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Supplementary Text 

 

Modeling approach 

Our modeling approach assumes the following about the response of the fluid-filled polymer 

tubes: 

1) the AM tube material remains linear elastic; 

2) the struts are cylindrical; 

3) there is no fluid flow inside the structures – the system is sealed and the fluid responds 

only by developing hydrostatic pressure; 

4) the fluid is incompressible, relative to the polymer shell; 

5) the fluid is treated as a viscoelastic material with complex moduli controlled by the 

external applied magnetic field because it does not flow; 

6) the materials are used and tested in a quasi-static environment, so the viscoelasticity of 

the fluid can be ignored in favor of a linear elastic treatment and all time-dependent 

magnetic properties of the MR fluid will be dealt with in the static limit; 

7) the response of the fluid to applied field strength can be approximated as linear in the 

magnetic field ranges we are investigating;  

8) the bending, torsional, and axial modes of deformation of the individual struts can be 

decoupled; 

9) a simple mixing law is used to account for directional effects. 

 

From these assumptions, this section develops a model for the response of an individual strut that 

can be calibrated to experimental data. 

 

This model takes the form of a frame element – a structural theory that describes the response of 

a slender member to axial and transverse forces combined with bending and torsional moments. 

Unlike typical frame elements used to model the response of AM lattice materials (10), the 

elastic stiffness of this element changes with the application of an external magnetic field. 

Individual frame elements can then be assembled into a system model of a MR-filled cell by the 

direct stiffness method of structural analysis. The system model predicts the linear elastic 

response of a unit cell under a combination of mechanical loading and external, applied magnetic 

field.   

 

Strut model 

Figure S1 illustrates the assumptions made when creating the frame element describing the 

response of a single strut. The figure illustrates (1) the field direction assumed to have the 

greatest effect on the material response for each type of loading (torsional, axial, bending), (2) 

the corresponding chain orientations inside the fluid, and (3) the equivalent linear elastic material 

structure used to model the deformation of the strut at a given field strength.  

 

A complete, 3D frame element must consider four deformation modes: axial deformation, 

bending in two orthogonal directions, and torsion. Figure S1 illustrates three types of 

deformation – the final model uses the same formulation for bending into the page as it does for 

bending in the page. 



The model assumes the magnetic field will not affect the torsional response of the cylindrical 

struts. The torsional response of the section is then the response of a circular annulus.  This is 

given by 
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with M the torsional moment, Gbulk the shear modulus of the as-cured polymer resin, L the length 

of the strut, ro and ri the outer and inner radii of the tube, and θ the relative twist angle between 

the ends of the strut. 

 

For axial deformation, the model describes the effect of the MR fluid with a composite strut 

consisting of the outer polymer shell acting together with an effective linear elastic material 

representing the effect of the fluid. The Young’s modulus of the effective material representing 

the fluid increases linearly with field strength. Even with the field off, the effective fluid material 

will have some axial stiffness because the fluid exists in a sealed system and will therefore 

develop hydrostatic stress under load. The axial effective Young’s modulus of the fluid is 

modeled by 

 

𝐸𝑀𝑅 = 𝐸𝑚𝑖𝑛 + 𝑘𝐸𝐵𝐸
𝑒𝑓𝑓

 

 

with EMR the effective Young’s modulus, an 𝐵𝐸
𝑒𝑓𝑓

 effective scalar magnetic field strength, 

described below, and Emin and kE empirical constants, measured experimentally. 

In the system, this effective material representing the fluid will act together with the AM 

polymer tube.  The formula 
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describes the composite action of the system under axial load. Here F is the axial force in the 

strut, Ebulk is the as-cured polymer Young’s modulus, d is the relative axial displacement of the 

ends of the strut, and the other quantities are defined previously. 

 

The term 𝐵𝐸
𝑒𝑓𝑓

 is designed to account for the magnetic field being applied in some direction 

other than the direction of maximum effect. This situation will occur in a practical unit cell – not 

all the struts can be aligned with the field direction.  Figure 2a-2b illustrates the assumption 

made for calculating the effective field in the axial case: a magnetic field applied transverse to 

the strut will produce no increase in axial stiffness, regardless of the field strength.  Figure 2 also 

illustrates the reasoning behind this assumption. A transverse field will produce transverse chains 

spanning the width of the section. These chains, presumably, will not axially stiffen the member, 

though they may influence the buckling properties of the system. A reasonable model for the 

effective field strength, given this assumption, is 

 

𝐵𝐸
𝑒𝑓𝑓

= |𝑩 ∙ 𝒏| 
 



with B the vector describing the applied magnetic field and n the strut normal direction (see fig. 

S1). 

 

The model assumes the Euler-Bernoulli model for the strut response to transverse forces and 

bending moments. With this model the product of the effective section Young’s modulus times 

the effective section moment of inertia (𝐸𝐼)𝑒𝑓𝑓 controls the bending response. The model 

assumes the changing effective shear modulus of the fluid with applied magnetic field controls 

the effect of the fluid on the member bending response.  For an incompressible fluid, a change in 

shear modulus will manifest as a change in axial stiffness through the relation 

 

𝐸𝑏𝑒𝑛𝑑 = lim
𝐾𝑀𝑅→∞
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Assuming the fluid will act as an effective linear elastic material with a shear modulus GMR 

controlled by the applied magnetic field and using the method of transformed sections to 

calculate the effective properties of the composite section yields an effective bending constant of 
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The model represents the effect of the applied field on the fluid effective shear modulus similarly 

to the axial effect 

 

𝐺𝑀𝑅 = 𝐺𝑚𝑖𝑛 + 𝑘𝐺𝐵𝐺
𝑒𝑓𝑓

 

 

with Gmin and kG empirical constants and 𝐵𝐺
𝑒𝑓𝑓

 the effective field strength accounting for 

directional effects. Figure 2 illustrates the assumed model for the influence of field direction on 

bending stiffness: maximal effect if the field is aligned with the bending displacement direction 

and zero effect if it is applied orthogonal to this direction. This geometric effect can be modeled 

with 

 

𝐵𝐺
𝑒𝑓𝑓

= |𝑩 ∙ 𝒔| 
 

with s the direction shown in fig. S1. This assumes the increase in bending stiffness is primarily 

due to shear effects. A more complete model would directly represent the effect of shear 

stiffening on bending response using Timoshenko’s theory. 

 

A complete frame element combines the individual models for torsion, axial deformation, and 

bending in two orthogonal directions into a matrix describing the complete response of the strut 

under any combination of forces and bending moments. It assumes the responses are uncoupled -

- axial deformation does not affect bending, and so on – and that the same empirical constants 

describe bending in both orthogonal directions. 

 

Calibrating the strut model to experimental data 

Calibrating the model requires determining six parameters: Ebulk, Gbulk, Emin, kE, Gmin, and kG.  

The Ebulk and Gbulk are material properties of the as-cured polymer resin. The remaining 



parameters are dependent both on the properties of the MR fluid and on the geometry of the 

struts – both cross section shape and strut length – because the strut geometry controls the length 

and spacing of the MR fluid chains. Therefore, we calibrated all the parameters empirically to 

simple, single-strut experiments, as described in the main body of the paper. 

 

 

 

 

Lattice model 

The main text describes extending this single strut model to a model of a periodic lattice 

structure. The final model describes the response of a structure composed of MR fluid filled 

struts given the applied forces, displacements, and magnetic field vector.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Fig. S1. Assumptions made when assembling the frame element describing a single strut. 

(A-C) Schematic illustration of the magnetic field effects. (A) No field effect when the struts are 

in torsion. (B) Axial field effect when the chains are aligned with the direction of the force. (C) 

Bending field effect when the chains are aligned with the direction of the applied force. 

 



 
 

Fig. S2. Mechanical testing of MR fluid–filled struts under varying magnetic field 

orientations. Stress vs. strain plot of a polymer strut with a 1mm inner diameter, 50 µm thick 

walls and 1 mm length (1:1 aspect ratio to create similar chain lengths in all directions) under 

uniaxial compression with a magnetic field applied parallel and perpendicular to the direction of 

the force.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. S3. Mechanical testing of MR fluid–filled struts under varying magnetic field 

strengths. (A) Load versus compression plot for one example of a strut tested under uniaxial 

compression. (B) Load versus displacement plot for one example of a strut tested under 

cantilevered bending.  

 

 

 

 



 
Fig. S4. Mechanical testing of MR fluid–filled cuboctahedron unit cells under varying 

magnetic field strengths. (A) Load versus compression plot for one example of a unit cell tested 

under uniaxial compression. (B) Example of how the Young’s modulus was calculated by the 

unloading curve of the stress versus strain graph.  

 

 

 



 
Fig. S5. Mechanical testing for reversibility of MR fluid–filled cuboctahedron unit cell. 

Three polymer cuboctahedron unit cells were cycled through “on” and “off” field states to 

display reversibility.  

 

 

 

 



 
Fig. S6. Mechanical testing of MR fluid–filled cuboctahedron lattice under varying 

magnetic field strengths. Load versus compression plot for one example of a lattice tested 

under uniaxial compression.  

 

 

Movie S1. Video of infilling a cuboctahedron lattice composed of a 2 by 2 by 2 arrangement 

of unit cells. LLNL-VIDEO-751076. 

 

Movie S2. Video of a cuboctahedron lattice with a 10-g mass placed on its top surface and 

the magnetic field strength gradually lowered by slowly removing a magnet. LLNL-VIDEO-

751076. 
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