
Supporting Information

Theory in different notation

In this section we first describe the general parallel imaging and compressed sensing problems.

Subsequently, the Split Bregman algorithm, which is used to solve these problems, is explained.

Hereafter, we introduce the preconditioner that is used to speed up the PI-CS algorithm and

elaborate on its implementation and complexity.

Parallel Imaging Reconstruction

In parallel imaging with full k-space sampling the data, including noise, is described by the

model

FSx = yfull,

where the vector yfull ∈ CNNc×1 contains the fully sampled noisy k-space data sets for Nc coil

channels. Furthermore, x ∈ CN×1 is the true image (3). Here, N = m · n, where m and n

define the image matrix size in the x and y-directions, respectively, for a 2D sampling case.

Furthermore, S ∈ CNNc×N are stacked diagonal matrices representing complex coil sensitivity

maps for each channel. Finally, F ∈ CNNc×NNc is a block diagonal matrix where every block is

the discrete two-dimensional Fourier transform matrix F̃ with dimensions N × N . In the case

of undersampling, the data is described by the model

RFSx = y, (1)

where y ∈ CNNc×1 are the undersampled k-space data sets with zeros at non-measured k-

space locations. The undersampling pattern is specified by the binary diagonal sampling matrix

R ∈ RNNc×NNc , so that the undersampled Fourier transform is given by RF. Here it is important

to note that R reduces the rank of RFS, which means that solving for x in Eq. (1) is in general an

ill-posed problem for each coil and a unique solution does not exist. However, if the individual

coil data sets are combined and the undersampling factor does not exceed the number of coil

channels, the image x can in theory be reconstructed by finding the least squares solution, i.e.

by minimizing

x̂ = argmin
x
‖RFSx− y‖22 , (2)

where x̂ ∈ CN×1 is an estimate of the true image.

1



Parallel Imaging Reconstruction with Compressed Sensing

In the case of higher undersampling factors, the problem of solving Eq. (2) becomes ill-posed

and additional regularization terms need to be introduced to transform the problem into a well-

posed problem. Since MR images are known to be sparse in some domains, adding `1-norm

terms is a suitable choice for regularization. The techniques of parallel imaging and compressed

sensing are then combined in the following minimization problem

x̂ = argmin
x

{
µ

2
‖RFSx− y‖22 +

λ

2

(
‖Dxx‖1 + ‖Dyx‖1

)
+
γ

2
‖Wx‖1

}
, (3)

with µ, λ and γ the regularization parameters for the data fidelity, the total variation, and the

wavelet, respectively (8). A total variation regularization constraint is introduced by the first-

order derivative matrices Dx, Dy ∈ RN×N , representing the numerical finite difference scheme

Dx(x)|i,j = xi,j − xi−1,j i = 2, ..,m, j = 1, .., n

Dy(x)|i,j = xi,j − xi,j−1 i = 1, ..,m, j = 2, .., n

with periodic boundary conditions

Dx(x)|1,j = x1,j − xm,j j = 1, .., n

Dy(x)|i,1 = xi,1 − xi,n i = 1, ..,m

so that Dx and Dy are circulant. A unitary wavelet transform W ∈ RN×N further promotes

sparsity of the image in the wavelet domain.

Split Bregman Iterations

Solving Eq. (3) is not straightforward as the partial derivatives of the `1-norm terms are not

well-defined around 0. Instead, the problem is transformed into one that can be solved easily.

In this work, we use Split Bregman to convert Eq. (3) into multiple minimization problems in

which the `1-norm terms have been decoupled from the `2-norm term, as discussed in detail

in (14,24). For convenience, the Split Bregman method is shown in Algorithm 1. The Bregman

parameters bx,by,bw are introduced by the Bregman scheme and auxiliary variables dx,dy,dw

are introduced by writing the constrained problem as an unconstrained problem. The algorithm

consists of two loops: an outer loop and an inner loop. In the inner loop (steps 4-11), we

first compute the vector b that serves as a right-hand side for step 5, which is solving an `2-

norm problem. Subsequently, the `1-norm subproblems are solved using the shrink function in

steps 6-8. Hereafter, the residuals for the regularization terms are computed in steps 9-11 and

are subsequently fed back into the system by updating the right hand side vector b in step 5.

2



Steps 4-11 can be repeated several times, but one or two inner iterations are normally sufficient

for convergence. Similarly, the outer loop feeds the residual encountered in the data fidelity

term back into the system, after which the inner loop is executed again.

The system of linear equations,

Ax̂ = b, (4)

in line 5 of the algorithm follows from a standard least squares problem, where the system

matrix is given by

A = µ (RFS)H RFS + λ
(
DHx Dx + DHy Dy

)
+ γWHW

with right-hand side

b = µ (RFS)H yi + λ
[
DHx

(
dkx − bkx

)
+ DHy

(
dky − bky

)]
+ γWH

(
dkw − bkw

)
.

In this work we focus on solving Eq. (4), which is computationally the most expensive part of

Algorithm 1. It is important to note that the system matrix A remains constant throughout

the algorithm and only the right hand side vector b changes, which allows us to efficiently solve

Eq. (4) by using preconditioning techniques.

Algorithm 1 Split Bregman Iteration

1: Initialize y[1] = y, x[1] = Sum of Squares(FHy),

Initialize b
[1]
x ,b

[1]
y ,b

[1]
w ,d

[1]
x ,d

[1]
y ,d

[1]
w = 0

2: for j = 1 to nOuter do

3: for k = 1 to nInner do

4: b = µSHFHRHy[j] + λ
[
DHx (d

[k]
x − b

[k]
x ) + DHy (d

[k]
y − b

[k]
y )
]

+ γWH(d
[k]
w − b

[k]
w )

5: solve Ax[k+1] = b with x[k] as initial guess

6: d
[k+1]
x = shrink

(
Dxx

[k+1] + b
[k]
x ,

1
λ

)
7: d

[k+1]
y = shrink

(
Dyx

[k+1] + b
[k]
y ,

1
λ

)
8: d

[k+1]
w = shrink

(
Wx[k+1] + b

[k]
w ,

1
γ

)
9: b

[k+1]
x = b

[k]
x + Dxx

[k+1] − d
[k+1]
x

10: b
[k+1]
y = b

[k]
y + Dyx

[k+1] − d
[k+1]
y

11: b
[k+1]
w = b

[k]
w + Wx[k+1] − d

[k+1]
w

12: end for

13: y[j+1] = y[j] + y[1] − RFSx[k+1]

14: end for

3



Structure of the System Matrix A

The orthogonal wavelet transform is unitary, so that WHW = I. Furthermore, the deriva-

tive operators are constructed such that the matrices Dx,Dy,D
H
x and DHy are block circulant

with circulant blocks (BCCB). The product and sum of two BCCB matrices is again BCCB,

showing that DHx Dx + DHy Dy is also BCCB. These type of matrices are diagonalized by the

two-dimensional Fourier transformation F̃, i.e.

D1 = F̃CF̃H or D2 = F̃HCF̃

where C is a BCCB matrix and D1 and D2 are diagonal matrices. This motivates us to write

the system matrix A in Eq. (4) in the form

A = F̃H F̃AF̃H F̃

= F̃HKF̃ (5)

with K ∈ CN×N given by

K = µ F̃SHFHRHRFSF̃H︸ ︷︷ ︸
Kc

+λ F̃
(
DHx Dx + DHy Dy

)
F̃H︸ ︷︷ ︸

Kd

+γ I︸︷︷︸
Kw

. (6)

The term DHx Dx + DHy Dy is BCCB, so that Kd in K becomes diagonal. If there is no sensitivity

encoding, that is S = I, the entire K matrix becomes diagonal in which case the solution x̂ can

be efficiently found by computing

x̂ = A−1b = F̃HK−1F̃b (7)

for invertible K. In practice, Fast Fourier Transforms (FFTs) are used for this step. With sensi-

tivity encoding, S 6= I and SHFHRHRFS is not BCCB for any i, hence matrix K is not diagonal.

In that case we prefer to solve Eq. (4) iteratively, since finding K−1 is now computationally

too expensive. It can be observed that the system matrix A is Hermitian and positive definite,

which motivates the choice for the conjugate gradient (CG) method as an iterative solver.

Preconditioning

A preconditioner M ∈ CN×N can be used to reduce the number of iterations required for CG

convergence (41). It should satisfy the conditions

1. M−1A ≈ I to cluster the eigenvalues of the matrix pair around 1, and

2. determination of M−1 and its evaluation on a vector should be computationally cheap.

4



Ideally, we would like to use a diagonal matrix as the preconditioner as this is computationally

inexpensive. For this reason, the Jacobi preconditioner is used in many applications with the

diagonal elements from matrix A as the input. However, for the current application of PI and

CS the Jacobi preconditioner is not efficient since it does not provide an accurate approximate

inverse of the system matrix A. In this work, we use a different approach and approximate the

diagonal from K in Eq. (6) instead. The motivation behind this approach is that the Fourier

matrices in matrix K center a large part of the information contained in SHFHRHRFS around the

main diagonal of K, so that neglecting off-diagonal elements of K has less effect than neglecting

off-diagonal elements of A.

For the preconditioner used in this work we approximate A−1 by

M−1 = F̃Hdiag{k}−1F̃, (8)

where diag{} places the elements of its argument on the diagonal of a matrix. Furthermore,

vector k is the diagonal of matrix K and can be written as

k = µkc + λkd + γkw, (9)

where kc, kd and kw are the diagonals of Kc, Kd and Kw, respectively. Note that Kd and Kw

are diagonal matrices already, so that only kc will result in an approximation of the inverse for

the final system matrix A.

Efficient Implementation of the Preconditioner

The diagonal elements kc of Kc = F̃SHFHRHRFSF̃H can be found by expressing the matrix Kc

in terms of the coil elements as

Kc = F̃SH1 F̃H︸ ︷︷ ︸
CH
1

RH1 R1︸ ︷︷ ︸
R1

F̃SF̃H︸ ︷︷ ︸
C1

+ . . .+ F̃SHNc
F̃H︸ ︷︷ ︸

CH
Nc

RHNc
RNc︸ ︷︷ ︸

RNc

F̃SF̃H︸ ︷︷ ︸
CNc

, (10)

where Si and Ri are the sensitivity map and sampling pattern for coil i, respectively. Now,

the diagonal elements kc;i of Kc;i = F̃SHi F̃
H︸ ︷︷ ︸

CH
i

RHi Ri︸ ︷︷ ︸
Ri

F̃SF̃H︸ ︷︷ ︸
Ci

for a certain i are found by noting that

Ci = F̃SiF̃
H is in fact a BCCB matrix. Hence, the diagonal elements kc;i can now be found on

the diagonal of CHi RiCi, so that

kc;i =

N∑
j=1

ej
(
cHj;iRicj;i

)
,

5



with cHj;i being the jth row of matrix CHi and ej the jth standard basis vector. Note that the

scalar
(
cHj;iRicj;i

)
is the jth entry of vector kc;i. Since Ri is a diagonal matrix which is equal

for each coil element, we can write it as Ri = diag{r} and therefore

kc;i =

N∑
j=1

ej
(
cHj;i ◦ cTj;i

)
r

=


cH1;i ◦ cT1;i

cH2;i ◦ cT2;i
...

cHN ;i ◦ cTN ;i

 r

=
(
CHi ◦ CTi

)
r, (11)

where ◦ denotes the element-wise (Hadamard) product. Since the element-wise product of two

BCCB matrices is again a BCCB matrix, the circular convolution theorem tells us (42,43) that

F̃kc;i = F̃
[(

cH1;i ◦ cT1;i
)T ∗ r

]
= F̃

[(
cH1;i ◦ cT1;i

)T ] ◦ F̃r.

The resulting matrix vector product in Eq. (11) can now be efficiently computed as

kc;i = F̃H
{[

F̃
(
cH1;i ◦ cT1;i

)T ] ◦ F̃r
}
. (12)

Finally, the diagonal elements d of the diagonal matrix D with structure D = F̃CF̃H can be

computed efficiently by using d = F̃c1, where c1 is the first row of C. Therefore, the first row

cH1;i of matrix CHi is found as
(
cH1;i

)T
= F̃H

(
sHi
)T

, with sHi a row vector containing the diagonal

elements of matrix Si. For multiple coils Eq. (12) becomes

kc = F̃H

{[
F̃

Nc∑
i=1

(
cH1;i ◦ cT1;i

)T] ◦ F̃r

}
, (13)

where the action of the Fourier matrix on a vector can be efficiently computed using the FFT.

Since DHx Dx+DHy Dy is BCCB, the elements of kd can be quickly found by evaluating kd = F̃t1,

where t1 is the first row of DHx Dx + DHy Dy. Finally, the elements of kw are all equal to one,

since Kω is the identity matrix.

6



Supporting Figures

FA 90º

a b d

e

c

FA 45º FA 20º FA 10º

f g
5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

#
 p

cg
 i

te
ra

ti
o
n
s

No Preconditioner

Circulant Preconditioner

h
5 10 1 0

Bregman counter

0

2

4

6

8

10

12

14

16

18

20

#
 p

cg
 i

te
ra

ti
o

n
s

No Preconditioner

Circulant Preconditioner

5 1 0 15 20

Bregman counter

0

2

4

6

8

10

12

14

16

18

20

#
 p

cg
 i

te
ra

ti
o

n
s

No Preconditioner

Circulant Preconditioner

5 2
5 10 15 20

Bregman counter

0

2

4

6

8

10

12

14

16

18

20

#
 p

cg
 i

te
ra

ti
o

n
s

No Preconditioner

Circulant Preconditioner

Bregman counter

Supporting Figure S1. The performance of the preconditioner for different SNR levels. Prospectively

undersampled data sets were obtained for different SNR levels by varying the flip angle from 10 to 90

degrees. The difference in the number of CG iterations needed until convergence with and without

preconditioner for different SNR levels is negligible.

7


