

Supporting Information

Alteration of Chain Length Selectivity of *Candida antarctica* Lipase A by Semi-Rational Design for the Enrichment of Erucic and Gondoic Fatty Acids

Katja Zorn^{a1}, Isabel Oroz-Guinea^{a1}, Henrike Brundiek^b, Mark Dörr^a and Uwe T. Bornscheuer^{a*}

^aUniversity of Greifswald, Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Felix-

Hausdorff-Str. 4, 17487 Greifswald, Germany

Fax: (+49) 3834 420 744367; phone: (+49) 3834 420 4367; email: uwe.bornscheuer@uni-greifswald.de

^bEnzymicals AG, Walther-Rathenau-Str. 49a, 17489 Greifswald, Germany.

¹Equal contribution.

Supplementary information

Table S1. Comparison of different methods to generate site-directed saturation mutagenesis libraries, including the number of primers used, the number of codons contained, the number of amino acids and stop codons encoded, and the screening effort required for the simultaneous saturation of 1, 2 or 3 positions to achieve a 95 % library coverage.

Degenerate primers	Number of primers	Number of codons	Number of aa (Stop codon)	1 Pos.	2 Pos.	3 Pos.
NNN	1	64	20 (3)	192	12 288	786 432
NNK	1	32	20 (1)	96	3 072	98 304
22c-trick ^[19a]	3	22	20 (0)	66	1 450	31 899
20c-trick ^[19b]	4	20	20 (0)	60	1 200	24 000
NDT	1	9	9 (0)	36	432	5 184

Table	S2 .	Amino	acid	changes	present	in	the	CAL-A	variants	chosen	from	the	high-throughput
screen	ing f	or furthe	er ana	lysis.									

Variant	V238	V286	V290	Additional mutation
V1	L	-	L	
V2	Y	-	N	
V3	Ι	-	М	
V4	М	Н	-	
V5	L	Н	-	
V6	L	Н	М	
V7	Ι	-	-	
V8	S	-	Т	
V9	-	Q	W	
V10	L	Q	-	
V11	L	-	Т	P399Q
V12	L	-	N	
V13	-	R	Е	E335K
V14	L	-	Н	
V15	Ι	-	L	N285D

Figure S1. (A) Chain length profile displayed by the selected CAL-A variants (wt, V1, V2, V3, V9 and V12) overexpressed in *P. pastoris* towards *p*NP-C14:0 (\blacksquare), -C16:0 (\blacksquare), -C18:1 (\blacksquare), -C18:2 (\blacksquare), -C18:3 (\blacksquare), -C20:1 (\blacksquare) and -C22:1 (\blacksquare). (**B**) Activity ratios calculated for the aforementioned CAL-A variants: *p*NP-C20:1/*p*NP-C18:1 (\blacksquare), *p*NP-C22:1/*p*NP-C18:1 (\blacksquare).

CAL-A 1Mut variants	V238L	V238I	V238Y	V286Q	V290L	V290M	V290N	V290W
Protein conc. (mg/ml)	1.7	1.6	1.6	2.1	1.6	1.7	1.6	1.7
CAL-A 2Mut variants	V1	V2	V3	V9	V12	•		
Protein conc. (mg/ml)	1.7	1.6	2.0	1.7	2.1	-		
						-		
CAL-A 3Mut variants	V16	V17	V18	V19	V20	•		
Protein conc. (mg/ml)	1.7	1.7	2.0	1.7	2.1	-		
CAL A	wt							
Protein conc. (mg/ml)	1.8							

Table S3. Protein concentration present in the supernatant obtained during the small scale *P. pastoris* overexpression of the different CAL-A variants. All the samples were previously desalted before quantification. 1Mut: single mutant. 2Mut: double mutant. 3Mut: triple mutant.

Figure S2. SDS–PAGE gel of the CAL-A variants overexpressed in *P. pastoris*: (A) single mutant variants, (B) double mutant variants and (C) triple mutant variants. Lane L contains a molecular weight marker (212-14 kDa). The red arrow points the protein band height belonging to CAL-A and its variants.

Table S4. Summary of the protein concentration and the hydrolytic activity towards *p*NP-C14:0 quantified for the fermented CAL-A variants. Hydrolytic activity was determined twice, firstly for the supernatant collected at the end of the fermentation (t=162 h; U/ml_{SN}), and subsequently for the same sample after a desalting step (U/ml_{dSN}). Protein concentration was determined for the latter aliquot.

CAL-A variant	Concentration (mg _{prot} /ml _{dSN})	Activity ₎ (U/ml _{sN})	Activity ₎ (U/ml _{dSN})	Activity (U/mg _{prot})
wt	1.7	1028.1	634.35	368.9
V290W	2.2	1667.8	1234.58	558.1
V1	1.1	2377.5	1857.84	1,672.4
V2	2.3	544.6	422.03	183.7
V3	1.8	1552.9	1016.85	576.6
V9	1.6	536.6	435.90	271.9
V16	2.3	496.0	358.90	153.3
V18	1.1	793.8	438.47	389.9
V19	1.6	1673.4	1248.25	762.3
V20	1.9	318.4	231.65	120.1

Figure S3. Chromatograms of the FAEE derived from *Crambe* oil: (A) unmodified FAEE *Crambe* derivatives and (B) the total FA as FAME. Both samples contained ethyl tridecanoate (1) and tripentadecanoin (3) as external standards. In the table the mole fraction (x_i) of the FA in the *Crambe* FAEE is displayed.

Figure S4. Chromatograms of the FAEE derived from *Camelina* oil: (A) unmodified FAEE *Camelina* derivatives and (B) the total FA as FAME. Both samples contained ethyl tridecanoate (1) and tripentadecanoin (3) as external standards. In the table the mole fraction (x_i) of the FA in the *Camelina* FAEE is displayed.

Figure S5. Exemplary thin-layer chromatography showing the reactions of 0, 1, 5, 10, and 50 U CAL-A V1 with *Crambe* and *Camelina* FAEE on aluminum silica foils dyed with potassium permanganate solution.

Figure S6. Tunnel calculations with Caver Analyst 1.0 for CAL-A Wt, the single mutant V290W, the double mutants V1, 2, 3, 9, and 12, and the triple mutants V16-20. The tunnel graphs are displayed for the fatty acid binding tunnel calculated from the catalytic Ser185 with a min. probe radius of 0.6-0.7.

Fatty acid	Length [Å]	Distance double bond [Å]
Oleic acid	19.0 - 21.3	9.5 - 11.2
Gondoic acid	20.4 - 23.8	10.4 - 13.6
Erucic acid	21.8 - 26.3	13.2 - 16.1

 Table S5. Estimated dimensions of the fatty acid molecules.

Table S6. Primers used to generate CAL-A libraries I to III

Primer	name	Primer Sequence		
15.15	pET-RP rv	CTAGTTATTGCTCAGCGG		
16.19	QC/MW1 CAL-A V286X rv	CAGGCTAAACACGTTCAGAAACGGATAG		
		CAGGCTAAANDTGTTCAGAAACGGATAG		
		CAGGCTAAAVHGGTTCAGAAACGGATAG		
		CAGGCTAAATGGGTTCAGAAACGGATAG		
16.20	QC V290X fw	TTTAGCCTGGTGAACGATACCAACCTG		
		TTTAGCCTGNDTAACGATACCAACCTG		
		TTTAGCCTGVHGAACGATACCAACCTG		
		TTTAGCCTG TGG AACGATACCAACCTG		
16.21	MW1/MW2 V238X fw	CCGGT <mark>GTG</mark> AGCGGTCTGAGC		
		CCGGTNDTAGCGGTCTGAGC		
		CCGGTVHGAGCGGTCTGAGC		
		CCGGT TGG AGCGGTCTGAGC		
16.22	MW2 V290X rv	GTATCGTT <mark>CAC</mark> CAGGCTAAACACGTTC		
		GTATCGTTNDTCAGGCTAAACACGTTC		
		GTATCGTTVHGCAGGCTAAACACGTTC		
		GTATCGTTTGGCAGGCTAAACACGTTC		

Figure S7. Observed ¹H NMR spectra of (**A**) *p*NP-oleate, (**B**) *p*NP-linoleate, (**C**) *p*NP-linolenoate, (**D**) *p*NP-gondoate, (**E**) *p*NP-erucate.

CAL-A variant	Resulting plasmid	Plasmid template	Primer fw name	Primer rv name	
V2201	pGAPZα-CALA-His V238L	pGAPZa-CALA-His	CALA V229L OC for		
V238L	pPICZα-CALA-His V238L	pPICZa-CALA-His	– CALA V238L QC IW	CALA V238L QC rV	
1/2201	pGAPZα-CALA-His V238I	pGAPZa-CALA-His			
V2381	pPICZα-CALA-His V238I	pPICZa-CALA-His	- CALA V238I QC IW	CALA V2381 QC rV	
V220X	pGAPZα-CALA-His V238Y	pGAPZa-CALA-His	CALA V228V OC for		
V 238 Y	pPICZa-CALA-His V238Y	pPICZa-CALA-His	CALA V238Y QC IW	CALA V238Y QC rv	
V29(0	pGAPZα-CALA-His V286Q	pGAPZa-CALA-His	CALA V28(O OC for	CALA V28(0.00	
v280Q	pPICZa-CALA-His V286Q	pPICZa-CALA-His	- CALA V280Q QC IW	CALA V 280Q QU IV	
V290L	pGAPZα-CALA-His V290L	pGAPZa-CALA-His	CALA V290L QC fw	CALA V290L QC rv	
V290M	pGAPZα-CALA-His V290M	pGAPZa-CALA-His	CALA V290M QC fw	CALA V290M QC rv	
V290N	pGAPZα-CALA-His V290N	pGAPZa-CALA-His	CALA V290N QC fw	CALA V290N QC rv	
	pGAPZα-CALA-His V290W	pGAPZa-CALA-His			
V290W	pPICZα-CALA-His V290W	pPICZa-CALA-His	CALA V290W QC IW	CALA V290W QC IV	
V1	pPICZα-CALA-His V238L V290L	pPICZaB-CALA-His V238L	CALA V290L QC fw	CALA V290L QC rv	
V2	pPICZα-CALA-His V238Y V290N	pPICZaB-CALA-His V238Y	CALA V290N QC fw	CALA V290N QC rv	
V3	pPICZα-CALA-His V238I V290M	pPICZaB-CALA-His V238I	CALA V290M QC fw	CALA V290M QC rv	
V9	pPICZα-CALA-His V286Q V290W	pPICZaB-CALA-His V286Q	CALA (V286Q) V290W QC fw	CALA (V286Q) V290W QC rv	
V12	pPICZα-CALA-His V238L V290N	pPICZaB-CALA-His V238L	CALA V290N QC fw	CALA V290N QC rv	
V16	pPICZα-CALA-His V238L V286Q V290L	pPICZα-CALA-His V238L, V290L	CALA V286Q (V290L) QC fw	CALA V286Q (V290L) QC rv	
V17	pPICZα-CALA-His V238Y V286Q V290N	pPICZα-CALA-His V238Y, V290N	CALA V286Q (V290N) QC fw	CALA V286Q (V290N) QC rv	
V18	pPICZα-CALA-His V238I V286Q V290M	pPICZα-CALA-His V238I, V290M	CALA V286Q (V290M) QC fw	CALA V286Q (V290M) QC rv	
V19	pPICZα-CALA-His V238L V286Q V290W	pPICZα-CALA-His V286Q, V290W	CALA V238L QC fw	CALA V238L QC rv	
V20	pPICZα-CALA-His V238I V286Q V290W	pPICZα-CALA-His V286Q, V290W	CALA V238I QC fw	CALA V238I QC rv	

Table S7. Primers and plasmids used to create the single, double and triple mutant vectors for *P. pastoris* overexpression.

Primer name	Sequence fw	Sequence rv
CALA V238L QC	⁵ -GCCCTGGCGGGTCTTTCGGGTCTCT- ³	⁵ '-AGAGACCCGAAAGACCCGCCAGGGC- ³ '
CALA V238I QC	^{5'} -TGCCCTGGCGGGTATTTCGGGTCTCTC- ^{3'}	^{5'} -GAGAGACCCGAAATACCCGCCAGGGCA- ^{3'}
CALA V238Y QC	^{5'} -TTGCCCTGGCGGGTTATTCGGGTCTCTCGC- ^{3'}	^{5′} -GCGAGAGACCCGAATAACCCGCCAGGGCAA- ^{3′}
CALA V286Q QC	^{5'} -CCTACCCCTTCCTCAACCAGTTCTCGCTGGTCAACGA- ^{3'}	^{5'} -TCGTTGACCAGCGAGAACTGGTTGAGGAAGGGGTAGG- ^{3'}
CALA V290L QC	^{5'} -AACGTCTTCTCGCTGCTCAACGACACGAACC- ^{3'}	^{5'} -GGTTCGTGTCGTTGAGCAGCGAGAAGACGTT- ^{3'}
CALA V290M QC	^{5'} -CAACGTCTTCTCGCTGATGAACGACACGAACCTGC- ^{3'}	^{5'} -GCAGGTTCGTGTCGTTCATCAGCGAGAAGACGTTG- ^{3'}
CALA V290N QC	^{5'} -TCAACGTCTTCTCGCTGAACAACGACACGAACCTGC- ^{3'}	^{5'} -GCAGGTTCGTGTCGTTGTTCAGCGAGAAGACGTTGA- ^{3'}
CALA V290W QC	⁵ '-CTCAACGTCTTCTCGCTGTGGAACGACACGAACCTGCTC- ³ '	⁵ '-GAGCAGGTTCGTGTCGTTCCACAGCGAGAAGACGTTGAG- ³ '
CALA (V286Q) V290W QC	^{5'} -CTCAACCAGTTCTCGCTGTGGAACGACACGAACCTGCTC- ^{3'}	^{5'} -GAGCAGGTTCGTGTCGTTCCACAGCGAGAACTGGTTGAG- ^{3'}
CALA (V290L) V286Q QC	^{5'} -CCTACCCCTTCCTCAACCAGTTCTCGCTGCTCAACGA- ^{3'}	^{5'} -TCGTTGAGCAGCGAGAACTGGTTGAGGAAGGGGTAGG- ^{3'}
CALA (V290N) V286Q QC	^{5'} -CCTACCCCTTCCTCAACCAGTTCTCGCTGAACAACGA- ^{3'}	^{5'} -TCGTTGTTCAGCGAGAACTGGTTGAGGAAGGGGTAGG- ^{3'}
CALA (V290M) V286Q QC	^{5'} -CCTACCCCTTCCTCAACCAGTTCTCGCTGATGAACGA- ^{3'}	^{5'} -TCGTTCATCAGCGAGAACTGGTTGAGGAAGGGGTAGG- ^{3'}

Table S8. Sequences of the primers used to create the single, double and triple mutant vectors for *P. pastoris* overexpression.