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Singe-realization stress-strain curve for ϕg = 0.655 and ε = 0.057. Single-realization stress-strain curve of the
same glass sample as in Fig. 1 at the fixed volume strain ε = 0.057 (or ϕ = 0.62). The shear strain is reversed at γ = 0.1 (red)
and γ = 0.2 (black). In contrast to the case in Fig. 1A, the partially irreversible regime is not observed. Note that according to
the stability-reversibility map of Fig. 2, the Gardner line will not be crossed over in the CV-S protocol with the volume strain
ε = 0.057.
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Multicycle stress-strain curves. Single-realization stress-strain curves of a single sample over four cycles of
constant volume shear at ε = −0.0069, or ϕ = 0.66 (compressed from ϕg = 0.655). The shear strain is reversed at (A)
γ = ±0.06, (C) γ = ±0.11, and (E) γ = ±0.17. The cycle numbers (1, 2, 3, 4) and the shear directions (+ or −) are indicated.
In (C), the data for 0.02 ≤ γ ≤ 0.11 are magnified in the inset to show better the plastic events. The corresponding data of
the relative mean squared displacement ∆r are shown in (B), (D) and (F). While in (B) and (D) the system returns to the
initial state, in (F) a diffusive behavior of ∆r, which increases steadily at each cycle, is observed.
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Other representations of the stability-reversibility map. Stability-reversibility map of the HS glass annealed
up to ϕg = 0.655, as in Fig. 2, but represented in terms of (A) volume fraction ϕ and shear strain γ, and (B) volume strain ε
and shear stress σ. See Fig. 2 for the meaning of symbols.
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Rescaled stress-strain curves. The ratio σ/p is plotted as a function of γ in the CP-S protocol, for p = 14.5, 15.0,
15.8, 16.5, 17, 18, 19, 21, 27, 40, 65, 160, 1000, 3000, 10000 (from bottom to top), and ϕg = 0.655.
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Determination of the Gardner threshold for other ϕ g. The difference between ZFC and FC stresses (rescaled
by p, σ̃ = σ/p) as a function of volume strain ε for (A) ϕg = 0.631 and (B) ϕg = 0.609. Data for a few different γ are plotted.
The horizontal dashed lines represent the threshold value 0.0006 used to determine εG.
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Determination of the yielding-jamming crossover point. Fraction of shear jamming P J(ϕ) as a function of ϕ.
We use the following criteria to define shear jamming and yielding: a system jams with increasing γ if its pressure p exceeds
105; otherwise, if the system can reach the maximum strain γmax = 0.2 without jamming, then it yields. We use PJ(ϕ) to
denote the fraction of shear jammed realizations among Nr = 300 − 1200 total realizations. The data are fitted to the error
function form PJ(ϕ) = 1

2
+ 1

2
erf[(ϕ− ϕc)/w] (line), where ϕc = 0.66931(3) and w = 0.0031(1) are fitting parameters.
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Free-volume scalings in shear-jamming. The simulation data for different ϕ obtained by the CV-S protocol
(ϕg = 0.655) are fitted to the free-volume scaling laws (A) σ = Aσ(γJ−γ)−1 and (B) p = Ap(γJ−γ)−1, where Aσ, Ap, and γJ
are fitting parameters. The values of γJ are used to determine the shear-jamming line in the main text. We find that Aσ ' 2.6
is nearly independent of ϕ. The values of Ap are plotted in the inset of (B).
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Pressure susceptibility in the CS-C/D) protocol.
The pressure susceptibility χp = N(〈p2〉 − 〈p〉2) (rescaled by p2) as a function of 1/ϕ for a few different γ in the CS-C/D
protocol. In contrast to χσ (Fig. 5I), the pressure susceptibility χp has two peaks at large γ . The first peak, caused by melting, is
independent of γ, while the second one, corresponding to yielding, is at a location consistent with the peak of χσ (half filled
brown diamonds). The γ-independence of the melting peak in χp further confirms that melting is independent of shear strain.
For small γ, the two peaks are indistinguishable. The data suggest that the signature of melting only appears in the pressure
susceptibility, but not in the stress susceptibility.
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Dependence of the stability-reversibility map on ϕg and protocols. (A) Three dimensional view of the
stability-reversibility maps for ϕg = 0.609, 0.631, 0.655 (lighter colors represent lower ϕg) obtained by using the CP-S protocol.
(B-C) The same plot for ϕg = 0.655, obtained by using the (B) CV-S and (C) CS-C/D protocols. See Fig. 2 for the meaning
of the symbols.
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Dependence of the stability-reversibility map on the system size. Stability-reversibility maps for N = 500
(red) and N = 1000 (black) systems (ϕg = 0.655). No appreciable N -dependence is observed for the shear-jamming line and
the Gardner line. We also plot the shear-yielding line for N = 2000 systems (blue), showing that larger systems have lower
yielding strain γY. See Fig. 2 for the meaning of the symbols.
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Text S1. Bare and macro shear moduli.
As discussed in the main text, two shear moduli can be defined for glasses: the bare modulus

µbare = lim
N→∞

lim
δγ→0

δσ(ϕg; ε, γ;N)/δγ, (S1)

and the macroscopic modulus

µmacro = lim
δγ→0

lim
N→∞

δσ(ϕg; ε, γ;N)/δγ. (S2)

According to the mean-field theory [37] in stable glasses µbare = µmacro, while in marginal glasses µbare > µmacro. In
particular, the two shear moduli have different large-p scalings in the marginal phase, µmacro ∼ p and µbare ∼ pκ,
where κ ∼ 1.41574.

In principle, we expect that the zero-field compression (ZFC) modulus µZFC and the field compression (FC) modulus
µFC measured in simulations have the correspondence µZFC ∼ µbare and µZFC ∼ µmacro. Ref. [24] shows that the
simulation results of three dimensional HS glasses are generally consistent with the above theoretical predictions. In
the marginal phase, µZFC and µFC clearly have different scalings with p. It was also found that, at large p, µZFC

decreases with increasing N or δγ (note that in simulations, the modulus is measured as µ = δσ/δγ, where small,
but finite δγ is used). This shows that the order of limits N →∞ and δγ → 0 is important in the definition of shear
modulus. If we fix a finite N , then by increasing δγ, µZFC → µFC = µmacro. In fact, one should only be able to detect
the µZFC if δγ < δγtrigger as discussed in the main text. In this study, we use a small enough δγ = 0.002, as shown
in [24], to measure µZFC and µFC.

In the measurements of the glass equation of state (G-EOS), either the constant volume-shear (CV-S) or the
constant pressure-shear (CP-S) protocol corresponds to ZFC. However, we find that the curves σ/p versus γ collapse
for large p (see Fig. S4), implying a scaling σ ∼ p, as p → ∞, similar to µmacro ∼ p. The result confirms that for
large γ, the plasticity events are averaged out in the stress, and therefore only the macroscopic stress σmacro can be
measured. This is the reason why the G-EOS itself does not encode the signal associated to the Gardner phase.
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