Supplementary Figure 1. Observational association of circulating uric acid with incident type 2 diabetes per EPIC-InterAct country, and I^2 for the proportion of heterogeneity between countries. The pooled estimate is based on random effects meta-analysis. Values are HR (95% CI) per 59.48 µmol/L (1 mg/dL) increase in uric acid, and estimates were adjusted for study center, sex, age (as underlying time scale), BMI, systolic blood pressure, prevalent hypertension, non-HDL cholesterol (=total – HDL cholesterol), triglycerides, eGFR, alcohol consumption, smoking status, highest educational level, and level of physical activity. N = 24,265 with 10,576 incident type 2 diabetes cases.

Supplementary Figure 2. Association of genetic score with incident type 2 diabetes per EPIC-InterAct country, and I^2 for the proportion of heterogeneity between countries. The pooled estimate is based on random effects meta-analysis. Values are HR (95% CI) per SD increase in the genetic score, and estimates were adjusted for study center. N = 17,118 with 7,319 incident type 2 diabetes cases.

Country		HR (95% CI)
France		0.93 (0.75, 1.15)
Italy		0.94 (0.87, 1.02)
Spain		1.05 (0.99, 1.13)
UK		0.97 (0.88, 1.08)
Netherlands	•	1.07 (0.96, 1.20)
Germany		0.98 (0.91, 1.06)
Sweden		1.03 (0.97, 1.10)
Overall (I-squared = 23.8%, p = 0.248)	\diamond	1.01 (0.97, 1.05)
.6	ľ 1	1.6

Supplementary Figure 3. Instrumental variable estimates of the effect of circulating uric acid on diabetes risk per EPIC-InterAct country, and I^2 for the proportion of heterogeneity between countries. Estimates were derived from two stage control function estimator approach analysis. The pooled estimate is based on random effects meta-analysis. Values are HR (95% CI) per 59.48 µmol/L (1 mg/dL) increase in uric acid, and estimates were adjusted for study center. N = 17,118 with 7,319 incident type 2 diabetes cases.

Supplementary Figure 4. Forrest plot of the causal estimates of circulating uric acid and diabetes derived for each SNP, incorporating data from InterAct and DIAGRAM with a total 41,508 cases.

SNP		Causal OR (95% CI)
rs729761 —	- -	0.21 (0.10, 0.42)
rs2307394 🖌 🔶	→	0.25 (0.09, 0.75)
rs780094	— •	0.33 (0.19, 0.57)
rs17786744	—	0.46 (0.18, 1.19)
rs505802		0.60 (0.38, 0.95)
rs1178977	+	0.78 (0.45, 1.33)
rs1394125	+	0.78 (0.35, 1.73)
rs7193778	+	0.78 (0.44, 1.39)
rs1183201		0.79 (0.50, 1.23)
rs742132		0.80 (0.50, 1.27)
rs2231142	-	0.89 (0.72, 1.09)
rs17300741	— •	0.91 (0.64, 1.28)
rs734553	+	1.03 (0.93, 1.15)
rs1106766		1.05 (0.74, 1.50)
rs653178		1.07 (0.64, 1.80)
rs10480300	-++	1.23 (0.68, 2.25)
rs2079742		— 1.42 (0.52, 3.87)
rs12356193		1.48 (1.00, 2.18)
rs6598541	+	1.50 (0.86, 2.62)
rs7188445		— 1.53 (0.71, 3.29)
rs675209	+	1.54 (0.91, 2.60)
rs642803		- 1.74 (1.02, 2.98)
rs12129861		— 1.92 (1.02, 3.62)
rs6770152	—	3.89 (1.83, 8.28)
Overall	•	0.99 (0.92, 1.06)
		10

Supplementary Table 1. SNPs included in the genetic scores and weights assigned to each SNP

					Sensitivit	ty analyses	
Uric acid	Weight	Available for	Available for	Proxy	Included in	Included in	Included in
associated	used for	filumina 660 w chip	Cardiometabochip +	r	score that	score that	score that
SINP	deriving	study sample $(n=9,582)$	study sample $(n-9,526)$		SNDa not	SNDa with	excluded
	weighted	(11-8,382)	(11-8,550)		SINPS not	SINPS with r^2	18/34335 and 2221142
	weighted				associated	pioxy 1 < 0.80	2231142
	genetic				acid in our	0.80	
	score				study		
rs780094	0.05	Yes	Yes		Yes	Yes	Yes
rs734553	0.32	Yes: imputed	Yes		Yes	Yes	No
rs2231142	0.17	yes	Yes		Yes	Yes	No
rs742132	0.05	Yes: imputed	Yes		Yes	Yes	Yes
rs675209	0.06	Yes	Yes		Yes	Yes	Yes
rs12356193	0.08	Yes	Yes		Yes	Yes	Yes
rs17300741	0.06	Yes: imputed	Yes		Yes	Yes	Yes
rs12129861	0.06	Yes: imputed	Yes		Yes	Yes	Yes
rs1183201	0.06	Yes: imputed	Yes		Yes	Yes	Yes
rs505802	0.06	Yes	Yes		Yes	Yes	Yes
rs1106766	0.07	Yes: imputed	Yes		Yes	Yes	Yes
rs2307394	0.03	Yes	Proxy: rs1449959	0.7	No	No	Yes
rs6770152	0.04	Yes: imputed	Proxy: rs2581806	0.73	Yes	No	Yes
rs729761	0.05	Yes: imputed	Proxy: rs881858	0.83	Yes	Yes	Yes
rs1178977	0.05	Yes: imputed	Yes		Yes	Yes	Yes
rs10480300	0.04	Yes: imputed	Proxy: rs7805747	1	Yes	Yes	Yes
rs17786744	0.03	Yes: imputed	Proxy: rs10109414	0.94	Yes	Yes	Yes
rs642803	0.04	Yes: imputed	Yes		No	Yes	Yes
rs653178	0.04	Yes	Yes		No	Yes	Yes
rs1394125	0.04	Yes	Yes		No	Yes	Yes
rs6598541	0.04	Yes: imputed	Yes		Yes	Yes	Yes
rs7193778	0.05	Yes: imputed	Proxy: rs7200764	0.94	Yes	Yes	Yes
rs7188445	0.03	Yes: imputed	Proxy: rs17767383	0.93	No	Yes	Yes
rs2079742	0.04	Yes	Proxy: rs9895661	0.88	No	Yes	Yes

Country	n	Beta (95%CI) mg/dL
France	320	21 (15, 28)
Italy	1,466	13 (9, 16)
Spain	2,443	16 (13, 19)
UK	1,071	18 (13, 22)
Netherlands	1,172	20 (16, 24)
Germany	1,634	17 (13, 21)
Sweden	2,129	17 (14, 20)
Total	10,235	17 (15, 18)

Supplementary Table 2. Associations of genetic score with circulating uric acid per InterAct country*

* Beta obtained from linear regression with uric acid modeled in µmol/L; estimates are per 1 SD increase in genetic score; adjusted for study center.

Continuous Traits	Beta (95%CI)	P-value
Age, years	-0.07 (-0.23, 0.10)	0.43
Alcohol consumption, g/d	-3.92 (-7.69, 1.01)	0.13
Red meat intake, g/d	0.08 (-0.51, 0.67)	0.79
Dietary vitamin C intake, mg/d	1.308 (0.003, 2.614)	0.05
BMI, kg/m ²	0.02 (-0.06, 0.10)	0.58
Systolic blood pressure, mmHg	-0.16 (-0.58, 0.26)	0.46
Triglycerides, mmol/L	0.01 (0.001, 0.02)	0.03
eGFR, mL/min/1.73m ²	0.04 (-0.34, 0.41)	0.85
Non-HDL cholesterol, mmol/L	0.02 (-0.004, 0.04)	0.10
Non-fasting glucose, mmol/L	0.01 (-0.02, 0.03)	0.53
HbA1c, %, (mmol/mol)	<-0.01 [<-0.01, 0.01]	0.70
	(-0.02 [-0.12, 0.08])	
Binary Traits	Odd ratio (95%CI)	
Sex, male	1.00 (0.95, 1.04)	0.83
Physically active	0.96 (0.92, 1.00)	0.05
Current smoking	1.04 (0.99, 1.10)	0.10
Prevalent hypertension	1.04 (0.99, 1.10)	0.10

Supplementary Table 3. Associations of genetic score with potential confounders and glycemic traits *

* Beta obtained from linear regression (age, alcohol consumption, red meat intake, vitamin C intake, BMI, systolic blood pressure, triglycerides, eGFR, non-HDL cholesterol, glucose, HbA1c); OR obtained from logistic regression (sex, current smoking, physical activity, prevalent hypertension); estimates are per 1 SD increase in genetic score; adjusted for study center, among 10,235 subcohort participants (for intakes of vitamin C, red meat and alcohol, N=10,019); Triglycerides and alcohol consumption were logarithmically transformed before the analysis and back transformed after the analysis; non-HDL cholesterol = total – HDL cholesterol.

Supplementary Table 4. Instrumental variable estimates of the effect of circulating uric acid on diabetes risk in strata of sex, age, BMI and duration of follow-up *

	HR (95%CI) per 59.48 μmol/L
	(1 mg/dL) increase in uric acid
Men	0.97 (0.80, 1.17)
Women	1.03 (0.84, 1.27)
Age ≤53 years	1.01 (0.84, 1.21)
Age >53 years	0.98 (0.79, 1.20)
$BMI \le 25 \text{ kg/m2}$	1.07 (0.74, 1.57)
BMI > 25 kg/m2	1.00 (0.87, 1.16)
Follow-up \leq 5 years	0.98 (0.81, 1.18)
Follow-up 5-10 years	0.96 (0.77, 1.21)
Follow-up >10 years	1.05 (0.83, 1.33)

* N = 17,118 with 7,319 incident type 2 diabetes cases, estimates were derived from two stage control function estimator approach analysis, and were pooled with random effects meta-analysis.

Supplementary Table 5. Instrumental variable estimates of the effect of circulating uric acid on glycemic traits

Source	ource Trait		Beta (95%CI) per 59.48 µmol/L
			(1 mg/dL) increase in circulating
			uric acid
	Non-fasting glucose, mmol/L	9,414	0.03 (-0.06, 0.12)
EPIC-Interact *	$Uh \wedge 1a = 0/(mmal/mal)$	10 125	< -0.01 [-0.04, 0.03]
	HOATC, 76, (IIIII01/III01)	10,125	(-0.08 [-0.43, 0.28])
			0.00 [-0.02, 0.02]
MACIC concertium	Fasting glucose, mmol/L	58,074	(0.00 [-0.02, 0.02]) §
MAGIC consortium			
	HOMA-IR, log units	37,073	0.01 (-0.02, 0.03)

* Beta obtained from linear regression, and estimates were adjusted for study center.

§ fasting glucose adjusted for BMI

Supplementary Table 6. Sensitivity analysis of instrumental variable association of circulating uric acid with diabetes, after exclusion of SNPs most strongly associated with uric acid

Sensitivity analysis	Causal OR of diabetes per 59.48
	μmol/L (1 mg/dL) increase in
	circulating uric acid derived from
	DIAGRAM and InterAct
Including all 28 SNPs	0.99 (0.92, 1.06)
Excluding rs734553 in SLC2A9	0.95 (0.86, 1.05)
Excluding rs2231142 in ABCG2	1.00 (0.93, 1.08)
Excluding both rs734553 in	0.97 (0.86, 1.09)
SLC2A9 and rs2231142 in	
ABCG2	

Supplementary Table 7. Power estimates for various relative risks and excluding the SNP with the largest effect (two-sided alpha of 0.05).

	Data Source				
Relative risk	InterAct: (7,319 cases (42.8%) in		DIAGRAM: 34,840	DIAGRAM: 34,840 cases (23.3%) and 114,981 controls (DIAGRAM)	
	17,118 in	17,118 individuals)			
	All SNPs	Minus rs734553	Minus rs734553	Minus rs734553	
	$(R^2=4.1\%)$	$(R^2 = 1.5\%)$	$(R^2 = 1.5\%)$	and rs2231142	
				$(R^2 = 1.2\%)$	
1.51	100%	92%	100%	100%	
1.25	85%	44%	100%	99%	
1.20	68%	31%	97%	93%	

Supplementary Table 8. Overview of previously performed Mendelian randomization studies of circulating uric acid, type 2 diabetes and metabolic and cardiovascular traits

Study	Participants	Uric acid	Main outcome(s)	Causal estimate	Conclusion
Rotterdam study Sedaghat, 2014(1)	N= 5,791, European ancestry	Genetic score of 30 variants in loci listed in Köttgen et al.	Systolic blood pressure Diastolic blood pressure	Systolic blood pressure: β -0.75 (95%CI: -1.31, -0.19) mmHg Diastolic blood pressure: β -0.92 (95%CI: -1.62, -0.23) mmHg Per SD increase in genetic score.	Uric acid causally decreases systolic blood pressure and diastolic blood pressure
Atherosis Risk in Communities and Framingham Heart Rasheed, 2014 (2)	N= 8,208, European ancestry	Genetic score of SLC2A9, ABCG2, SLC17A1, SLC22A11, SLC22A12	Triglycerides	β -1.01 (SE: 0.80) mmol/L Per unit change in uric acid.	Uric acid has no causal effect on triglycerides
Mallamaci, 2007 (3)	N = 459, European ancestry	SLC2A9	Systolic blood pressure Diastolic blood pressure	Higher mean clinic systolic blood pressure among TT individuals. No difference in mean diastolic blood pressure.	Uric acid causally increases clinic systolic blood pressure, but not diastolic blood pressure
Copenhagen General Population Study and Copenhagen City Heart Study Palmer, 2013 (4)	N=68,674, of which 7172 ischemic heart disease events, European ancestry	SLC2A9	Ischemic heart disease Systolic blood pressure Diastolic blood pressure	Ischemic heart disease: Hazard Ratio: 0.93 (95%CI: 0.79, 1.09) Systolic blood pressure: β 0.65 mm Hg (95%CI: -0.54, 1.85) Diastolic blood pressure : β 0.63 mm Hg (95%CI: -0.04, 1.29) Per SD increase in uric acid.	Uric acid has no causal effect on ischemic heart disease, systolic blood pressure and diastolic blood pressure
Dongfeng-Tongji Cohort study Dai, 2013 (5)	N= 23,345, Asian ancestry	Genetic score of SLC2A9, ABCG2	Metabolic syndrome	Odds Ratio 1.03 (95 % CI 0.98–1.09) Per uric acid increasing allele in the risk score.	Uric acid is not causally related to metabolic syndrome
CoLaus study Lyngdoh, 2012 (6)	N= 6,184, European ancestry	SLC2A9	Weight Fat mass Body mass index Waist circumference	Weight: β 0.01 (95%CI:-0.12, 0.14) kg Fat mass: β 0.05 (95%CI:-0.10, 0.19) kg Body mass index: β 0.01 (95%CI: - 0.16, 0.14) kg/m ² Waist circumference β 0.08 (95%CI: - 0.05, 0.21) cm Per SD increase in uric acid.	Uric acid is not causally related to measures of adiposity

Cardiovascular	N=1,985,	SLC2A9	Body mass index	Carotid intima media thickness: β	Uric acid has no causal effect on BMI
risk in Young	European		Carotid intima media	<0.0001 mm, P-value 0.99 among men.	or atherosclerosis
Finns study	ancestry		thickness	Body mass index: $\beta 0.04 \text{ kg/m}^2$, P-value	
				0.82 among men and β 0.07 kg/m ² , P-	
Oikonen, 2012				value 0.57 among women	
(7)				Per SD increase in uric acid.	
Hereditary and	N=516,	SLC2A9	Systolic blood	Systolic blood pressure: β 2.2 (SE:	Uric acid causally decreases systolic
Phenotype	European		pressure	0.79) mmHg	blood pressure, but not diastolic blood
Intervention	ancestry		Diastolic blood	Diastolic blood pressure: β 0.42 (0.5)	pressure
Heart Study			pressure	mmHg	
				Per 1 mg/dl change in uric acid.	
Parsa, 2012 (8)					
Cambridgeshire,	N=16,064,	Genetic score	Type 2 diabetes	Odds ratio 0.99 (95% CI: 0.94,1.04)	Uric acid has no causal effect on type
ADDITION-Ely	of which	of PDZK1,		Per genetic score tertile.	2 diabetes
and Norfolk	7,504 type 2	LRRC16A,			
Diabetes	diabetes	SLC22A12,			
	cases	SLC16A9,			
Pfister, 2011 (9)		SLC22A11,			
		SLC17A1,			
		ABCG2,			
		SLC2A9			
CHARGE	N=28,283,	Genetic score	Fasting glucose	β -0.06 (95%CI: -0.13, 0,02) mmol/L	Uric acid has no causal effect on fasting
Cohorts	European	of SLC22A11,		Per 100 µmol/L urate.	glucose
	ancestry	GCKR,			
Yang, 2010 (10)		INHBC,			
		RREB1,			
		PDZK1,			
		SLC2A9,			
		ABCG2,			
		SLC17A1			
ORCADES study	N=706,	SLC2A9	Metabolic syndrome	Causal effect parameter β_x : -1.25	Uric acid has no causal effect on
	European			(95%CI: -2.91, 0.05)	metabolic syndrome
McKeigue, 2010	ancestry				
(11)					

Reference List

1. Sedaghat, S, Pazoki, R, Uitterlinden, AG, Hofman, A, Stricker, BH, Ikram, MA, Franco, OH, Dehghan, A: Association of uric acid genetic risk score with blood pressure: the Rotterdam study. *Hypertension* 64:1061-1066, 2014

2. Rasheed, H, Hughes, K, Flynn, TJ, Merriman, TR: Mendelian Randomization Provides No Evidence for a Causal Role of Serum Urate in Increasing Serum Triglyceride Levels. *Circ Cardiovasc Genet* 2014

3. Mallamaci,F, Testa,A, Leonardis,D, Tripepi,R, Pisano,A, Spoto,B, Sanguedolce,MC, Parlongo,RM, Tripepi,G, Zoccali,C: A polymorphism in the major gene regulating serum uric acid associates with clinic SBP and the white-coat effect in a family-based study. *J Hypertens* 32:1621-1628, 2014

4. Palmer, TM, Nordestgaard, BG, Benn, M, Tybjaerg-Hansen, A, Davey Smith, G, Lawlor, DA, Timpson, NJ: Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts. *BMJ* 347:f4262, 2013

5. Dai,X, Yuan,J, Yao,P, Yang,B, Gui,L, Zhang,X, Guo,H, Wang,Y, Chen,W, Wei,S, Miao,X, Li,X, Min,X, Yang,H, Fang,W, Liang,Y, Hu,FB, Wu,T, He,M: Association between serum uric acid and the metabolic syndrome among a middle- and old-age Chinese population. *Eur J Epidemiol* 28:669-676, 2013

6. Lyngdoh, T, Vuistiner, P, Marques-Vidal, P, Rousson, V, Waeber, G, Vollenweider, P, Bochud, M: Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. *PLoS One* 7:e39321, 2012

7. Oikonen, M, Wendelin-Saarenhovi, M, Lyytikainen, LP, Siitonen, N, Loo, BM, Jula, A, Seppala, I, Saarikoski, L, Lehtimaki, T, Hutri-Kahonen, N, Juonala, M, Kahonen, M, Huupponen, R, Viikari, JS, Raitakari, OT: Associations between serum uric acid and markers of subclinical atherosclerosis in young adults. The cardiovascular risk in Young Finns study. *Atherosclerosis* 223:497-503, 2012

8. Parsa, A, Brown, E, Weir, MR, Fink, JC, Shuldiner, AR, Mitchell, BD, McArdle, PF: Genotype-based changes in serum uric acid affect blood pressure. *Kidney Int* 81:502-507, 2012

9. Pfister, R, Barnes, D, Luben, R, Forouhi, NG, Bochud, M, Khaw, KT, Wareham, NJ, Langenberg, C: No evidence for a causal link between uric acid and type 2 diabetes: a Mendelian randomisation approach. *Diabetologia* 54:2561-2569, 2011

10. Yang, Q, Kottgen, A, Dehghan, A, Smith, AV, Glazer, NL, Chen, MH, Chasman, DI, Aspelund, T, Eiriksdottir, G, Harris, TB, Launer, L,

Nalls,M, Hernandez,D, Arking,DE, Boerwinkle,E, Grove,ML, Li,M, Linda Kao,WH, Chonchol,M, Haritunians,T, Li,G, Lumley,T,

Psaty,BM, Shlipak,M, Hwang,SJ, Larson,MG, O'Donnell,CJ, Upadhyay,A, van Duijn,CM, Hofman,A, Rivadeneira,F, Stricker,B,

Uitterlinden, AG, Pare, G, Parker, AN, Ridker, PM, Siscovick, DS, Gudnason, V, Witteman, JC, Fox, CS, Coresh, J: Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. *Circ Cardiovasc Genet* 3:523-530, 2010

11. McKeigue,PM, Campbell,H, Wild,S, Vitart,V, Hayward,C, Rudan,I, Wright,AF, Wilson,JF: Bayesian methods for instrumental variable analysis with genetic instruments ('Mendelian randomization'): example with urate transporter SLC2A9 as an instrumental variable for effect of urate levels on metabolic syndrome. *Int J Epidemiol* 39:907-918, 2010