
concealed
weapons | 57 of the largest cities in the U.S. 1980-2006, Follow-up length = 27 years | Greatest: Cross-
sectional time-
series/Generaliz
ed least squares
time series,
generalized
estimating
equations | Exposure data: WESLAW Outcome data: FBI UCR, Crime in the United States, and National Archives of Criminal Justice Data | Sampling: Convenience sample Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Change in log of homicide and firearm homicide rates | Results from weighted estimates with interpolated data shows that SI laws were associated with an increment in firearm homicides (beta=0.274, p<0.05) and homicides (beta=0.206, p<0.05); results were not consistent in alternative models (no significant association with either firearm or homicides). May issue laws were associated with a reduction in the rate of homicides (b=-0.214, p<0.05) and firearm homicides (b=-0.263, p<0.05). | | Ginwalla,
2013. United
States (35) | Shall
issue/Right
to carry
concealed
weapons | Southern
Arizona.
August 1,
2008,
through
July 31,
follow-up
length = 48
months | Moderate:
Cross-sectional
pre/post-law
observations
without control
group/Relative
risk analysis | Exposure data: Authors provide a description on the implementation of the laws Outcome data: University of Arizona Medical Center's trauma registry, and the Pima County Medical Examiner's (ME's) Office | Sampling: Convenience sample Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data; No alterative strategies to test for robustness of findings given other model specifications Confounders: No adjustment for potential confounders | Firearm
injuries/de
aths
relative
risk | The law was associated with an increment in the proportion of firearm related injuries/deaths (of total events potentially involving guns) (RR=1.11; 95%CI=1.01,1.22). The law was also associated with an increment in the proportion of firearm homicides (RR=1.27; 95%CI=1.02,1.58). The proportion of firearm suicides was not different between the pre/post law periods | |--|--|---|--|---|--|--|--| | Strnad. 2012,
United States
(36) | Shall
issue/Right
to carry
concealed
weapons | U.S. states
1977-1999,
follow-up
length = 23
years | Greatest: Cross-
sectional time-
series/Bayesian
hierarchical
methods | Exposure and outcome data: As in Donohue 2004 (15) | None | Change in log of homicide rates | The model average approach suggest a modest reduction in homicides associated with SI laws: the model averaged coefficient of the SI laws spline dummy = -0.0146, and 0.009% of the posterior distribution for the coefficient was above zero (SD= 0.0039) | | Moody and
Marvell, 2008.
United States
(37) | Shall
issue/Right
to carry
concealed
weapons | U.S.
counties
1977-2000,
Follow-up
length = 24
years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure and outcome data: Described as in Lott and Mustard 1997 (1) with additional coding for new years included in models | Exposure measurement: Coding errors in exposure variable (as indicated by Ayres and Donohue 2009 (49)) Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) Confounders: Risk of collinearity due to adjustment for a vast number of confounders | Change in log of homicide rates | SI laws were not associated with changes in homicides (US weighted average dummy model= 0.6%; however, the US weighted average trend was significantly associated with homicides= -1.7%, F-test= 4.74). At the state level, (dummy models) 8 states showed significant reductions, and 4 states increments in homicide rates (at a 90% confidence level). In trend models, 7 states showed | | | | | | | | | reductions and 8 states
increments in homicides (90%
confidence) | |--------------------------------------|---|---|---|---|--|---------------------------------|--| | Moody and
Marvell, 2009
(38) | Shall
issue/Right
to carry
concealed
weapons | U.S.
counties
1977-2000,
Follow-up
length = 24
years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure and outcome data: with corrections as in Ayres and Donohue 2009 (8) | Outcome measurement: No reliable county data (as described by Martin and Legault 2005 (4) and Maltz 2006 (5) | Change in log of homicide rates | The population-weighted average estimate across all states showed that SI laws were not associated with changes in homicide rates (US weighted average dummy model= -0.9%, p>0.1; US weighted average trend model: beta= -1.3%, p>0.1) | | Lott, 2010.
United States
(39) | Shall issue/Right to carry concealed weapons Castle Doctrine laws | U.S. states
1977-2005,
Follow-up
length = 29
years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure data: Detailed description on SI laws enacted in all states Outcome: Firearm deaths: FBI UCR | Exposure measurement: Coding errors in exposure variable (as described by Ayres and Donohue 2003 (3)) Confounders: Risk of collinearity due to adjustment for a vast number of confounders *Castle doctrine law analysis: Data analysis: No alternative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series
data; No information on statistical strategies used in analyses Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units not provided | Change in log of homicide rates | At the state level, shall issue (SI) laws were associated with reductions (2%) in the homicide rate in the trend (p<0.01), and hybrid models (trend model= 2% reduction, p<0.01), but was only marginally associated in the dummy model (20.3% reduction, p<0.05). The Castle Doctrine laws were associated with a 9% (p<0.01) reduction in the rate of homicides The Brady law was not associated with a reduction in the rate of homicides (% change after the law = 3.6%, p>0.05) | | Gius, 2014.
United States
(40) | Shall issue/Right to carry concealed weapons, Federal assault weapons ban, State assault weapons laws | U.S. States.
1980 to
2009,
Follow-up
length = 30
years | Greatest: Cross-
sectional time-
series/not
described | Exposure data: From Ludwig and Cook 2003 (41), Legal Community Against Violence, the National Rifle Association Outcome data: Supplementary Homicide Reports from Department of Justice | Exposure measurement: No clear description of the units (e.g. states) included in analyses Data analysis: No alterative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Change in homicide rates | More restrictive laws regarding carrying concealed firearms (prohibited or "May issue" laws) were associated with higher rates of firearm homicides (beta=0.365, p<0.05). The Federal assault weapons ban law was associated with higher rates of firearm homicides (beta=0.66, p<0.05) State assault weapons laws were not associated with higher rates of firearm homicides (beta=0.29, p>0.05). | |--|---|---|---|---|---|---------------------------------|--| | Ayres and
Donohue,
2009. United
States (8) | Shall
issue/Right
to carry
concealed
weapons | U.S. states.
1977-2006,
Follow-up
length = 30
years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure and outcome data: as in Moody and Marvell 2008 (37) with corrections | Other: Disaggregated results for single units are not provided | Change in log of homicide rates | Results from dummy (0.4% reduction), spline (0.34%) and hybrid models (dummy= 0.18%, trend= 0.33%) showed that SI laws were not associated with changes in homicide rates (p>0.1) (models adjusted by state trends and an extending crack variable) | | Ayres and
Donohue,
2009. United
States (42) | Shall
issue/Right
to carry
concealed
weapons | U.S. states.
1977-2000,
Follow-up
length = 24
years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure and outcome data: as in Moody and Marvell 2008 (37) with corrections in exposure and outcome variables | Other: Disaggregated results for single units are not provided | Change in log of homicide rates | Results from dummy (1.7% reduction), spline (0.2%) and hybrid models (dummy= 1.5%, trend= 0.0%) showed that SI laws were not associated with changes in homicide rates (p>0.1) | | Aneja et al.,
2014. United
States (43) | Shall
issue/Right
to carry
concealed
weapons | U.S. states.
1979-2010,
follow-up
length = 31
years | Greatest: Cross-
sectional time-
series/Weighted
least squares | Exposure data: As in Lott and Mustard 1977 (1) with corrections; the authors also provide a description on the latest laws implemented in recent years Outcome data: Michigan's Interuniversity Consortium for Political and Social Research - FBI UCR data | Other: Disaggregated results for single units are not provided | Change in log of homicide rates | Models using county data from 1993-2000, including lagged arrest rates, robust and clustered standard errors, showed no association between SI laws and homicide rates (dummy= -1.11% and spline= -0.00%, p>0.05). Models adding more years of data and using different specifications showed no significant associations between SI laws and homicide rates. Similarly, models using statelevel data (up to 2010) showed no association between SI laws and homicide rates (dummy= 0.23%, hybrid dummy= -0.06% | |--|--|--|--|---|---|---|---| | Villaveces et al., 2000.
Colombia (44) | Shall
issue/Right
to carry
concealed
weapons | Bogota and Cali, Colombia. In Cali form 1993- 1994; in Bogota from 1995- 1997, follow-up length = 2 and 3 years, respectivel y | Greatest: Cross-
sectional time-
series/Negative
binomial
regression | Exposure data: Authors provide a description on the implementation of the laws Outcome data: National Institute of legal medicine, the police, the district attorney's office ad the department of transportation | Data analysis: No alternative strategies to test for robustness of findings given other model specifications. | Rate ratio of homicides , standardiz ed mortality ratio | and spline= 0.48%, p>0.05). The law was associated with reductions in the incidence of homicides in Bogota (rate ratio= 0.87, 95%CI= 0.76;0.99) and in Cali (rate ratio=0.86, 95%CI= 0.76;0.97). In Bogota the law was associated with reductions in the incidence of firearm-related homicides (rate ratio= 0.85, 95%CI= 0.75;0.97). In Cali the association was marginally significant (rate ratio= 0.90, 95%CI= 0.79;1.03). | | Cheng and
Hoekstra,
2013. United
States (45) | Castle doctrine | U.S. states.
2000-2010,
follow-up
length = 11
years | Greatest: Cross-
sectional time-
series/Linear
and Negative
binomial models | Exposure data: Institute for Legislative Action of the National Rifle Association Outcome data: FBI UCR | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Other: Disaggregated results for single units are not provided | Change in log of homicide rates | In adjusted models, the Castle doctrine laws (states removing the duty to retreat in some place outside the home) were associated with a 6-11% increment in homicides (p<0.05) | |--|--|---|---|--|--|---|--| | McClellan and
Tekin, 2012.
United States
(46) | Castle
doctrine/Sta
nd your
ground laws | U.S.
states.
2000-2010,
follow-up
length = 11
years | Greatest: Cross-
sectional time-
series/Linear
and Negative
binomial models | Exposure data: Institute for Legislative Action of the National Rifle Association, and State Legislators Outcome data: U.S. Vital Statistics | Confounders: No adjustment for other potential confounders Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Other: Disaggregated results for single units are not provided | Change in log of monthly homicide rates | Results showed that "stand your ground" laws were associated with a 6-6.8% increase in homicide rates, mainly driven by increments (14-16%) in homicide rates among White males (p<0.05). Other self-defense provisions (e.g. castle doctrine laws) were associated with 26% increments in White female homicides, and with 13% in White males homicides. | | Kleck and
Patterson,
1993. United
States (47) | Variety of laws | 170 U.S.
cities with
population
of 100,000
or more.
1979-1981 | Least: Cross
sectional
comparison/Ord
inary least
square
regressions | Exposure data: U.S. Bureau of Alcohol, Tabaco, and Firearms, and as listed in other prior research publications Outcome data: NCSH | Confounders: No adjustment for other potential confounders | Log of
homicide
rates | Laws requiring permits to purchase or acquire a firearm were associated with lower homicide rates (beta=-0.150, p<0.05) and firearm suicides rates (beta=-0.146, p<0.05) Restrictions for possession of firearms for those with mental conditions were associated with | |--|-------------------|--|---|--|--|-----------------------------|--| | | | | | | | | lower firearm homicide rates (b=-0.177, p<0.01) Laws mandating additional discretionary penalties for felons committing crimes with gun were associated with lower firearm homicide rates (b=-0.115, p<0.01) State or local licenses requirements for gun dealers were associated with lower firearm suicide rates (beta=-0.140, p<0.05) | | Ruddell and
Mays, 2005.
United States
(48) | Background checks | U.S. states.
1999-2001 | Least: Cross
sectional
comparison/
Ordinary least
squares | Exposure data: Americans for Gun Safety Foundation. Outcome data: WONDER | Exposure measurement: Not validated scale for exposure classification Data analysis: No alternative strategies to test for robustness of findings given other model specifications. Confounders: No adjustment for other potential confounders | Homicide
rate | The implementation of the law was associated with a reduction in the rate of state firearm homicides (beta ranging from - 0.016 to -0.019, p<0.05, in models adjusted for different sets of covariates) | | Sumner et al.,
2008. United
States (49) | Background checks | U.S. states. 2002-2004 | Least: Cross
sectional
comparison/Neg
ative binomial
regression | Exposure data: Bureau
of Justice Statistics
Outcome data:
WISQARS | Data analysis: No alternative strategies to test for robustness of findings given other model specifications. Confounders: No adjustment for other potential confounders | Incidence
rate ratio
of firearm
homicides
and
suicides | Performing local-level background checks, compared with federal checks was associated lower firearm homicide rates (IRR= 0.78, 95% CI=0.61;1.01) and lower firearm suicide rates (IRR=0.73, 95%CI=0.60;0.89) in adults >20 years. | |--|---|---|---|--|--|--|--| | Ludwig and
Cook, 2000.
United States
(50) | Brady Handgun violence prevention act (background checks and waiting periods) | U.S. states.
1985-1997,
follow-up
length = 13
years | Greatest: Cross-
sectional time-
series/Weighted
least squares
and Negative
binomial
regression | Exposure data: Bureau of Alcohol, Tabaco, and Firearms Outcome data: Vital statistics NCHS | Confounders: No adjustment for other potential confounders Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Other: Disaggregated results for single units are not provided | Incidence rate ratio of total and firearm Homicide s/suicides and percentag e of firearm homicides /suicides | Results showed there were no significant associations between the Brady law and homicides, firearm homicides, suicides and firearm suicides among those aged 21 or older (p>0.05). In negative binomial models, among those aged 55 or older, the Brady law was associated with lower firearm suicides (IRR=0.94, 95%CI=0.90,0.98) and lower percentage of firearm suicides (IRR=0.97, 95%CI=0.94,0.99). In weighted least squares models, waiting periods along with Brady law showed stronger reductions in firearm suicides among those aged 55 or older (beta=-1.03, 95%CI=-1.58, -0.47) | | Vigdor and
Mercy, 2003.
United States
(51) | Background checks | U.S. states.
1982-1998,
follow-up
length = 17
years | Greatest: Cross-
sectional time-
series/Negative
binomial
regression | Exposure data: Bureau of Alcohol, Tabaco, and Firearms, Lexis-Nexis databases Outcome data: FBI supplementary homicide report | Outcome measurement: outcome variable with some percentage of missing data Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Incidence
rate ratios
of
intimate
partner
homicide
(IPH) and
firearm
IPH | States with restraining order laws had significantly lower rates of total intimate partner homicides IPH (IRR=0.91, 95%CI= 0.83;0.99), female IPH (IRR=0.89, 95%CI= 0.82;0.97) and female firearm IPH (IRR=0.88, 95%CI= 0.78;0.99), with the magnitude being stronger if states had greater ability to check for background checks. Laws restricting firearm possession/purchase of firearms for those with domestic misdemeanor laws were found not associated with these outcomes (p<0.05) | |---|-------------------|---|---|---|--|--|---| | Vigdor and
Mercy, 2006.
United States
(52) | Background checks | U.S. states.
1982-2002,
follow-up
length = 21
years | Greatest: Cross-
sectional time-
series/Negative
binomial
regressions | Exposure data: Bureau of Alcohol, Tabaco, and Firearms, Lexis-Nexis databases Outcome data: FBI supplementary homicide report | Outcome measurement: outcome variable with some percentage of missing data Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Incidence
rate ratios
of
intimate
partner
homicide
(IPH) and
firearm
IPH | States
with restraining order laws had significantly lower rates of total intimate partner homicides (IPH) (IRR= 0.92, 95%CI=0.86-0.98), female IPH (IRR= 0.92, 95%CI=0.86:0.98) and female firearm IPHs (IRR=0.90, 95%CI=0.83-0.97), with the magnitude of the association being stronger in states with greater ability to check for background checks. Laws restricting firearm possession/purchase of firearms for those with domestic misdemeanor were not associated with these outcomes (p<0.05) | | Zeoli and | State laws | 46 of | Greatest: Cross- | Exposure data: As in | Sampling: Convenience | Incidence | States with restraining order | |----------------|--------------|---------------|------------------|-------------------------|-----------------------------------|-------------|------------------------------------| | Webster, 2010. | reducing | largest | sectional time- | Dugan et al. 2003 (54), | sample | rate ratios | laws had significantly lower | | United States | access to | cities in the | series/Generaliz | Vigdor and Mercy | Data analysis: No use of | of | rates of total IP Homicides (IPH) | | (53) | firearms for | U.S. | ed estimating | 2006 (52) and updated | alternative analytical strategies | intimate | (IRR= 0.81, 95%CI= 0.68-0.95) | | | those under | 1979-2003, | equations - | using Lexis-Nexis | to account for dynamic trends | partner | and firearm IPHs (IRR= 0.75, | | | domestic | follow-up | Poisson | databases | of time series data | homicide | 95%CI= 0.62-0.92). | | | violence | length = 25 | distribution | Outcome data: FBI | Outcome measurement: | (IPH) and | Laws allowing for firearm | | | restraining | years | | supplementary | Outcome variable with some | firearm | confiscation and those restricting | | | order | | | homicide report | percentage of missing data | IPH | firearm possession/purchase of | | | (DVRO) and | | | | Other: Disaggregated results | | firearms for those with domestic | | | with | | | | for single units are not | | misdemeanor were not | | | convicted of | | | | provided | | associated with these outcomes | | | a domestic | | | | | | (p<0.05) | | | violence | | | | | | | | | misdemeano | | | | | | | | | r; laws | | | | | | | | | allowing | | | | | | | | | police | | | | | | | | | officers to | | | | | | | | | confiscate | | | | | | | | | firearms | | | | | | | | | from the | | | | | | | | | scene | Rodriguez and | General | U.S. states. | Least: Cross- | Exposure data: Bureau | Exposure measurement: Not | Incidence | General prohibitions (permits | |---------------|---------------|--------------|-----------------|-----------------------|-----------------------------------|-------------|----------------------------------| | Hempstead, | prohibitions | 1995-2004, | sectional time- | of Justice Statistics | validated scale for exposure | rate ratios | and minimum age requirements | | 2011. United | (permit | follow-up | series without | Outcome data: NCHS | classification | of suicides | to purchase firearms) (IRR=0.94, | | States (55) | requirements | length = 10 | pre-post | data | Data analysis: No use of | | p <0.01) and behavioral | | | on | years | observations/Ne | | alternative analytical strategies | | prohibitions (mental health, | | | possession | | gative binomial | | to account for dynamic trends | | alcohol and drug problems, | | | and | | models | | of time series data | | domestic violence or | | | purchases by | | | | Confounders: No adjustment | | misdemeanor conviction) | | | minors), | | | | for other potential confounders | | (IRR=0.99, p<0.01) were | | | behavioral | | | | Other: Disaggregated results | | associated with lower male | | | problems | | | | for single units are not | | suicide rates. | | | (background | | | | provided | | Permit requirements were | | | s checks for | | | | | | associated with lower rates of | | | "high risk" | | | | | | suicides among those aged 45 or | | | individuals | | | | | | older (IRR=0.86, p<0.05), but | | | without | | | | | | higher suicides rates among | | | criminal | | | | | | males aged 15-24 (IRR=1.2, | | | history), and | | | | | | p<0.01). | | | restrictions | | | | | | Restrictions for under age | | | for those | | | | | | purchases, and individuals with | | | with | | | | | | mental health conditions were | | | criminal | | | | | | associated with lower rates of | | | history | | | | | | suicides among males 25-44 | | | | | | | | | years old (IRR=0.86 and | | | | | | | | | IRR=0.97, respectively, p<0.05) | | Sen and
Panjamapirom,
2012. United
States (56) | Background checks | U.S. states.
1996-2005,
follow-up
length = 10
years | Least: Cross-
sectional time-
series without
pre-post
observations/Ne
gative binomial
models | Exposure data: State Procedures Related to Firearm Sales from the Bureau of Justice Statistics Outcome data: NCHS | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Incidence
rate ratios
of all and
firearm
homicides
/suicides | An additional background check was associated with fewer firearm homicides (IRR= 0.93, 95% CI= 0.91;0.96) and only marginally with firearm suicides (IRR= 0.98, 95% CI= 0.96;1.00). Firearm suicide deaths are lower in states with checks for mental illness (IRR= 0.96, 95% CI= 0.92;0.99), and fugitive status (IRR=0.95, 95% CI= 0.90;0.99) (compared with having only criminal background checks) Firearm homicides were lower when states with checks on restraining orders (IRR= 0.87, 95% CI= 0.79;0.95), and fugitive status (IRR= 0.79, 95% CI= 0.72;0.88) (compared with having only criminal background checks) | |---|--|---|--|---|--|---|---| | Irvin et al.,
2014. United
States (57) | Restrictions regarding licensing for dealers, record-keeping, inspections ad theft reporting | U.S. states
1995-2010,
16 years | Moderate:
Cross-sectional
time-series
without pre-post
observations/Poi
sson regression | Exposure data: As in
Vernick et al. 2006
(58), and Lexis Nexis
databases
Outcome data: NCHS | Data analysis: No alterative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data; Inappropriate or not clear operationalization of variables Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Incidence
rate ratio
of firearm
homicides | Licensing requirements for dealers (IRR= 0.74, 05%CI= 0.67, 0.81) and allowing inspections (0.64, 05%CI= 0.59, 0.69) were associated with lower rates of firearm homicides. Record keeping of sales was associated with higher rates of firearm homicide (IRR= 1.45, 95%CI= 1.30, 1.61) | | Medoff and
Magaddino,
1983. United
States (59) | Restrictions
on license to
purchase and
waiting
periods | U.S. states.
1970 | Least: Cross-
sectional
comparison/Ord
inary least
squares | Exposure data: State reports Outcome data: Vital statistics | Confounders: No adjustment
for other potential confounders
Other: Disaggregated results
for single units are not
provided | Suicide
rate of
White
males | States with restrictions on license purchases and waiting periods had lower suicide rates (beta= -3.02, p<0.01) that states without these laws. States with more strict restrictions had lower rates of suicides compared with states with less restrictions (beta= -2.9, p<0.01) | |---|--|---|---|---|---|--------------------------------------
---| | Marvell, 2001.
United States
(60) | Laws targeting juvenile firearm possession: Laws passed before 1994 Laws passed in 1994 Federal 1994 law | U.S. states.
1980-1998,
follow-up
light=19
years
(analyses
for all ages
1970-1998
= 29 years) | Greatest: Cross-
sectional time-
series/Multiple
time-series
regression | Exposure data: State reports Outcome data: NCHS Vital statistics and Bureau of Justice Statistics | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data | Firearm
homicide
rates | States affected by the federal law only had a significant reduction in the rate of firearm homicides when all age groups were combined (beta=-0.084, p<0.05), with the association being driven by trends in New York; there were no associations between the law and firearm homicides in specific age groups. In addition, there was no association between any of the laws and homicide rates, or suicide rates (among individuals aged 15-19). | | Webster et al.,
2004. United
States (61) | Laws
targeting
juvenile
firearm
possession/p
urchases
CAP laws | U.S. states.
1976-2001,
follow-up
length = 26
years | Greatest: Cross-
sectional time-
series/Negative
binomial
regression and
generalized
estimating
equations | Exposure data: Bureau of Alcohol, Tobacco and Firearms Outcome data: NCHS | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Other: Disaggregated results for single units are not provided | Rate ratio
of total,
firearm,
and non-
firearm
suicides | Among individuals aged 14-17 minimum age restrictions for possession or purchase were not associated with changes in firearm or all suicides (p<0.05). However, among those aged 18-20, these restrictions were associated with increments in suicides (restrictions on possession: RR=1.13, 95%CI=1.01;1.27; permits to purchase: RR= 1.18, 95%CI=1.04;1.34) and firearm suicides (permit to purchase only: RR=1.22, 95%CI =1.04;1.43) State CAP laws were associated | |--|--|---|--|--|---|--|--| | Webster et al.,
2014. United
States (62) | Licensing
for firearm
purchases | U.S. states/count ies. 1999-2010/2012, follow-up length = 12/14 years | Greatest: Cross-
sectional time-
series/Generaliz
ed least squares
regression
models | Exposure data: Description on when the law was implemented Outcome data: WISQARS, WONDER and FBI UCR | Data analysis: No alterative strategies to test for robustness of findings given other model specifications. | Change in homicide rates | and those aged 18-20 (RR ranging from 0.87 to 0.92, p<0.05) The repeal of the law was associated with an increment in the rate of firearm homicides (beta=1.18, 95%CI=0.92;1.43), total homicides (beta=1.08, 95%CI=0.77;1.40) and Murder and non-negligent manslaughter rates (FBI data) (beta=0.81, 95%CI=0.26;1.35), but not with rates of non-firearm homicides. | | Reisch et al.,
2013.
Switzerland
(63) | National
Army XXI
reform | Switzerlan
d.
March
1995-
December
2008,
follow-up
length=
154 months | Greatest: Cross-
sectional time-
series/Interrupte
d time series,
Ordinary least
squares, Poisson
regressions | Exposure data: Authors provide a description on the implementation of the laws Outcome data: Federal Statistical Office | Confounders: No adjustment for other potential confounders | Changes
in rate of
total,
firearm,
and non-
firearm
suicides | Among men aged 18-43, the reform was associated with a reduction of suicide rates (beta=2.16, 95% CI=1.29; 3.03) and firearm suicides (beta= 2.64, 95% CI=2.19;3.08). No similar reductions were observed for control groups (women aged 18-43, and men aged 44-53). Alternative models also showed a significant association with the intervention. | |--|--|---|---|---|---|--|---| | Gjertsen et al.,
2014. Norway
(64) | Norwegian
gun control
laws:
Hunter's
examination,
shotgun
acquisition
(police
permit),
weapons
cabinet, and
Home Guard
firearm | Norway.
1969-2009,
follow-up
length= 41
years | Moderate: Cross-sectional time-series without control group/Piecewise regression, Poisson regression and negative binomial regression | Exposure data: Authors provide a description on the implementation of the laws Outcome data: Norwegian Institute of Public Health | Data analysis: No alternative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Rate ratio
of
suicides,
homicides
and
unintentio
nal death | The laws were not associated with reductions in unintentional firearm death rates. Results suggested that requiring a police permit before acquiring a shotgun was possibly associated with reductions in male suicide rates among those aged 15-34 (trend after the 1990: beta=-0.078, p<0.05) Results suggested that the home guard weapons law was associated with reductions in male firearm homicides (trend after the 2003: beta=-0.37, p<0.05) | | Cummings et al., 1997.
United States (65) | Child access
prevention
(CAP) laws | U.S. states
1979-1994,
follow-up
length, 16
years | Greatest: Cross-
sectional time-
series/Poisson
and negative
binomial
regressions | Exposure data: State reports Outcome data: NCHS | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Incidence
rate ratio
of
firearms
unintentio
nal deaths,
suicides,
and
homicides | CAP laws were associated with a reduction in unintentional firearm deaths among children aged 14 or younger (IRR= 0.77, 95%CI= 0.63;0.94), but only marginally associated with firearm suicides (IRR= 0.81, 95%CI= 0.66;1.01) and firearm homicides (IRR= 0.89, 95%CI= 0.76;1.05). CAP laws were also not associated with reductions in unintentional firearm deaths among individuals 15 or older (p<0.05) Stronger reductions were observed among states allowing for a felony prosecution (IRR= 0.59, 95% CI=0.45;0.77) | |--|--|---|--|--
--|---|--| | Webster et al.,
2000. United
States (66) | Child access
prevention
(CAP) laws | U.S. states
1979-1997,
follow-up
length, 19
years | Greatest: Cross-
sectional time-
series/Negative
binomial
regressions | Exposure data: As in
Cummings et al. 1997
(65)
Outcome data: NCHS | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data | Incidence
rate ratios
of firearm
unintentio
nal deaths | CAP laws were associated with a 17% reduction in firearm unintentional deaths (95%CI= □-29;-3%). These results were mainly driven by Florida (55% reduction, 95%CI= -75%, -31%); when Florida was excluded from analyses, there were no significant associations in the remaining 14 states. In states allowing felony prosecution of law offenders there was a 31% reduction (95%CI= -44%;-15%) in these deaths. | | Hepburn et al,
2006. United
States (67) | Child access
prevention
(CAP) laws | U.S. states
1979-2000,
follow-up
length, 22
years | Greatest: Cross-
sectional time-
series/Poisson
and negative
binomial
regressions | Exposure data: As in
Vernick and Hepburn
2003 (26), Outcome
data: NCHS
WONDER | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data | Rate ratio
of firearm
unintentio
nal deaths | CAP laws were associated with a reduction in unintentional firearm rates among individuals under age 15 (RR= 0.78, 95%CI= 0.61;0.99), but not among adults aged 55-74. The association was stronger in states allowing felony prosecution of law offenders (RR= 0.64, 95CI= 0.46;0.89). | |--|--|---|--|---|--|--|---| | Lott and
Whitle, 2001.
United States
(68) | Safe storage
Laws | U.S. states
1979-1996
follow-up
length, 18
years | Greatest: Cross-
sectional time-
series/Weighted
tobits and
Poisson
regressions | Exposure data: As in
Cummings et al. 1997
(65)
Outcome data: FBI
UCR | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: Risk of collinearity due to adjustment for a vast number of confounders Other: Disaggregated results for single units are not provided | Change in log of homicide rates | Safe storage laws were not associated with changes in firearm unintentional deaths across any of the aged groups analyzed (under age 5, 5-9, 10-14, and 15-19) (p<0.05) Safe storage laws were not associated with changes in firearm suicides among individuals under age 15 or those aged 15-19 (p<0.05). The authors suggest that varying model specifications, including whether the penalty was a felony or misdemeanors, showed some significant reductions in firearm suicides | | Lee et al.
2013. United
States (69) | Stand your
graound
laws and
CAP Laws | 44 U.S.
states
2006 and
2009 | Least: Cross-
sectional
comparison/Log
istic regression | Exposure data: Not source described Outcome data: Healthcare Cost and Utilization Project Kids' Inpatient Database | Sampling: Convenience sample Exposure: No clear details on source of exposure variable Outcome measurement: Outcome variable with some percentage of missing data Confounders: No adjustment for other potential confounders | Odds ratio of firearm injuries | Among those aged 20 or younger states with "Stand your ground" laws were associated with greater odds of overall firearm injuries (OR=1.15, p<0.001) and unintentional injuries (OR=1.28, p<0.001). Among those 12 or younger, CAP laws were associated with lower odds of unintentional firearm injuries (OR=0.74, p<0.05) and of suicidal injuries (OR=0.23, p<0.05). In multivariate analysis both laws were associated with greater odds of firearm injuries (p<0.001) | |---|---|---|---|--|--|--------------------------------|---| | DeSimone et al. 2013.
United States (70) | Child access prevention (CAP) laws | U.S. states
1988-2003,
follow-up
length, 16
years | Greatest: Cross-
sectional time-
series/Poisson
regression | Exposure data: As in Webster et al. 2004 (61); Legal Community Against Violence Outcome data: Agency for healthcare research and quality's nationwide impatient sample | Outcome measurement: Outcome variable with some percentage of missing data Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Other: Disaggregated results for single units are not provided | Rate ratio of firearms deaths | CAP laws based on negligent storage only were associated with a reduction of 26% of self-inflicted injuries and 5% reduction in non-self-inflicted firearm injuries per hospital annually, in children 17 or younger (results for 11 states with data for the entire period). Results were similar for self-inflicted injuries but not for non-self-inflicted injuries when using data from 26 states with limited data. Significant associations between the law and a reduction in unintentional firearm injuries among individuals 18 and older. No association was observed for self-inflicted injuries in this | | | | | | | | | group | |---|--|---|---|---|---|---|---| | Koper CS and
Roth JA, 2001.
United States
(71) | Assault Weapon (ban on semiautomat ic assault weapons and large capacity magazine) | U.S. states
1980-1995,
follow-up
length=16
years | Moderate:
Cross-sectional
time-series
without control
group/
Weighted least
squares | Exposure data: Authors provide a description on the
implementation of the law Outcome data: FBI UCR | Sampling: Limited year data (period studied) to identify the effects of the intervention Outcome measurement: Outcome variable with some percentage of missing data Data analysis: No alterative strategies to test for robustness of findings given other model specifications | Change in
the log of
firearm
homicide
rates | The Federal law was associated with a non-significant reduction (6.7%) in firearm homicide rates in 15 states after considering states with own assault guns and high capacity magazine bans, juvenile restriction laws, and trends in California and New York (p<0.05) | | Webster et al.,
2002. United
States (72) | Ban on Saturday night specials Maryland Gun Violence Act of 1996 | Maryland.
1975–
1998,
follow-up
length = 24
years | Moderate:
Cross-sectional
time-series
without control
group/ARIMA
regression | Exposure data: MD
Code Ann. 1988
Outcome data: NCHS | Confounders: No adjustment for other potential confounders | Change in homicide rates | In models assuming a delayed with constant/gradual effect, the ban on Saturday night specials was associated with reductions in firearm homicides (estimated percent change= from 6.8 to 11.5% reduction, p<0.05). Only the model assuming a immediate and constant effect was not significantly associated. The 1996 Maryland gun violence act was associated with reductions in firearm homicides (estimated percent change = from 10.3 to 11.4% reduction, p<0.05) | | Ozanne-Smith
et al., 2004.
Australia (73) | 1996
National
Firearm
Agreement
(NFA), 1988
Victoria law | Australia
and
Victoria.
1979-2000,
follow-up
length= 21
years | Greatest: Cross-
sectional time
series/Poisson
regression and
Wilcoxon
signed ranks
tests | Exposure data: Authors provide a description on the implementation of the law Outcome data: Australian Bureau of Statistics | Data analysis: No alterative strategies to test for robustness of findings given other model specifications Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Percentag
e change
in firearm
death rates | The Victorian legislation was associated with a 17.3% reduction in the rate of firearm deaths relative to Australia (beta=-0.1903; p=0.0001). The NFA was associated with a 14.0% reduction in the rate of firearm deaths in all other states in Australia relative to Victoria (beta=-0.1511; p = 0.0372) | | Deutsch and
Alt, 1977.
United States
(74) | The Bartley-
Fox Gun law | Boston. January 1966 to October 1975, follow-up length = 118 months | Moderate:
Cross-sectional
time-series
without control
group/ARIMA
models | Exposure data: Authors provide a description on the implementation of the law Outcome data: FBI UCR | Sampling: Limited year data (period studied) to identify the effects of the intervention Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data | Change in monthly homicides | The implementation of the law was not associated with significant changes in homicides in Boston in the months following the implementation of the law (p<0.05) | |--|-----------------------------|---|--|---|--|---|--| | Berk et al.
1979. United
States (75) | The Bartley-
Fox Gun law | Boston. January 1966 to October 1975, follow-up length = 118 months | Moderate:
Cross-sectional
time-series
without control
group/Ordinary
least squares,
Generalized
least squares
autoregressive
model, ARIMA
models | Exposure and outcome data: As in Deutsch and Alt 1977 (74) | Sampling: Limited year data (period studied) to identify the effects of the intervention | Change in monthly homicides | The implementation of the law was not associated with significant changes in homicides in Boston in any of the models used in analyses (Ordinary least squares models: estimate for change=0.049, p>0.05; GLS AR-1: estimate for change=0.043, p>0.05) | | Hay and
McCleary,
1979. United
States (76) | The Bartley-
Fox Gun law | Boston.
1974-1976,
follow-up
length =
132 months | Moderate:
Cross-sectional
time-series
without control
group/ARIMA
models | Exposure and outcome data: as in Deutsch and Alt 1977 (74) | Sampling: Limited year data (period studied) to identify the effects of the intervention | Change in monthly homicides | The implementation of the law was not associated with significant changes in homicides in Boston (estimate for change in homicides =1.86, p<0.05, p<0.05) | | Pierce and
Bowers, 1981.
United States
(77) | The Bartley-
Fox Gun law | U.S. cities.
1974-1976,
follow-up
length = 3
years | Greatest: Cross-
sectional time
series/ARIMA
models | Exposure data: Authors provide a description on the implementation of the law Outcome data: FBI UCR | Data analysis: No alterative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Other: Results from statistical tests are not presented | Percentag
e change
in
homicides
and
firearm
homicides | The implementation of the law was found associated with a steeper reduction (55.7%) in the rate of homicides in Boston in the first 2 years of the implementations of the law, a reduction not observed in any of the cities used as controls | | Deutsch, 1981.
United States
(78) | The Bartley-
Fox Gun law | Boston. January 1966- September 1977, follow-up length = 141 months | Moderate:
Cross-sectional
time-series
without control
group/ARIMA
models | Exposure data: Authors provide a description on the implementation of the law Outcome data: FBI UCR | Confounders: No adjustment for potential confounders | Change in monthly homicides | After adding more years of data, in the post-law period there was a significant average reduction (29.21%) in homicides (over all months). | |--|------------------------------------|--|---|--|--|--|--| | Loftin and
Mcdowall.
1981. United
States (79) | Michigan
Felony
firearms law | Detroit.
1969-1978,
follow-up
length= 10
years | Moderate:
Cross-sectional
time-series
without control
group/ARIMA
models | Exposure data: Authors provide a description on the implementation of the law Outcome data: Office of Vital and Health Statistics of the Michigan Department of Public Health. | Data analysis: No alternative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders | Change in
monthly
firearm
homicides | The law was associated with an abrupt and permanent reduction in the number of firearm homicides (percent change=-10.86, 95%CI=-17.11;-4.61), but it was not associated with a decline in the number of non-firearm homicides (percent change=-0.008, 95%CI=-0.16 to 0.16) | | Loftin and
Mcdowall.
1984. United
States (80) | Florida
felony
firearm law | Florida cities: Miami, Tampa, and Jacksonvill e. 1968-1978, follow-up length= 11 years | Moderate:
Cross-sectional
time-series
without control
group/ARIMA
models | Exposure data: Authors provide a description on the implementation of the law Outcome data: FBI UCR | Data analysis: No alternative strategies to test for robustness of findings given other model specifications; Confounders: No adjustment for potential confounders | Change in firearm homicides | In Tampa, the law was associated with a reduction in the number of firearm homicides (percent change = -1.21, 95%CI=-1.96;-0.46) but not with non-firearm homicides (percent change=0.03, 95CI=-0.50 to 0.57). In Miami and Jacksonville no significant reductions were observed (p<0.05) | |
Mcdowall et | Mandatory | Detroit, | Moderate: | Exposure data: | Data analysis: No alternative | Change in | The law was associated with an | |---------------|--------------|-------------|--------------------|--------------------------|-----------------------------------|------------|-----------------------------------| | al., 1992. | sentencing | Miami, | Cross-sectional | Authors provide a | strategies to test for robustness | Firearm | abrupt and permanent reduction | | United States | laws | Tampa, | time-series | description on the | of findings given other model | homicides | in the number of firearm | | (81) | | Jacksonvill | without control | implementation of the | specifications | | homicides in Tampa (estimate | | | | e, | group/ARIMA | law | Confounders: No adjustment | | change in homicides =-1.2), | | | | Pittsburgh | models | Outcome data: FBI | for potential confounders | | Detroit (estimate for change in | | | | and | | UCR, Office of Vital | | | homicides =-10.57), Pittsburgh | | | | Philadelphi | | and Health Statistics of | | | (beta=-1.07, p<0.05) and | | | | a. | | the Michigan | | | Philadelphia (beta=-6.83, | | | | 1968-1978, | | Department of Public | | | p<0.05). | | | | 1969-1978, | | Health, and | | | The aggregated overall | | | | 1970-1984 | | Pennsylvania | | | association for the six cities | | | | follow-up | | Department of Health | | | showed a significant reduction in | | | | length= 11, | | | | | firearm homicides associated | | | | 10 and 15 | | | | | with the law (estimate change in | | | | years | | | | | homicides=-0.69, p<0.05). | | Fife and | New Jersey's | New | Moderate: | Exposure data: | Data analysis: No alterative | Change in | The law was associated with a | | Abrams, 1989. | Grave | Jersey. | Cross-sectional | Authors provide a | strategies to test for robustness | the | reduction in the proportion of | | United States | amendment | 1974-1986, | time-series | description on the | of findings given other model | proportion | firearm homicides (difference in | | (82) | | follow-up | without control | implementation of the | specifications; No use of | of firearm | pre/post-law slopes = $-3.2 \pm$ | | | | length= 13 | group/difference | law | alternative analytical strategies | homicides | 1.85%), a reduction not observed | | | | years | s of slopes t-test | Outcome data: | to account for dynamic trends | and | in the rest of the United States. | | | | | | Department of Health's | of time series data | firearm | The law was also associated with | | | | | | center for health | Confounders: No adjustment | suicides | changes in the percentage of | | | | | | statistics and NCHS | for potential confounders | | firearm suicides (difference in | | | | | | | Other: Disaggregated results | | pre/post-law slopes = $-0.98 \pm$ | | | | | | | for single units are not | | 0.98%). | | | | | | | provided | | | | O'Carroll et al.
1991. United
States (83) | Detroit's 1986 law (mandatory jail sentence for unlawfully carrying a firearm in public) | Detroit.
1980-1987,
follow-up
length= 8
years | Moderate:
Cross-sectional
time-series
without control
group/ARIMA
models | Exposure data: Authors provide a description on the implementation of the law Outcome data: Detroit City police department | Sampling: Limited year data (period studied) to identify the effects of the intervention Data analysis: No alternative strategies to test for robustness of findings given other model specifications | Change in monthly firearm homicides | The law was not associated with variations in the number of monthly firearm indoor homicides (p>0.05) but was associated with an increment in homicides committed outside (22% increment, p>0.05). The law was also not associated with reductions in firearm homicides, and only marginally with an increment (16%, p=0.07) in non-firearm homicides. According to authors, these findings are what would be expected if the law had an effect on firearm homicides and outside homicides (given the tendency of crime in Detroit during the observation period) | |--|--|--|---|--|---|---|---| | Marvell and
Moody, 1995.
United States
(84) | Firearm
sentence
enhancemen
t laws | U.S. states.
1971-1993,
follow-up
length= 13
years | Greatest: Cross-
sectional time
series/Multiple
time series
regression | Exposure data: Authors provide a description on the implementation of the laws Outcome data: FBI UCR | Data analysis: No alternative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders | Change in
log rate of
homicides
and
firearm
homicide | The laws (aggregated) were not associated with variation in firearm homicide rates with the usable data (beta= 0.2, p>0.05) or the best available data (beta=-0.2, p>0.05) In disaggregated models, the Massachusetts law was associated with reductions in firearm homicides (beta=-2.0, p<0.05) | | La Valle,
2008. United
States (85) | Firearm
sentence
enhancemen
t laws,
mandatory
minimum,
additional
jail time for
gun-crimes | 20 of the
largest
cities in the
U.S.
1970-2005,
follow-up
length= 36
years | Greatest: Cross-
sectional time
series/Generaliz
ed least squares,
generalized
estimating
equations,
generalized
estimating
equations | Exposure data: As in
Marvell and Moody
1995 (84)
Outcome data: FBI
UCR | Sampling: Convenience sample Data analysis: No alternative strategies to test for robustness of findings given other model specifications. Confounders: No adjustment for other potential confounders | Change in log rate of homicides and firearm homicide | Additional jail time was associated with a reduction in the rate of firearm homicides (beta= -0.59 and -0.23 (p<0.05) in models with and without interpolated observations, respectively). The enhancements for firearm only laws were associated with an increase in the rate of firearm homicides (beta=0.14, p<0.05, in models with interpolated observations) | |---|--|---|--|---|---|--|--| | Raphael and
Ludwig, 2003.
United States
(86) | Project Exile
from
Richmond,
Virginia | Richmond,
Virginia.
1994-1999,
follow-up
length= 6
years | Greatest: Cross-
sectional time
series/Linear
regression
models | Exposure data: Authors provide a description on the implementation of the law Outcome data: FBI UCR | Sampling: Convenience
sample
Confounders: No adjustment
for other potential confounders | Change in homicide rates | The law was not associated with significant reductions in the homicides (beta=-1.85, p>0.05). The authors indicate that reductions in homicides were likely to be explained by the high rates in the pre-law period and regression to the mean effects. | | Rosenfeld et
al., 2005.
United States
(87) | Project Exile
from
Richmond,
Virginia | 95 U.S. cities with population of 175,000 or more 1992-2001, follow-up length= 10 years | Greatest: Cross-
sectional time
series/Growth-
curve analysis,
Poisson models | Exposure data: Authors provide a description on the implementation of the law Outcome data: FBI UCR | Sampling: Convenience
sample
Data analysis: No alternative
strategies to test for robustness
of findings given other model
specifications | Change in firearm homicide rates | The implementation of the
project was associated with a 22% reduction in firearm homicide rates (p<0.05). After replacing the 1997 value with the average of the 1996 and 1998 values the reduction was only marginal (p<0.10) | | Rosenfeld,
1996. United
States (88) | St. Louis
gun buy-
back
programs | St. Louis
1980-1994,
follow-up
length= 15
years | Moderate:
Moderate:
Cross-sectional
time-series
without control
group/ARIMA | Exposure data: Authors provide a description on the enactment/implementat ion of the program Outcome data: St. Louis Metropolitan Police Department | Sampling: Limited year data (period studied) to identify the effects of the intervention Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data; No alternative strategies to test for robustness of findings given other model specifications. Confounders: no adjustment for potential confounders | Change in monthly firearm homicides | The 1991 and 1994 gun buyback programs were not associated with changes in firearm homicides (p<0.05). A marginal association was observed (beta=-10.85, p=0.07) only during the period of operation of the 1994 program. | |---|---|---|--|---|--|--|---| | Phillips et al.,
2013. United
States (89) | City of
Buffalo's
gun buy-
back
programmed | City of
Buffalo
2001/2006-
2012,
follow-up
length=
6/12 years | Moderate:
Moderate:
Cross-sectional
time-series
without control
group/ARIMA | Exposure data: Authors provide a description on the implementation of the program Outcome data: Erie County Crime Analysis Center | Data analysis: No alternative strategies to test for robustness of findings given other model specifications. Confounders: No adjustment for other potential confounders | Changes
in firearm
homicides | The gun buyback programs in Buffalo were not associated with changes in firearm homicide rates (estimate for change in firearm homicides= -0.25, p>0.05) (2006-2012 data, abrupt temporary model, with June 2007 as the intervention date). In models (data 2001-2012, with September 2008 as the intervention date), a significant association was found with an increment of firearm homicides (change in firearm homicides=7.68, p<0.05) | | Leigh and
Neill, 2010.
Australia (90) | Australia's
gun buyback
program,
number of
firearm
bought back | Australian
states.
1968-2006,
follow-up
length= 39
years | Greatest: Cross-
sectional time
series/Stripped-
down
regression-Panel
models | Exposure data: Authors provide a description on the implementation of the program; Reuter and Mouzos 2003 (91). Outcome data: Erie County Crime Analysis Center | None | Changes
in overall,
firearm
and non-
firearm
homicides
and
suicides | The number of guns bought back was significantly associated with reductions in the rate of firearm suicides (beta=-0.49, p<0.05), and all homicides (beta=-0.26, p<0.05), but only marginally with firearm homicides (beta=-0.18, p<0.1). Results were consistent in models with | | | | | | | | | different specifications | |---|--|---|---|---|---|---|--| | Magaddino
and Medoff,
1984. United
States (92) | 1868 gun
control act | U.S. states.
1947-1977,
follow-up
length= 31
years | Greatest: Cross-
sectional time
series/Two stage
Cochrane -
Orcutt model | Exposure data: Authors provide a description on the implementation of the law Outcome data: FBI UCR | Data analysis: No alternative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Change in rate of homicides | The law was not associated with changes in the rate of homicides (beta=0.003, p>0.05) | | Loftin et al.
1991. United
States (93) | 1976 District
of Columbia
Handgun
Ban | District of
Columbia,
and
surroundin
g areas of
Maryland
and
Virginia.
1968-1987,
follow-up
length= 20
years | Moderate:
Cross-sectional
time-series
without control
group/ARIMA
models and t-
tests | Exposure data: Authors provide a description on the implementation of the law Outcome data: NCHS | Sampling: Convenience sample Data analysis: No alterative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders | Change in
yearly and
monthly
firearm
homicides
and
suicides | The implementation of the law was associated with significant reductions in monthly rates of firearm homicides in D.C. (25% reduction, p<0.05) and firearm suicides (23% reduction, p<0.05) that were not observed in control areas. | | McDowall et
al. 1996.
United States
(94) | 1976 District
of Columbia
Handgun
Ban | District of
Columbia,
Memphis
and
Boston.
1968-
1987/90,
follow-up
length=
20/23 years | Greatest: Cross-
sectional time
series/ARIMA
models | Exposure and outcome data: as in Loftin et al. 1991 (93) | Sampling: Convenience sample Data analysis: No alterative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data. Confounders: No adjustment for potential confounders | Change in monthly firearm homicides | The implementation of the law was not associated with reductions in firearm homicides in D.C. (using data up to 1990) (estimate for change in homicides= 2.08, p<0.05). However, the law was associated with reductions in firearm suicides (estimate for change in suicides= -0.47, p<0.05), that were not observed in Memphis, | |---|--|---|--|---|---|-------------------------------------|---| | Britt et al.,
1996. United
States (95) | 1976 District
of Columbia
Handgun
Ban | District of
Columbia
and
Baltimore.
1968-
1987/89,
follow-up
length=
20/22 years | Greatest: Cross-
sectional time
series/ARIMA
models | Exposure data: Authors provide a description on the implementation of the law Outcome
data: FBI Supplementary Homicide Reports and NCHS | Sampling: Convenience sample Confounders: No adjustment for potential confounders | Change in monthly firearm homicides | Boston or Baltimore. The implementation of the law was associated with significant reductions in firearm homicides in D.C. (estimate for change in homicides=-3.23, p<0.05) as well as in Baltimore (estimate for change in homicides=-2.81, p<0.05) (FBI data). Similar results were observed with NCHS data Results were similar after moving the intervention date. Adding two more years of data resulted in no significant variations in firearm homicides in D.C. but still significant reductions in Baltimore. | | Leenaars and
Lester, 1999.
Canada (96) | Bill C-51 | Canada.
1969-1985,
follow-up
length= 17
years | Moderate:
Cross-sectional
time-series
without control
group/time
series
regressions | Exposure and outcome data: as in Leenaars and Lester 1996 (97) | Data analysis: No alterative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Change in
the rate of
overall
and
firearm
homicides
, suicides
and
unintentio
nal deaths | The bill was associated with significant reductions in the rates of all (beta=-0.32, p<0.05) and firearm homicides (beta=-0.24, p<0.05), and also unintentional deaths (beta=-0.08, p<0.05), but was not associated with reductions in the rate of all and firearm suicides (beta=-0.237, p<0.05) | |--|-----------|---|--|--|--|---|---| | Carrington,
1999. Canada
(98) | Bill C-51 | Canada.
1969-1985,
follow-up
length= 17
years | Moderate:
Cross-sectional
time-series
without control
group/difference
s of slopes t-test | Exposure and outcome data: as in Leenaars and Lester 1996 (97) | Data analysis: No alterative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Difference
s in pre-
post
trends in
overall
and
firearm
homicides
and
suicides | Among males, the bill was associated with a significant reduction in firearm homicides (difference in slopes= -0.09, p<0.05), and in firearm suicides (difference in slopes= -0.52, p>0.05). Reductions in firearm suicides and homicides were also observed among females (p<0.05). Among females and males, the bill was associated with reductions in firearm deaths (difference in slopes=-0.36, p<0.05). | | Leenaars and
Lester, 2001.
Canada (99) | Bill C-51 | Canada.
1969-1985,
follow-up
length= 17
years | Moderate:
Cross-sectional
time-series
without control
group/Linear
time series
regressions | Exposure data: Authors provide a description on the implementation of the law Outcome data: Statistics Canada | Data analysis: No alterative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Change in
the rate of
homicides
and
firearm
homicides | The bill was associated with reductions in the rate of overall homicides (beta=-0.35, p<0.05) but not with firearm homicides (beta=-0.16, p>0.05). Among males the bill was associated with a significant reduction in the rates of all homicides (beta=-0.52, p<0.05) but not with reductions in firearm homicides (beta=-0.32, p>0.05). Among females the bill was not associated with changes in all or firearm homicides | |--|-------------------------------------|---|--|---|--|--|--| | Mauser and
Holmes, 1992.
Canada (100) | Bill C-51 | Canada.
1968-1988,
follow-up
length= 21
years | Moderate:
Cross-sectional
time-series
without control
group/Generaliz
ed least squares | Exposure data: Authors provide a description on the implementation of the law Outcome data: Center for Justice Statistics | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Change in
the rate of
homicides | The association between the bill and homicide rates (beta=-0.35, p<0.01) became non-significant after adjusting for a linear trend term (beta=-0.02, p>0.01). | | Blais et al.,
2011. Canada
(101) | Bill C-51
Bill C-17
Bill C-68 | Canada.
1974-2004,
follow-up
length= 31
years | Moderate:
Cross-sectional
time-series
without control
group/Least
generalized
squares | Exposure data: Authors provide a description on the implementation of the law Outcome data: Statistics Canada | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Change in the rate of homicides | Bill C-51 was associated with a 13.68% reduction in firearm homicides (beta=-0.16, t=1.96). Similarly bill C-68 (beta=-0.17, t=3.05) was associated with change in the rate of firearm homicides. | | Langmann,
2012. Canada
(102) | Bill C-51
Bill C-17
Bill C-68 | Canada.
1974-2008,
follow-up
length= 35
years | Moderate:
Cross-sectional
time-series
without control
group/Poisson,
negative
binomial,
ARIMA, and
Joinpoint
regressions | Exposure data: Authors provide a description on the implementation of the law Outcome data: Statistics Canada and CANSIM | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data Other: Disaggregated results for single units are not provided | Change in
the rate of
homicides
, spousal
homicide | None of the bills were associated with reductions in firearm homicide or spousal homicide rates (in interrupted-regression models and ARIMA adjusted models). A joinpoint was generated at 2002 (closer to the C-68 law implementation date), with an increment in the baseline rate of firearm homicide from an annual percentage change of –2.7% (95%CI=–3.2; –2.1) to 2.3% (95%CI=–4.2;9.2). | |---|-------------------------------------|---|---|---|---|---
--| | McPhedran
and Mauser,
2013. Canada
(103) | Bill C-68 | Canada.
1974-2009,
follow-up
length= 36
years | Moderate: Cross-sectional time-series without control group/ARIMA and Zivot- Andrews structural breakpoint tests | Exposure data: Authors provide a description on the implementation of the law Outcome data: Statistics Canada and Department of Justice | Data analysis: No alterative strategies to test for robustness of findings given other model specifications Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Change in
the rate of
homicides
and
domestic
homicides | The implementation of the law was not associated with a reduction of the firearm spouse homicide (mean predicted = 0.11, mean observed = 0.11, p>0.05). No breakpoints were found in 1995-1997 structural breakpoint tests. In Zivot-Andrews analyses significant breaks were observed between 1979-1982 suggesting an association between bill C-51 and firearm female homicides | | Rich et al.,
1990. Canada
(104) | Bill C-51 | Toronto
and
Ontario.
1973-1977
and 1979 -
1983,
follow-up
length= 10
years | Moderate:
Cross-sectional
time-series
without control
group/Linear
time series
analyses | Exposure data: Authors provide a description on the implementation of the law Outcome data: Chief Coroner for Ontario and Toronto | Data analysis: No alterative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders | Change in
the rate of
suicides
and
firearm
suicides | The implementation of the law was not associated with a reduction in firearm suicides in Toronto or in Ontario (p>0.05) when 1977 (the year of the implementation of the law) was excluded from analyses. Comparisons of slopes in pre/post-law periods showed no changes in trends of suicides (t=1.51, p=0.13). There was a significant decrease in the mean proportion of firearms suicides among men in Toronto (differences in means=7.0%, p<0.001). | |--|-----------|--|---|---|--|--|---| | Carrington and
Moyer, 1994.
Canada (105) | Bill C-51 | Ontario.
1965-1977
and 1979 -
1989,
follow-up
length= 24
years | Moderate:
Cross-sectional
time-series
without control
group/pseudo-
generalized least
squares | Exposure data: As in Rich et al. 1990 (104) Outcome data: Statistics Canada | Data analysis: No alterative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Change in
the rate of
homicides
and age-
standardiz
ed
homicides | The implementation of the law was associated with a reduction in firearm suicides in Ontario (change in slopes in pre/post-law periods=-0.2, p<000.1) and total suicides (change in slopes in pre/post-law periods=-0.6, p<0.001) even after 1977 (the year of the implementation of the law) was excluded from analyses. Similar findings were observed for age standardized rates (change in mean -1.1, p=0.02) | | Leenaars et al.,
2003. Canada
(106) | Bill C-51 | Canada.
1969-1985,
follow-up
length= 17
years | Moderate:
Cross-sectional
time-series
without control
group/Interrupte
d time-series,
multivariate
linear regression | Exposure data: Authors provide a description on the implementation of the law Outcome data: Statistics Canada | Data analysis: No alterative strategies to test for robustness of findings given other model specifications (strategies from the two models were not integrated in a single model) | Change in
the rate of
suicides
and
firearm
suicides | In unadjusted models the bill was associated with a long-term reduction in the all suicide rate (beta= -0.48; p<0.01) and firearm suicides (beta= -0.33; p<0.01); reductions were also significant for males and females. The law was not associated with short-term outcomes for firearm suicide, total suicides by all methods or other than firearms. In models adjusted for confounders, the law was associated with reductions in firearm suicide rates (beta= -0.72; p<0.05) but not in all suicides. Reductions were also significant for males and females. | |---|-----------|---|---|---|--|--|--| | Caron et al.,
2008. Canada
(107) | Bill C-17 | Quebec.
1986-2001,
follow-up
length= 16
years | Moderate:
Cross-sectional
time-series
without control
group/Ordinary
least squares | Exposure data: Authors provide a description on the implementation of the law Outcome data: Quebec Coroner's office | Data analysis: No alterative strategies to test for robustness of findings given other model specifications Confounders: No adjustment for other potential confounders | Change in
the rate of
suicides
and
firearm
suicides | Among males the bill was not associated with a short-term (beta= 0.28; p=0.45) or long-term (beta= -0.040; p=0.70) significant reduction in firearm suicide rates. Similar results were observed for females. Among females, there was a significant increment in hanging suicide rates. In adjusted models the law was associated with an overall increase in all suicide rates among males and females (beta= 4.204; p<0.05 and beta=1.368, p<0.05) | | Gagne et al.,
2010. Canada
(108) | Bill C-17 | Quebec.
1986-
2001/1981-
2006,
follow-up
length=
16/26 years | Moderate: Cross-sectional time-series without control group/Joinpoint and Poisson and negative binomial regressions | Exposure data: Authors provide a description on the implementation of the law Outcome data: Quebec's death database | Data analysis: No alterative strategies to test for robustness of findings given other model specifications Confounders: No adjustment for other potential confounders | Change in
the rate of
suicides
and
firearm
suicides | Results from Jointpoint analyses indicated that among men aged 15-34, the rate of firearm suicides decreased between 1981 and 1996 (annual percent change (APC) of -2.7%) but decreased after 1996 (APC of -11.1%). Among men aged 35-64 slower declines in firearm suicides were also observed. Results from Poisson models showed a significant reduction in firearm suicides associated with the law, after adding more years of data (Change of trend after the law = -3.7, 95%CI=-5.8;-1.5). | |---|-----------|--|---|---
---|--|---| | Cheung and
Dewa, 2005.
Canada (109) | Bill C-17 | Canada.
1979-1999,
follow-up
length= 21
years | Moderate:
Cross-sectional
time-series
without control
group/Linear
time series
analyses | Exposure data: Authors provide a description on the implementation of the law Outcome data: Statistics Canada | Data analysis: No alterative strategies to test for robustness of findings given other model specifications Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Change in
the rate of
suicides
and
firearm
suicides | Among individuals aged 15-19, the bill was associated with a reduction in the rate of firearm suicides (beta=-0.30, 95%CI = -0.44;-0.15), but also with a significant increment in the rate of hanging suicides (beta=0.19, 95%CI = 0.37;0.35). | | Leenaars and
Lester, 1997.
Canada (110) | Bill C-51 | Canada.
1969-1985,
follow-up
length= 17
years | Moderate:
Cross-sectional
time-series
without control
group/Linear
time series
analyses,
differences of
slopes t-test | Exposure data: Authors provide a description on the implementation of the law Outcome data: Statistics Canada | Data analysis: No alterative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders Other: Disaggregated results for single units (e.g. provinces, cities) are not provided | Change in
the rate of
unintentio
nal
firearm
deaths | The law was only marginally associated with reductions in the rate of unintentional firearm deaths among males (beta=-1.38, p<0.08) but not females (beta=-0.32, p<0.30). | |---|---|--|---|---|---|--|--| | Chapman et al. 2006.
Australia (111) | 1996
National
Firearm
Agreement
(NFA) | Australia.
1979–
2003,
follow-up
length= 25
years | Moderate:
Cross-sectional
time-series
without control
group/Negative
binomial
regression | Exposure data: Authors provide a description on the implementation of the law Outcome data: Australian Bureau of Statistics | Data analysis: No alterative strategies to test for robustness of findings given other model specifications Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Rate ratio
of all and
firearm
suicides
and
homicides
/ ratio of
pre/post-
law slopes | The law was associated with significant faster reductions in total firearm deaths (RR= 0.97;p = 0.03), all homicides (RR=0.97, p = 0.01); the steeper reduction in firearm homicides was not significant (according to authors due to low power given low numbers); there were also reductions in all suicides, firearm suicides and non-firearm suicides (RR ranging from 0.94 to 0.95, p<0.01), and an increment in unintentional firearm deaths (RR=1.17; p = 0.001). Additionally, in the 18 years before the gun law reforms, there were 13 firearm mass shootings in Australia, and zero in the 10.5 years afterwards | | Baker and
McPhedran,
2007.
Australia (112) | 1996
National
Firearm
Agreement
(NFA) | Australia.
1979–
2004,
follow-up
length= 26
years | Moderate:
Cross-sectional
time-series
without control
group/ARIMA | Exposure data: Authors provide a description on the implementation of the law Outcome data: Australian Bureau of Statistics | Data analysis: No alterative strategies to test for robustness of findings given other model specifications Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Difference
between
predicted
vs.
observed
rates of
homicides
and
suicides | The law was associated with a significant reduction in the rate of firearm suicides (mean rates: predicted= 1.85 vs. observed = 1.22, p<0.05) but not with a change in the rate of firearm homicides (p=0.14). The law was also associated with an increment in the rate of unintentional firearm death rates (mean rates: observed= 0.06 vs. estimated = 0.15, p<0.02) | |---|---|---|--|---|---|--|---| | Neil and
Leigh, 2007.
Australia (113) | 1996
National
Firearm
Agreement
(NFA) | Australia.
1979–
2004,
1915–
2004,
1969–
2004,
follow-up
length= 26,
90, 36
years | Moderate:
Cross-sectional
time-series
without control
group/ARIMA | Exposure data: Authors provide a description on the implementation of the law Outcome data: Australian Bureau of Statistics | Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Difference
between
predicted
vs.
observed
rates of
homicides
and
suicides
and
logarithm
of these
rates | In models including more years of data (1969-2004) the 1996 law was associated with reductions in the rate of firearm homicides (mean rates: predicted= 0.4 vs. observed = 0.27, p=0.001) and firearm suicides (mean rates: predicted= 2.02 vs. observed = 1.23, p<0.001). Results were similar when using the log of the rate of firearm homicides/suicides and when using additional years of data. | | Lee and
Suardi, 2010.
Australia
(114) | 1996
National
Firearm
Agreement
(NFA) | Australia
1915-2004,
follow-up
length= 90
years | Moderate:
Cross-sectional
time-series
without control
group/ARIMA -
Quandt, Bai,
Bai and Perron
tests | Exposure data: Authors provide a description on the implementation of the law Outcome data: Australian Bureau of Statistics | Confounders: No adjustment
for potential confounders
Other: Disaggregated results
for single units are not
provided | Change in
the rate of
firearm
suicides
and
homicides | Results from structural tests showed no evidence of significant reductions in firearm suicides or firearm homicides that could be attributable to the NFA. | | McPhedran | 1996 | Australia | Moderate: | Exposure data: | Confounders: No adjustment | Change in | Results from structural tests | |------------------|---------------------|------------------------|-------------------------------|--------------------------------------|--|---------------------
---| | and Baker, 2012. | National
Firearm | 1907–2007
and 1915– | Cross-sectional time-series | Authors provide a description on the | for potential confounders Other: Disaggregated results | the rate of firearm | showed no evidence of significant reductions in firearm | | Australia | Agreement | 2004, | without control | implementation of the | for single units are not | suicides | suicides for any of the age | | (115) | (NFA) | follow-up | group/Dickey- | law | provided | and | groups examined, except in the | | | | length= | Fuller, Zivot | Outcome data: | | homicides | case of ZA tests, which showed | | | | 101 and 90 | and Andrews | Australian Institute of | | | a break in 1997 for those aged | | | | years | structural | Health and Welfare | | | 35-44 when using the 1979– | | | | | breakpoint test, | | | | 2007 data only; further analyses | | | | | Quandt test, | | | | using linear, Poisson and | | | | | ARIMA, Linear,
Poisson and | | | | negative binomial models showed no association between | | | | | negative | | | | the law and suicides in this age | | | | | binomial models | | | | group | | Klieve et al., | 1996 | Queensland | Moderate: | Exposure data: | Data analysis: No alternative | Rate ratio | In Queensland, which had | | 2009. | National | and | Cross-sectional | Authors provide a | strategies to test for robustness | of all and | previously introduced the | | Australia (116) | Firearm | Australia | time-series | description on the | of findings given other model | firearm | Weapons Act, 1990, there were | | 1145414114 (110) | Agreement | 1988-2004, | without control | implementation of the | specifications | suicide | no significant reductions in | | | (NFA) | follow-up | group/Negative | law | Confounders: No adjustment | 202230 | firearm suicide rates associated | | | (= .= = =) | length= 17 | binomial models | Outcome data: | for potential confounders | | with the NFA (ratio of pre/post- | | | | years | | Queensland suicide | 1 | | law slopes: RR= 1.01, p=0.78). | | | | | | register and Australian | | | In Australia, the NFA law was | | | | | | Bureau of Statistics | | | associated with a reduction in | | | | | | | | | the rate of firearm suicides | | | | | | | | | (trend in post-law period: RR= | | | | | | | | | 0.93, p<0.05; ratio of pre/post- | | | | | | | | | law slopes: RR= 0.97, p= 0.01). | | | | | | | | | | | Snowdon and
Harris, 1992.
Australia (117) | South
Australia
Firearms act
1977 | Australian
states.
1968-1989,
follow-up
length= 22
years | Greatest: Cross-
sectional time
series/Multiple
linear regression | Exposure data: Authors provide a description on the implementation of the law Outcome data: Australian Bureau of Statistics | Data analysis: No alternative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Change in
the rate of
firearm
suicides | The law was associated with a reduction in the rate of firearm suicides in South Australia from 3.62 per 100,000 in the pre-law period to 3.11 per 100,000 in the post-law period. All other states had increments in the rate of firearm suicides in the post-law period. In addition, there was an increment in the rate of suicides by other methods in South Australia. | |--|---|---|---|---|---|--|---| | Marinho de
Souza et al.,
2007. Brazil
(118) | Brazil's
Estatuto do
Desarmame
nto | Brazil.
1996-2004,
follow-up
length= 9
years | Moderate:
Cross-sectional
time-series
without control
group/Linear
time series
regression | Exposure data: Authors provide a description on the implementation of the law Outcome data: Brazilian Ministry of Health's vital statistics | Data analysis: No alternative strategies to test for robustness of findings given other model specifications; No use of alternative analytical strategies to account for dynamic trends of time series data Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Change in
the rate of
firearm
homicides | The number of firearm homicides decreased by 8.2% from 2003 to 2004, which was significantly lower that the predicted homicides. | | Kapusta et al.,
2007. Austria
(119) | 1997
Austrian
firearm
legislation | Austria.
1985-2005,
follow-up
length=21
years | Moderate:
Cross-sectional
time-series
without control
group/Linear,
Poisson and
negative
binomial
regressions | Exposure data: Commission of the European Communities, 2000 Outcome data: Statistics Austria | Data analysis: No alternative strategies to test for robustness of findings given other model specifications Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Change in
the rate of
all
suicides,
firearm
suicides
and
firearm
homicides | The law was associated with reductions in firearm homicide (percent change in trends in pre/post-law periods = -4.8) and firearm suicide rates (percent change = -9.9) in models adjusted for unemployment and alcohol consumption. | | Niederkrotenth
aler et al.,
2009. Austria
(120) | 1997
Austrian
firearm
legislation | Austria.
1986-2006,
follow-up
length=21
years | Moderate:
Cross-sectional
time-series
without control
group/Poisson
regression | Exposure data: As in
Kapusta et al. 2007
(119)
Outcome data:
Statistics Austria | Data analysis: No alternative strategies to test for robustness of findings given other model specifications Other: Disaggregated results for single units are not provided | Change in
the rate of
firearm
suicides | The law was associated with an abrupt increment (dummy model: beta= 1.1, p<0.05) and a gradual reduction in firearm suicides among adolescents (trend model: beta= -0.2, p<0.05). The law was also associated with a reduction in the percentage of firearm suicides (trend model: beta = -0.22, p<0.05). The law was not associated with changes in overall suicides and non-firearm suicides in dummy and trend models (p>0.05) | |--|--|---|---|--|--|---|--| | Beautrais et al., 2006. New Zealand (121) | Amendment
to the Arms
Act | New Zealand. 1985-2002, follow-up length=18 years | Moderate:
Cross-sectional
time-series
without control
group/Poisson
regression, auto-
regressive and
time series
models | Exposure data: Authors provide a description on the implementation of the law Outcome data: New Zealand Health Information Service | Data analysis: No alternative strategies to test for robustness of findings given other model specifications. Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Change in the rate of firearm suicide rates | The law was associated with reductions in the rate of firearm suicides among youth (aged 15-24) in the implementation (beta=-0.50; p<0.05) and post implementation periods (beta=-1.09; p<0.001) compared with the pre-law period. This association was also observed among adults (aged 25 or older) (implementation
period: beta=-0.29; p<0.05; post-implementation period: beta=-0.49, p<0.0001); similar results were observed among those 15 and older. The law was not associated with reductions in all suicides in the post implementation period (p>0.05). Alternative models showed no association between the law and suicides | | Matzopoulos
et al., 2014.
South Africa
(122) | South
Africa's
Firearm
Control Act | 5 cities in
South
Africa.
2001-2005,
follow-up
length=5
years | Least: Cross-
sectional time-
series without
pre-post
observations
and without
control group
/Generalized
linear models | Exposure data: Authors provide a description on the implementation of the law Outcome data: NIMSS | Data analysis: No use of alternative analytical strategies to account for dynamic trends of time series data; No alternative strategies to test for robustness of findings given other model specifications Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Rate ratio
of firearm
and non-
firearm
homicides | The law was associated with a significant reduction in firearm homicides year-on-year (RR= 0.864, 95%CI= 0.848;0.880), and a less steep reduction in non-firearm homicides (RR=0.976, 95%CI = 0.95;0.997). | |---|---|---|---|--|---|--|--| | Geisel et al.,
1969. United
States (123) | Variety of firearm related laws | U.S.
states/129
cities with
population
of 100,000
or more/
1960 and
1965 | Least: Cross-
sectional
comparison/Lin
ear regression | Exposure data: Different sources for national and state laws are presented by the authors Outcome data: Not provided | Confounders: No adjustment for other potential confounder Outcome: No clear details on source of the outcome variable Other: Disaggregated results for single units are not provided | Difference
in
homicide,
suicide
and
unintentio
nal
firearm
death rates
given
firearm
laws index | At the state level the increment in one unit of gun control index was marginally associated with significant reductions in firearm homicides in 1960 or 1965 (beta=-0.18, beta=-0.23, respectively, p>0.05); however an increment in one unit in the gun control index was associated with a reduction in firearm suicides in 1960 or 1965 (beta=-0.49, beta=-0.47, respectively, p<0.05) and firearm unintentional deaths 1960 or 1965 (beta=-0.19, beta=-0.17, respectively, p<0.05) | | Murray, 1975.
United States
(124) | Variety of
firearm
related laws | U.S. states.
1969 | Least: Cross-
sectional
comparison/Lin
ear regression | Exposure data: As in
Bakal 1966 (125)
Outcome data: Vital
Statistics | Confounders: No information on covariates used in analyses Other: Results of some analyses described in methods are not provided in the text; Disaggregated results for single units are not provided | Difference
in rates of
homicides
and
suicides | The laws (individually or grouped as a single variable) were not associated with reductions in the rates of homicides and suicides. | | Lester, 1988.
United States
(126) | Variety of
firearm
related laws | U.S.
regions.
1970 | Least: Cross-
sectional
comparison/Lin
ear regression | Exposure data: As in
Lester 1984 (127)
Outcome data: NCHS | Confounders: No adjustment
for other potential confounders
Other: Disaggregated results
for single units are not
provided | Difference
in rates of
homicides
and
suicides | In models adjusted for gun ownership and sociodemographic characteristics and divorce rate, firearm related laws were not associated with lower rates of firearm suicides or homicides (p<0.05). | |---|---------------------------------------|--|---|--|---|--|--| | Lester and
Murrell, 1986.
United States
(128) | Variety of firearm related laws | U.S. States.
1960 and
1970 | Least: Cross-
sectional
comparison/Lin
ear regression | Exposure data: As in
Bakal 1968 (129)
Outcome data: Vital
and Health Statistics | Confounders: No adjustment
for other potential confounders
Other: Disaggregated results
for single units are not
provided | Difference
in rates of
homicides
, suicides
and
firearm
unintentio
nal deaths | Stricter firearm related laws were associated with lower firearm suicide rates in 1960 and 1970 (beta=-0.46 and beta= -0.52, p<0.05), and unintentional firearm deaths (beta=-0.54 and beta= -0.42, p<0.05), but not with firearm homicide rates (beta=-0.08 and beta= 0.07, p>0.05) | | Seitz, 1972.
United States
(130) | Variety of
firearm
related laws | U.S. States.
1967 | Least: Cross-
sectional
comparison/Lin
ear regression
models - factor
analysis | Exposure data: American Bar Foundation and Newton and Zimring 1970 (131) Outcome data: Vital statistics and the FBI UCR | Confounders: No adjustment
for other potential confounders
Other: Disaggregated results
for single units are not
provided | Difference
in rates of
homicides | Firearm related laws were associated with lower rates of firearm homicides among Whites (beta=-0.19, p<0.05) but not among non-White individuals (p>0.05) | | Sloan et al.,
1988. United
States-Canada
(132) | Variety of
firearm
related laws | Seattle and
Vancouver.
1980-1986 | Least: Cross-
sectional
comparison/Ma
ximum
likelihood-
Mantel-
Haenszel
summary odds
ratio | Exposure data: Codes
of Canada and
Washington state
Outcome data: Medical
examiners or coroner
reports from each city | Sampling: Convenience sample Confounders: No adjustment for other potential confounders | Difference
in rate of
homicides | A higher rate of homicides (RR= 1.63, 95%CI= 1.28;2.08) and firearm homicide (RR= 5.08, 95%CI= 3.54-7.27) was observed in Seattle compared with Vancouver | | Kwon et al.,
1997. United
States (133) | Variety of firearm related laws | U.S. states.
1990 | Least: Cross-
sectional
comparison/Mul
tivariate linear
regression | Exposure data: Time
Magazine
Outcome data: Vital
and Health Statistics | Confounders: No adjustment
for other potential confounders
Other: Disaggregated results
for single units are not
provided | Difference
in rate of
homicides | States with more extensive laws were not associated with lower rates of firearm deaths (beta=-2.84, p>0.05) | |--|---------------------------------------|------------------------|--|--|--|---|---| | Kwon et al.,
2005. United
States (134) | Variety of firearm related laws | U.S. states.
2000 | Least: Cross-
sectional
comparison/Mul
tivariate linear
regression
| Exposure data: Open
Society Institute, New
York
Outcome data: Vital
and Health Statistics | Confounders: No adjustment
for other potential confounders
Other: Disaggregated results
for single units are not
provided | Difference
in rate of
homicides | States with more extensive laws were associated with lower rates of firearm deaths (beta=-3.33, 95%CI=-5.66,-1.02) | | Lanza, 2014.
United States
(135) | Variety of
firearm
related laws | U.S. states. 2007-2010 | Least: Cross-
sectional time-
series without
pre-post
observations/Li
near regression | Exposure data: Brady
Campaign to Prevent
gun violence
Outcome data: NCHS | Confounders: No adjustment
for other potential confounders
Other: Disaggregated results
for single units are not
provided | Difference
s in rates
of firearm
homicides | The Brady score (stricter restrictions) was associated with reductions in firearm homicide rates in simple regression models (beta=-0.033, p<0.01) and in the random effects models (beta=-0.013, p<0.05). However, in models with a lagged dependent variable and models with fixed effects the Brady score was not associated with firearm homicides. | | Safavi et al.,
2014. United
States (136) | Variety of
firearm
related laws | U.S. states.
2009 | Least: Cross-
sectional
comparison/Lin
ear regression | Exposure data: Brady
Campaign to Prevent
Gun Violence and the
Brady Center to
Prevent Gun Violence
Outcome data:
National Inpatient
Sample database | Exposure measurement: Not validated scale for exposure classification Outcome measurement: Outcome variable with some percentage of missing data Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Difference
in rates of
firearm
homicides | States with less restrictive laws had higher rates of firearm injuries (beta=3.75, 95%CI=0.25,7.25) | | Fleegler et al.,
2013. United
States (137) | Variety of
firearm
related laws | U.S. states.
2007-2010 | Least: Cross-
sectional time-
series without
pre-post
observations/Poi
sson regression | Exposure data: Brady
Campaign to Prevent
gun violence and the
Brady Center to
Prevent Gun Violence
Outcome data:
WISQARS | Confounders: No adjustment
for other potential confounders
Other: Disaggregated results
for single units are not
provided | Incidence
rate ratios
of firearm
homicides
and
suicides | States in the highest quartile of legislative strength (scores of ≥9) compared with those in the lowest quartile (scores of ≤2) had lower overall firearm fatality rates (IRR=0.58, 95 CI= 0.37,0.92), firearm homicide rates (IRR=0.60, 95%CI=0.38,0.95) and suicide rates (IRR=0.63, 95%CI= 0.48-0.83) | |--|---------------------------------------|--|---|--|--|--|--| | Lester and
Murrell, 1980.
United States
(138) | Variety of
firearm
related laws | U.S. states.
1959-1961
and 1969-
1971 | Least: Cross-
sectional
comparison/Lin
ear regression | Exposure data: No clear description in manuscript Outcome data: Vital Statistics | Exposure: No clear details on source of exposure variable Data analysis: No information on statistical strategies used in analyses Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Difference
s in rates
of suicides | The Guttman score (degree of law strictness) was associated with an absolute increase in suicide rates from 1959-1961 to 1969-1971 (beta=-0.35, p<.01) which was also significant among males and females (p<0.05) | | Lester and
Murrell, 1982.
United States
(139) | Variety of
firearm
related laws | U.S. states.
1960 and
1970 | Least: Cross-
sectional
comparison/Co
mponent
analysis | Exposure data: As in
Bakal 1968 (129)
Outcome data: Vital
Statistics | Confounders: No adjustment
for potential confounders
Other: Disaggregated results
for single units are not
provided | Difference
s in rates
of firearm
homicides | Only firearm restrictions on sellers and buyers were related to firearms homicides (coefficients ranged from -0.35 to -0.40 p<0.01). | | Lester, 1990.
United States
(140) | Variety of
firearm
related laws | U.S. states.
1965 | Least: Cross-
sectional
comparison/Lin
ear regression | Exposure data: As in
Bakal 1968 (129)
Outcome data: No
clear description | Outcome measurement: No clear details on source of the outcome variable Confounders: No adjustment for potential confounders Other: Disaggregated results for single units are not provided | Difference
in rates of
homicides
and
suicides | The Guttmann scale (degree of law strictness) was associated with changes in suicide rates (beta=-0.28, p<0.05), but not with homicides rates (p>0.05) | | Sommers,
1984. United
States (141) | Variety of
firearm
related laws | U.S. states.
1970 | Least: Cross-
sectional
comparison/Lin
ear regression | Exposure data: As in Magaddino 1972 ^b Outcome data: Vital Statistics | Confounders: No adjustment for other potential confounders Other: Disaggregated results for single units are not provided | Difference
in rates of
suicides | License to carry laws were associated with reductions in firearm suicides (beta=-1.34, p<0.05), and also among Whites, females and males (p<0.05). Firearm licenses were associated with lower firearm suicides among females (beta=-0.57, p<0.05). Dealer licenses were associated with increments in firearm suicides among females (beta=0.57,p<0.05). Waiting periods were not associated with suicide rates | |---|---------------------------------------|--|---|--|---|---|--| | Boor and Bair,
1990. United
States (142) | Variety of
firearm
related laws | U.S. states.
1985 | Least: Cross-
sectional
comparison/Lin
ear regression | Exposure data: National Rifle Association Outcome data: Statistical Abstract of the United States (Bureau of the Census, 1987) | Other: Disaggregated results for single units are not provided | Difference
in rates of
firearm
suicides | Restriction laws on seller including waiting periods and licenses to carry firearms (beta=-0.67, p<0.05) and on buyer including license or permit for purchases, registration of firearms, and ownership license (beta=-1.07, p<0.01) were negatively associated with suicide rates | | Sloan et al.,
1990. Unites
States-Canada
(143) | Variety of
firearm
related laws | Vancouver
and King
County
1985-1987 | Least: Cross-
sectional
comparison/Ma
ximum
likelihood-
Mantel-
Haenszel
summary odds
ratio | Exposure data: Codes
of Canada and
Washington state
Outcome data: Medical
examiners records | Sampling: Convenience sample Confounders: No adjustment for other potential confounders | Difference
in rates of
all and
firearm
suicides | Vancouver compared with King County had a lower risk for firearm suicides in the overall population (RR=2.34, 95%CI=1.90,2.88), and also among those aged 15-24 (RR=3.14, 95%CI=1.81,5.46). There were no significant differences in all suicide rates. | | Conner and | Variety of | U.S. states. | Least: Cross- | Exposure data: Open | Exposure measurement: Not | Incidence | Results among females: | |---------------|--------------|--------------|-----------------|---------------------|---------------------------------|-------------|----------------------------------| | Zhong, 2003. | firearm | 1999-2000 | sectional | Society Institute | validated scale for exposure | rate ratios | Compared with states with | | United States | related laws | | comparison/Pois | Outcome data: | classification | of suicides | restrictive firearm laws, there | | (144) | | | son ad negative | WISQARS | Confounders: No adjustment | | were higher rates of suicides in | | | | | binomial models | | for other potential confounders | | states
with modest (IRR=1.64; | | | | | | | Other: Disaggregated results | | 95% CI 1.34–2.01) and | | | | | | | for single units are not | | unrestrictive laws (IRR=1.55; | | | | | | | provided | | 95% CI, 1.23–1.95). | | | | | | | | | Results among males: Compared | | | | | | | | | with states with restrictive | | | | | | | | | firearm laws, there were higher | | | | | | | | | rates of suicides in states with | | | | | | | | | modest firearm laws (IRR=1.51; | | | | | | | | | 95% CI, 1.27–1.79) and | | | | | | | | | unrestrictive firearm laws | | | | | | | | | (IRR=1.49; 95% CI, 1.23–1.82) | Abbreviations: SI, Shall Issue laws; WISQARS, Web-based Injury Statistics Query and Reporting System; RR, rate ratio; IRR, Incidence rate ratio; ARIMA, autoregressive integrated moving average; CAP, Child Access Prevention; NCHS, National Center for Health; UCR, Uniform Crime Reports ^a Longitudinal prospective or retrospective cohort studies with a concurrent comparison group and multiple pre/post intervention measurements were classified as having "greatest" design suitability; longitudinal studies without a concurrent comparison group but with multiple pre/post intervention measurements were classified as "moderate"; and cross sectional studies or longitudinal studies without a concurrent comparison group and with only single pre/post intervention measurements or with only post intervention measurements were classified as "least" design suitability. Potential limitations in study execution are described in table 3. We acknowledge that a single limitation may seriously threaten the internal validity of studies, and also that limitations described here may, or may not, have impacted the internal validity of studies. ^b J.P. Magaddino, Virginia Polytechnic Institute, Unpublished dissertation, 1972. ## References: - 1. Lott JR, Mustard DB. Crime, deterrence, and right-to-carry concealed handguns. *J Legal Stud.* 1997;26(1):1-68. - 2. Cramer CE, Kopel DB. "Shall Issue": The new wave of concealed handgun permit laws, *Tenn L Rev.* 1995; 62(3). - 3. Ayres I, Donohue JJ. Shooting down the "more guns, less crime" hypothesis. *Stanford Law Rev.* 2003;55(4):1193-1312. - 4. Martin RA, Legault RL. Systematic measurement error with state-level crime data: Evidence from the "more guns, less crime" debate. *J Res Crime Deling*. 2005;42(2):187-210. - 5. Maltz M. analysis of missingness in UCR crime data. Washington, D.C. U.S. Department of Justice. 2006 - 6. Bronars SG, Lott JR. Criminal deterrence, geographic spillovers, and the right to carry concealed handguns. *Am Econ Rev.* 1998;88(2):475-479. - 7. Bartley WA, Cohen MA. The effect of concealed weapons laws: An extreme bound analysis. *Econ Ing.* 1998;36(2):258-265. - 8. Ayres I, Donohue JJ. Yet Another Refutation of the More Guns, Less Crime Hypothesis With Some Help From Moody and Marvell. *Econ J Watch*. 2009;6(1):35-59. - 9. Mustard DB. The impact of gun laws on police deaths. *J Law Econ.* 2001;44(2):635-657. - 10. Lott JR. More guns, less crime: understanding crime and gun control laws. Chicago, IL: University of Chicago Press. 1998 - Olson D, Maltz M. Right-to-carry concealed weapons laws and homicide in large U.S. counties: the effect on weapons types, victim characteristics, and victim-offender relationships. *J Law Econ.* 2001;44:747-770. - 12. Plassmann F, Tideman TN. Does the right to carry concealed handguns deter countable crimes? Only a count analysis can say. *J Law Econ.* 2001;44(2):771-798. - 13. Plassmann F, Whitley J. Confirming "more guns, less crime". *Stanford Law Rev.* 2003;55(4):1313-1369. - 14. Helland E, Tabarrok A. Using Placebo Laws to Test "More Guns, Less Crime". *Advances in Economic Analysis & Policy 4*. 2004;4(1):1-11. - 15. Donohue J. Guns, crime, and the impact of state right-to-carry laws. Fordham Law Review. 2004;73(2):623-652. - 16. Lott J. More Guns, Less Crime: Understanding Crime and Gun Control Laws. Second ed. Chicago, IL: University of Chicago Press; 2000. - 17. Duggan M. More guns, more crime. *J Polit Econ.* 2001;109(5):1086-1114. - 18. Duwe G, Kovandzic T, Moody C. The Impact of Right-to-Carry Concealed Firearm laws on Mass Public Shootings. *Homicide Stud.* 2002;6(4):271-296. - 19. Marvell TB. Outline of remarks concerning Lott and Mustard evaluation of ten "shall-issue" handgun permit laws. Paper presented at the annual meeting of the American Society of Criminology, Toronto, Canada. 1999. - 20. Ludwig J. Concealed-gun-carrying laws and violent crime: Evidence from state panel data. *Int Rev Law Econ.* 1998;18(3):239-254. - 21. Moody CE. Testing for the effects of concealed weapons laws: Specification errors and robustness. *J Law Econ.* 2001;44(2):799-813. - 22. Black DA, Nagin DS. Do right-to-carry laws deter violent crime? *J Legal Stud.* 1998;27(1):209-219. - 23. Kovandzic T, Marvell T. Right-to-Carry Concealed handguns and Violent Crime: Crime Control Through Gun Decontrol? *Criminol Public Policy*. 2003;2(3):363-396. - 24. McDowall D, Loftin C, Wiersema B. Easing Concealed Firearms Laws: Effects on Homicide in Three States. *J. Crim. L. & Criminology*. 1995;86(1):193-206. - 25. Rubin PH, Dezhbakhsh H. The effect of concealed handgun laws on crime: beyond the dummy variables. *Int Rev Law Econ.* 2003;23(2):199-216. - Vernick JS, Hepburn LM. State and federal gun laws: trends for 1970-99. In: Ludwig J, Cook P, eds. *Evaluating gun policy: Effects on crime and violence*. Washington, DC: Brookings Institution Press. 2003:345-402. - 27. Ayres I, Donohue JJ. The latest misfires in support of the "more guns, less crime" hypothesis. *Stanford Law Rev.* 2003;55(4):1371-1398. - 28. Wellford C, Pepper J, Petrie C. Right to Carry laws. In: *Firearms and Violence: A Critical Review. Committee to Improve Research Information and Data on Firearms. Committee on Law and Justice, Division of Behavioral and Social Sciences and Education.* Washington, DC: The National Academies Press; 2005:120-151. - 29. Grambsch P. Regression to the Mean, Murder Rates, and Shall-Issue Laws. *Am Stat.* 2008;62(4):289-295. - 30. Rosengart M, Cummings P, Nathens A, et al. An evaluation of state firearm regulations and homicide and suicide death rates. *Inj Prev.* 2005;11(2):77-83. - 31. Hepburn L, Miller M, Azrael D, et al. The effect of nondiscretionary concealed weapon carrying laws on homicide. *J Trauma*. 2004;56(3):676-681. - 32. Kovandzic TV, Marvell TB, Vieraitis LM. The impact of "shall-issue" concealed handgun laws on violent crime rates Evidence from panel data for large urban cities. *Homicide Stud.* 2005;9(4):292-323. - 33. La Valle J. Rebuilding at Gunpoint: A City-Level Re-Estimation of the Brady Law and RTC Laws in the Wake of Hurricane Katrina. *Crim Justice Policy Rev.* 2007;18(4):451-465. - 34. La Valle J, Glover T. Revisiting Licensed Handgun Carrying: Personal Protection or Interpersonal Liability? *Am J Crim Just*. 2012;37:580–601. - 35. Ginwalla R, Rhee P, Friese R, et al. Repeal of the concealed weapons law and its impact on gun- related injuries and deaths. *J Trauma Acute Care*. 2014;76(3):569-574. - 36. Strnad J. Should Legal Empiricists Go Bayesian? Am Law Econ Rev. 2007;9(1):1-109. - 37. Moody CE, Marvell TB. The Debate on Shall-Issue Laws. *Econ J Watch*. 2008;5(3):269-293. - 38. Moody C, Marvell TB. The Debate on Shall Issue Laws, Continued. *Econ J Watch*. 2009;6(2):203-217. - 39. Lott J. More Guns, Less Crime: Understanding Crime and Gun Control Laws. Third ed. Chicago, IL: University of Chicago Press; 2010. - 40. Gius M. An examination of the effects of concealed weapons laws and assault weapons bans on state-level murder rates. *Appl Econ Lett.* 2014;21(4):265-267. - 41. Ludwig J, Cook PJ. Evaluating gun policy: effects on crime and violence. Washington, DC: Brookings Institution Press. 2003 - 42. Ayres I, Donohue JJ. More Guns, Less Crime Fails Again: The Latest Evidence from 1977-2006. *Econ J Watch*. 2009;6(2):218-238. - 43. Aneja A, Donohue III J, Zhang J. The Impact of Right to Carry Laws and the NRC Report: The Latest Lessons for the Empirical Evaluation of Law and Policy. NBER Working Paper No. 18294. *National Bureau of Economic Research* (Cambridge, Mass.). 2012. http://www.nber.org/papers/w18294. Published August 2012. Updated November 7, 2014. Accessed December 12, 2014. - 44. Villaveces A, Cummings P, Espitia VE, et al. Effect of a ban on carrying firearms on homicide rates in 2 Colombian cities. *JAMA- J Am Med Assoc.* 2000;283(9):1205-1209. - 45. Cheng C, Hoekstra M. Does Strengthening Self-Defense Law Deter Crime or Escalate Violence? Evidence from Expansions to Castle Doctrine. *J Hum Resour.* 2013;48(3):821-853. - 46. McClellan C, Tekin E. Stand Your Ground Laws and Homicides. Working Paper 18187. *National Bureau of Economic Research*. Cambridge, MA. 2012;1-55. http://nber.org/papers/w18187 Accessed December 13, 2014 - 47. Kleck G, Patterson EB. The impact of gun control and gun ownership levels on violence rates. *J Quant Criminol*. 1993;9(3):249-287. - 48. Ruddell R, Mays GL. State background checks and firearrns homicides. *J Crim Just.* 2005;33(2):127-136. - 49. Sumner SA, Layde PM, Guse CE. Firearm death rates and association with level of firearm purchase background check. *Am J Prev Med.* 2008;35(1):1-6. - 50. Ludwig J, Cook PJ. Homicide and suicide rates associated with implementation of the Brady Handgun Violence Prevention Act. *Jama-J Am Med Assoc.* 2000;284(5):585-591. - Vigdor E, Mercy J. Disarming batterers: The impact of laws restricting access to firearms by domestic violence offenders. In: Ludwig J, Cook P, eds. *Evaluating gun policy: Effects on crime and violence*. Washington, DC: Brookings Institution; 2003:157-215. - 52. Vigdor ER, Mercy JA. Do laws restricting access to firearms by domestic violence offenders prevent intimate partner homicide? *Evaluation Rev.* 2006;30(3):313-346. - 53. Zeoli AM, Webster DW. Effects of domestic violence policies,
alcohol taxes and police staffing levels on intimate partner homicide in large US cities. *Inj Prev.* 2010;16(2):90-95. - 54. Dugan L, Nagin DS, Rosenfeld R. Exposure reduction or retaliation? The effects of domestic violence resources on intimate-partner homicide. *Law Soc Rev* 2003;37:169-198. - 855. Rodriguez Andres A, Hempstead K. Gun control and suicide: the impact of state firearm regulations in the United States, 1995-2004. *Health Policy*. 2011;101(1):95-103. - 56. Sen B, Panjamapirom A. State background checks for gun purchase and firearm deaths: An exploratory study. *Prev Med.* 2012;55(4):346-350. - 57. Irvin N, Rhodes K, Cheney R, et al. Evaluating the effect of state regulation of federally licensed firearm dealers on firearm homicide. *Am J Public Health*. 2014;104(8):1384-1386. - 58. Vernick JS, Webster DW, Bulzacchelli MT, Mair JS. Regulation of firearm dealers in the United States: an analysis of state law and opportunities for improvement. *J Law Med Ethics*. 2006;34(4):765-775. - 59. Medoff MH, Magaddino JP. Suicides and Firearm Control Laws. Evaluation Rev. 1983;7(3):357-372. - 60. Marvell TB. The impact of banning juvenile gun possession. *J Law Econ.* 2001;44(2):691-713. - 61. Webster DW, Vernick JS, Zeoli AM, et al. Association between youth-focused firearm laws and youth suicides. *JAMA J Am Med Assoc*. 2004;292(5):594-601. - Webster D, Crifasi CK, Vernick JS. Effects of the repeal of Missouri's handgun purchaser licensing law on homicides. *J Urban Health*. 2014;91(2):293-302. Erratum in: *J Urban Health*. 2014;91(3):598-601; doi:10.1007/s11524-014-9882-7 - 63. Reisch T, Steffen T, Habenstein A, et al. Change in suicide rates in Switzerland before and after firearm restriction resulting from the 2003 "Army XXI" reform. *Am J Psychiatry*. 2013;170(9):977-984. - 64. Gjertsen F, Leenaars A, Vollrath ME. Mixed impact of firearms restrictions on fatal firearm injuries in males: a national observational study. *Int J Environ Res Public Health*. 2014;11(1):487-506. - 65. Cummings P, Grossman DC, Rivara FP, et al. State gun safe storage laws and child mortality due to firearms. *Jama-J Am Med Assoc.* 1997;278(13):1084-1086. - 66. Webster DW, Starnes M. Reexamining the association between child access prevention gun laws and unintentional shooting deaths of children. *Pediatrics*. 2000;106(6):1466-1469. - 67. Hepburn L, Azrael D, Miller M, et al. The effect of child access prevention laws on unintentional child firearm fatalities, 1979-2000. *J Trauma*. 2006;61(2):423-428. - 68. Lott JR, Whitley JE. Safe-storage gun laws: Accidental deaths, suicides, and crime. *J Law Econ.* 2001;44(2):659-689. - 69. Lee J, Moriarty K, Tashjian D, et al. Guns and states: Pediatric firearm injury. *J Trauma Acute Care Surg.* 2013;75(1):50-53. - 70. DeSimone J, Markowitz S, Xu J. Child Access Prevention Laws and Nonfatal Gun Injuries. *South Econ J.* 2013;80(1):5-25. - 71. Koper CS, Roth JA. The impact of the 1994 federal assault weapon ban on gun violence outcomes: An assessment of multiple outcome measures and some lessons for policy evaluation. *J Quant Criminol*. 2001;17(1):33-74. - 72. Webster DW, Vernick JS, Hepburn LM. Effects of Maryland's law banning "Saturday night special" handguns on homicides. *Am J Epidemiol.* 2002;155(5):406-412. - 73. Ozanne-Smith J, Ashby K, Newstead S, et al. Firearm related deaths: the impact of regulatory reform. *Inj Prev.* 2004;10(5):280-286. - 74. Deutsch SJ, Alt FB. The Effect of Massachusetts Gun-Control Law on Gun-Related Crimes in City of Boston. *Evaluation Quart*. 1977;1(4):543-568. - 75. Berk R, Hoffman D, Maki J, et al. Estimation procedures for pooled cross-sectional and time-series data. *Evaluation Quart*. 1979;3(2):385-411. - 76. Hay RA, Mccleary R. Box-Tiao Time-Series Models for Impact Assessment Comment. *Evaluation Quart.* 1979;3(2):277-314. - 77. Pierce GL, Bowers WJ. The Bartley-Fox Gun Laws Short-Term Impact on Crime in Boston. *Ann Am Acad Polit Ss.* 1981;455(May):120-137. - 78. Deutsch S. Intervention modeling: Analysis of changes in crime rates. In: Fox J, ed. *Methods in Quantitative Criminology*. New York, NY: Academic Press; 1981:171-193. - 79. Loftin C, Mcdowall D. One with a Gun Gets You 2 Mandatory Sentencing and Firearms Violence in Detroit. *Ann Am Acad Polit Ss.* 1981;455(May):150-167. - 80. Loftin C, Mcdowall D. The Deterrent Effects of the Florida Felony Firearm Law. *J Crim Law Crim*. 1984;75(1):250-259. - 81. Mcdowall D, Loftin C, Wiersema B. A Comparative-Study of the Preventive Effects of Mandatory Sentencing Laws for Gun Crimes. *J Crim Law Crim.* 1992;83(2):378-394. - 82. Fife D, Abrams WR. Firearms' decreased role in New Jersey homicides after a mandatory sentencing law. *J Trauma*. 1989;29(11):1548-1551. - 83. O'Carroll PW, Loftin C, Waller JB, Jr., et al. Preventing homicide: an evaluation of the efficacy of a Detroit gun ordinance. *Am J Public Health*. 1991;81(5):576-581. - 84. Marvell TB, Moody CE. The Impact of Enhanced Prison Terms for Felonies Committed with Guns. *Criminology*. 1995;33(2):247-281. - 85. La Valle J. Guns and homicide: Is the instrument-focused approach to deterrence efficacious? . *Justice Policy Journal*. 2008;5(2):1-30. http://www.cjcj.org/uploads/cjcj/documents/guns_and.pdf. Published ecember 18, 2008. Accessed December 12, 2014 - 86. Raphael S, Ludwig J. Prison Sentence Enhancements: The Case of Project Exile In: Cook P, Ludwig J, eds. *Evaluating Gun Policy: Effects on Crime and Violence*. Washington, DC: Brookings Institution; 2003:251-286. - 87. Rosenfeld R, Fornango R, Baumer E. Did Ceasefire, Compstat, and Exile reduce homicide? *Criminol Public Policy*. 2005;4(3):419-449. - 88. Rosenfeld R. Gun buybacks: crime control or community mobilization. In: Plotkin M, ed. *Under fire: Gun buy- backs, exchanges and amnesty programs* Washington, DC: Police Executive Research Forum.; 1996:1-28. - 89. Phillips S, Kim D, Sobol J. An evaluation of a multiyear gun buy-back programme: re-examining the impact on violent crimes. *International Journal of Police Science & Management.* 2013;15(3): 246-261. - 90. Leigh A, Neill C. Do Gun Buybacks Save Lives? Evidence from Panel Data. Am Law Econ Rev. 2010;12(2):509-557. - 91. Reuter P, Mouzos J. Australia: A Massive Buyback of Low-Risk Guns. In: Ludwig J, Cook PJ, eds. *Evaluating Gun Policy: Effects on Crime and Violence*. Brookings Institute Press. 2003:121-155. - 92. Magaddino J, Medoff M. State firearm control laws and violent crimes An empirical analysis of federal and state firearm control laws. In: Kates D, ed. *Firearms and violence*. Cambridge MA: Ballinger; 1984:229-241. - 93. Loftin C, McDowall D, Wiersema B, et al. Effects of restrictive licensing of handguns on homicide and suicide in the District of Columbia. *N Engl J Med.* 1991;325(23):1615-1620. - 94. McDowall D, Loftin C, Wiersema B. Using quasi-experiments to evaluate firearm laws: Comment on Britt et al's reassessment of the DC gun law. *Law Soc Rev.* 1996;30(2):381-391. - 95. Britt CL, Kleck G, Bordua DJ. A reassessment of the DC Gun Law: Some cautionary notes on the use of interrupted time series designs for policy impact assessment. *Law Soc Rev.* 1996;30(2):361-380. - 96. Leenaars AA, Lester D. Gender, gun control, suicide and homicide: A reply. *Arch Suicide Res.* 1999;5(1):77-79. - 97. Leenaars A, Lester D. Gender and the impact of gun control on suicide and homicide. *Arch Suicide Res.* 1996;(2):223-234. - 98. Carrington PJ. Gender, gun control, suicide and homicide in Canada. Arch Suicide Res. 1999;5(1):71-75. - 99. Leenaars AA, Lester D. The impact of gun control (Bill C-51) on homicide in Canada. *J Crim Just.* 2001;29(4):287-294. - 100. Mauser GA, Holmes RA. An Evaluation of the 1977 Canadian Firearms Legislation. Evaluation Rev. 1992;16(6):603-617. - 101. Blais E, Gagne MP, Linteau I. The effect of laws in relation to firearm control on homicides in Canada, 1974-2004. *Can J Criminol Crim*. 2011;53(1):27-61. - 102. Langmann C. Canadian firearms legislation and effects on homicide 1974 to 2008. *J Interpers Violence*. 2012;27(12):2303-2321. - 103. McPhedran S, Mauser G. Lethal Firearm-Related Violence Against Canadian Women: Did Tightening Gun Laws Have an Impact on Women's Health and Safety? *Violence Vict.* 2013;28(5):875-883. - 104. Rich CL, Young JG, Fowler RC, et al. Guns and suicide: possible effects of some specific legislation. *Am J Psychiatry*. 1990;147(3):342-346. - 105. Carrington PJ, Moyer S. Gun control and suicide in Ontario. Am J Psychiatry. 1994;151(4):606-608. - 106. Leenaars AA, Moksony F, Lester D, et al. The impact of gun control (Bill C-51) on suicide in Canada. *Death Stud.* 2003;27(2):103-124. - 107. Caron J, Julien M, Huang JH. Changes in suicide methods in Quebec between 1987 and 2000: the possible impact of bill C-17 requiring safe storage of firearms. *Suicide Life-Threat Behav.* 2008;38(2):195-208. - 108. Gagne M, Robitaille Y, Hamel D, et al. Firearms regulation and declining rates of male suicide in Quebec. *Inj Prev.* 2010;16(4):247-253. - 109. Cheung AH, Dewa CS. Current trends in youth suicide and firearms regulations. *Canadian journal of public health = Revue canadienne de sante publique*. 2005;96(2):131-135. - 110. Leenaars AA, Lester D. Effects of gun control on the accidental death rate from firearms in Canada. *J Safety Res.* 1997;28(3):119-122. - 111. Chapman S, Alpers P, Agho K, et al. Australia's 1996 gun law reforms: faster falls in firearm deaths, firearm suicides, and a decade without mass shootings. *Inj Prev.* 2006;12(6):365-372. - 112. Baker J, McPhedran S. Gun laws and sudden death Did the Australian firearms legislation of 1996 make a difference? *Brit J Criminol*. 2007;47(3):455-469. - Neill C, Leigh A. Weak tests and strong conclusions: a re-analysis of gun deaths and the Australian firearms buyback. 2007. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1011519. Published September 5, 2007. Accessed December 12, 2014. - 114. Lee WS, Suardi S. The Australian Firearms Buyback and Its Effect on Gun Deaths. *Contemp Econ Policy*. 2010;28(1):65-79. - 115. McPhedran S, Baker J. Suicide Prevention and Method Restriction: Evaluating the Impact of Limiting Access to Lethal Means Among Young Australians. *Arch Suicide Res.* 2012;16(2):135-146. - 116. Klieve H, Barnes M, De Leo D. Controlling firearms use in Australia: has the 1996 gun law reform produced the decrease in rates of suicide with this method? *Soc Psych Psych Epid*. 2009;44(4):285-292. - 117. Snowdon J, Harris L. Firearm suicides in Australia. *Med J Australia*. 1992;156:79-83. - 118. Marinho de Souza Mde F, Macinko J, Alencar AP, et al. Reductions in firearm-related mortality and hospitalizations in Brazil after gun control. *Health Aff.* 2007;26(2):575-584. - 119. Kapusta ND, Etzersdorfer E, Krall C, et al. Firearm legislation reform in the European Union: impact on firearm availability, firearm suicide and homicide rates in Austria. *Br J Psychiatry*. 2007;191:253-257. - 120. Niederkrotenthaler T, Till B, Herberth A, et al. Can media effects counteract legislation reforms? The case of adolescent firearm suicides in the wake of the Austrian firearm legislation. *J Adolesc Health*. 2009;44(1):90-93. - 121. Beautrais AL, Fergusson DM, Horwood LJ. Firearms legislation and reductions in firearm-related suicide deaths in New Zealand. *Aust NZ J Psychiat*. 2006;40(3):253-259. - 122. Matzopoulos RG, Thompson ML, Myers JE. Firearm and Nonfirearm Homicide in 5 South African Cities: A Retrospective Population-Based Study. *Am J Public Health*. 2014;104(3):455-460. - 123. Geisel MS, Roll R, Wettick RS. Effectiveness of State and Local Regulation of Handguns Statistical Analysis. *Duke Law J*. 1969.(4):647-676. - 124. Murray DR. Handguns, Gun-Control Laws and Firearm Violence. Soc Probl. 1975;23(1):81-93. - 125. Bakal C. The right to bear arms. McGraw-Hill, New York. 1966 - 126. Lester D. Gun control, gun ownership, and suicide prevention. Suicide Life-Threat Behav. 1988;18(2):176-180. - 127. Lester D. Gun Control. Springfield, IL: Charles C Thomas Pub. 1984 - 128. Lester D, Murrell ME. The Influence of Gun-Control Laws on Personal Violence. *J Community Psychol.* 1986;14(3):315-318. - 129. Bakal C. No right to bear arms. New York, NY: Paperback Books. 1968 - 130. Seitz S. Firearms, homicides, and gun control effectiveness. Law Soc Rev. 1972;6(4):595-614. - 131. Newton GD, Zimring FE. Firearm and violence in American life. Washington D.C.: U.S. Government Printing Office. 1970 - 132. Sloan JH, Kellermann AL, Reay DT, et al. Handgun regulations, crime, assaults, and homicide. A tale of two cities. *New Engl J Med.* 1988;319(19):1256-1262. - 133. Kwon IWG, Scott B, Safranski SR, et al. The effectiveness of gun control laws: Multivariate statistic analysis. *Am J Econ Sociol*. 1997;56(1):41-50. - 134. Kwon IWG, Baack DW. The effectiveness of legislation controlling gun usage A holistic measure of gun control legislation. *Am J Econ Sociol.* 2005;64(2):533-547. - 135. Lanza S. The effect of firearm restrictions on gun-related homicides across US states. Appl Econ Lett. 2014;21(13):902-905. - 136. Safavi A, Rhee P, Pandit V, et al. Children are safer in states with strict firearm laws: A National Inpatient Sample study. *J Trauma Acute Care*. 2014;76(1):146-150. - 137. Fleegler EW, Lee LK, Monuteaux MC, et al. Firearm legislation and firearm-related fatalities in the United States. *JAMA Inter Med.* 2013;173(9):732-740. - 138. Lester C, Murrell M. The influence of gun control laws on suicidal behavior. Am J Psych. 1980;137(1):121-122. - 139. Lester D, Murrell ME. The Preventive Effect of Strict Gun-Control Laws on Suicide and Homicide. *Suicide Life-Threat Behav*. 1982;12(3):131-140. - 140. Lester D. Capital punishment, gun control, and personal violence (suicide and homicide). *Psychol Rep.* 1990;66(1):122. - 141. Sommers P. The effect of gun control laws on suicide rates. *Atlantic Econ J.* 1984;12:67-69. - 142. Boor M, Bair JH. Suicide Rates, Handgun Control Laws, and Sociodemographic Variables. *Psychol Rep.* 1990;66(3):923-930. - 143. Sloan JH, Rivara FP, Reay DT, et al. Firearm regulations and rates of suicide. A comparison of two metropolitan areas. *New Engl J of Med.* 1990;322(6):369-373. - 144. Conner KR, Zhong YY. State firearm laws and rates of suicide in men and women. Am J Prev Med. 2003;25(4):320-324.