Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

Desktop-Stereolithography 3D-Printing of a Poly(dimethylsiloxane)-based Material with Sylgard-184 Properties

Nirveek Bhattacharjee*, Cesar Parra-Cabrera, Yong Tae Kim, Alexandra P. Kuo, Albert Folch*

Supplementary Figures

Figure S1: **Resin Components.** Chemical formulae of the resin components – (a) Macromer 1: endterminated methacryloxypropyl poly(dimethyl siloxane), (b) Macromer 2: copolymer of methacryloxypropyl poly(dimethyl siloxane) and poly(dimethyl siloxane), (c) Photoinitiator: ethyl (2,4,6-trimethylbenzoyl) phenyl phosphinate (TPO-L) and (d) Photosensitizer: isopropyl thioxanthone (ITX).

<u>Figure S2</u>: XY-Resolution Characterization of 3DP-PDMS-S. Spatial (XY) resolution of SL-printing using 3DP-PDMS-S (with 0.6% TPO-L and 0.3% ITX): (a) Sets of five 200 μ m tall lines with the following widths and separations (from left to right) – 50, 100, 150, 200, 250, 300, 350, 400, 450 and 500 μ m. Magnified top (b) and cross-sectional (c) views of the 500 μ m wide lines separated by 500 μ m. Magnified top (d) and cross-sectional (e) views of the 250 μ m lines separated by 250 μ m. (f) Higher magnification micrographs of the SL-printed 250 μ m lines showing imprints of the projected pixel borders of the DLP system.

Figure S3: Material testing of dog-bone shaped 3DP-PDMS specimens using an Instron 5584H Load Frame equipped with a 50 N load cell to measure the Young's modulus and the elongation-at-break. (Inset) Magnified image of a specimen made of 3DP-PDMS with an E:S = 14 and TPO-L = 0.8% being subjected to tensile stress using the Instron 5584H Load frame.

Figure S4: Young's modulus of 3DP-PDMS prepared with different ratios of end group and side-chain macromers, and different photo-initiator (TPO-L) concentrations. Error bars are standard deviations.

Figure S5: Thermal Stability of 3DP-PDMS pieces: (a) Elongation-at-break values and (b) Young's modulus of 3DP-PDMS dog-bone structures prepared with the two optimized Sylgard-184-like E:S blends and heated to 120 °C for 12 hrs. Error bars are SEM ($n \ge 5$). Unpaired two-tailed Student's t-test did not show any significant difference between the elongation-at-break and Young's modulus means at 25 °C and 120 °C in either of the two E:S blends tested (p > 0.05).

Figure S6: Solubility of 3DP-PDMS-S in Organic Solvents. (a) Schematic for measuring the swelling ratio and concomitant mass loss of 5 mm 3DP-PDMS-S cubes in different organic solvents. (b) Scatter plot of the change in mass (due to extraction) and the change in volume (due to swelling) of 5 mm 3DP-PDMS-S cubes in different organic solvents.

Figure S7: Gas Permeability Measurements. (a) Top view of the vacuum chamber device used for measuring the gas permeability of PDMS membranes. (b) Fluorescence intensity values measured every 1 sec as the chamber is allowed to equilibrate to atmosphere after being subjected to vacuum for 30 sec. Measurements were taken at 5 different positions on the sensor. The error bars denote standard deviation.

Supplementary Movies

Movie S1: Transparent hollow cubes printed with 3DP-PDMS-S (with 0.6% TPO-L) being compressed.

<u>Movie S2</u>: Transparent and flexile dog-bone shaped elastomeric specimen SL-printed with 3DP-PDMS (E:S ratio = 14 and TPO-L = 0.8%) being bent and twisted.

Supplementary Tables

Table S1: Molecular properties of commercially-available silicone methacrylate macromers									
Gelest Viscosity MW				# methacr groups					
	Catalog #			per molecule					
3DP-PDMS-S	RMS-033	1000-2000	31300	5					
	RMS-044	7000-9000	57500	16					
	RMS-083	4000-6000	38000	16					
3DP-PDMS-E	DMS-R31	900-1000	25000	2					
	DMS-R22	125-250	10000	2					

Table S2: Penetration depths of different 3DP-PDMS-S resins with different concentrations of TPO-L and ITX

_											
	TPO-L (%)	ITX (%)	h _բ (μm)								
	0.6	0	331.9								
	0.6	0.1	281.1								
	0.6	0.2	253.2	_							
Ľ	0.6	0.3	212.5	Most transparent resin mixture							
	0.8	0.4	207.4								
Ϊ.	1.0	0.5	178.0								
		absorptive resin mixt	ures								

Elastomeric SL-Resins		Young's	Elongation	Transparency	Resolution	Biocompatibility
Compan	Resin Name	Modulus	at Break		of	
y or Lab		(or UTS *)	(%)		unsupported	
		(MPa)			structures	
Formlabs	Flexible ¹	3.3 – 3.4 (UTS)	75 - 85	Translucent Gray, Opaque Black	not shown	unknown
Stratasys	TangoPlus ²	0.1 – 0.3	218	Translucent White	not shown	unknown
Spot-A	Elastic ³	12	65	Opaque Red	not shown	unknown
Carbon	EPU40 ⁴	10.2 (UTS)	310	Opaque Black	not shown	cytocompatible ^a
Carbon	SIL30 ⁵ 3.4 (UTS) 330 Translucent Whit		Translucent White	not shown	cytocompatible ^a	
Boydsto	SilOHFlex ⁶	1.02 (UTS)	338	Translucent,	~ 1 cm	unknown
n				Colored (prints) ^b		
Magdass	SUV ⁷	0.58 - 4.21	220 - 1100	Transparent to	~ 1 cm	unknown
i				Translucent ^c		
Folch	3DP-PDMS	0.52 – 0.94	140 - 160	Transparent	~500 μm	cytocompatible
Dow	Sylgard-184	1.3 (10:1)	140	Transparent	~1 µm	cytocompatible

Table S3: Comparison of properties of different commercial and published elastomeric SL-resins

* UTS = Ultimate Tensile Strength

¹ https://formlabs.com/media/upload/XL-DataSheet.pdf (accessed: February 2017)

² http://usglobalimages.stratasys.com/Main/Files/Material_Spec_Sheets/MSS_PJ_PJMaterialsDataSheet.pdf (accessed: February 2017)

³ http://spotamaterials.com/wp/wp-content/uploads/2017/06/Spot_E_TDS_1115_0517.pdf (accessed: February 2017)

⁴ https://www.carbon3d.com/materials/epu-elastomeric-polyurethane/ (accessed: February 2017)

⁵ https://www.carbon3d.com/materials/silicone/ (accessed: February 2017)

⁶ PDMS dimethacrylamide (9%), butyl acrylate (27%), hydroxyethyl acrylate (56%) – note that the other elastomeric resins reported in the paper are hydrogels

⁷ Blend of epoxy aliphatic acrylate and aliphatic urethane acrylate with 33% isobornyl acrylate

^a Evaluated in accordance with ISO-10993-5 (cytotoxicity) and ISO-10993-10 (irritation)

^b Thin SilOHFlex pieces appear translucent, but the printed parts shown in the paper are pigmented (possibly for increasing resolution and ensuring printability)

^c The more stretchable polymers are translucent (30-50% transmittance at 550 nm), whereas the less stretchable polymers are more transparent (80-90% transmittance at 550 nm)