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Figure S1. Single cell transcriptome and quality control (QC) analysis of foxd3-expressing cells from 5-6ss 
embryos. Related to Figure 1. 

 (A-B) Grouped bar plot indicating number of sequenced and uniquely mapped reads shows 93/94 single 
cell transcriptomes are of excellent quality, with a mean of 5.24 M mapped reads and ~4,000 expressed genes 
mapped per cell.  

(C) Identification of 5,243 genes with significantly highly variable expression across single premigratory 
NCs. Cyan dots indicate genes with a biological coefficient of variation (CV) of >0.50 at a 10% false discovery 
rate, classified as highly variable; black dots indicate all other genes; red line marks the CV threshold of 0.50 
(i.e. the expected position of genes with 50% biological CV).  

(D) Principal component analysis (PCA) and T-distributed stochastic neighbor embedding (tSNE) plots all 
5,243 or top 500 most divergent genes identifies a small cluster of NC cells. 

(E) tSNE plots for selected key pluripotency genes illustrate that while they are expressed at 50% foxd3+ 
epiboly stage cells, they are not expressed or are expressed only in a few 5-6ss single foxd3+ cells, except for 
vox and zic2b genes. 

(F) tSNE plots for selected key NC specifier genes illustrate that while they are expressed in a majority of 5-
6ss single foxd3+ cells, they are absent or not abundant in 50% epiboly foxd3+ cells. 
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Figure S2. Biological replicate transcriptome comparisons confirm experimental reproducibility. Related 
to Figures 1 and 2. 

 (A, C, E) PCAs and Scatter plots (B, D, F) comparing foxd3-positive (Citrine), foxd3-negative and foxd3-
mutant (Citrine_Cherry) RNA-seq samples at 3 stages of development (75% epiboly, 5-6ss, 14ss).  

(G) Matrix presenting the correlation coefficients to all possible pairwise comparisons of replicates/samples.  
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Figure S3. Transcriptomic characterisation of foxd3-citrine and foxd3-cherry mutant cells. Related to 
Figures 1, 2 and 3. 

(A) An illustration of 5-6ss foxd3-mutant protein truncation derived from the de novo transcript Trinity 
assembly. This demonstrates that both foxd3-citrine and foxd3-cherry fusions generate a truncated foxd3 
protein only coding for 93 out of 371 amino acids (truncated after 282 nucleotides of coding DNA sequence 
(CDS)) with no forkhead domain; and hence no protein dimerization or DNA binding is possible. All 
possible foxd3 transcript variations in the heterozygous foxd3-mutant fish carrying only a foxd3-citrine 
allele were: (1) foxd3 wt protein (2) truncated foxd3 after the 282nd nucleotide (3) misassembled trinity 
contigs that have incorrectly merged end of 93rd aa of foxd3 (chr6) with tubulin protein (chr23) due to the 
design of the FlipTrap cassette. All possible foxd3 transcript variations in the homozygous foxd3-mutant fish 
carrying foxd3-citrine and foxd3-cherry alleles were: (1) truncated foxd3 protein with Citrine & Alg6 
(varying lengths) (2) truncated foxd3 with mCherry and Citrine (antisense) (3) the same misassembled 
trinity contigs as described before.  

(B) The pie chart shows GO Molecular protein function distribution of the down-regulated genes in foxd3 
mutants.  

(C) Four-way Venn diagrams illustrating differentially expressed genes between both, genes enriched in 
foxd3-control (citrine - C) and homozygous foxd3-mutants (citrine, cherry - CC) over the negative cells, and 
depleted genes in foxd3-control (C) and homozygous foxd3-mutants (citrine, cherry - CC) over the negative 
cells at 75% epiboly, 5-6 somite stage (ss) and 14-16 ss embryos. Differential gene expression analysis was 
performed using DESeq2 v.1.18.1.  

(D) Ranked scatter plot represents downregulated genes ranked from the lowest to the highest based on 
their differential expression fold change derived from the FPKM values in the 5-6ss foxd3-mutant vs control 
NC (labelled as blue dots). Pink dots represent the same set of genes (connected by dashed grey lines with 
blue dots) and their differential expression fold change in the 8ss foxd3-mutant vs control NC.  
Since we found that the defect in expression of some, but not all, NC specification factors that were affected 
in pre-migratory foxd3-mutant NC is lessened, this suggests a possible partial compensation of the NC 
specification factors as the neural crest cells start delaminating at 8ss.  
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Figure S4. Cluster analysis of differential chromatin accessibility from foxd3 mutant cells vs control. 
Related to Figure 4.  

(A) Mean density maps of merged profiles and corresponding scatterplots of raw counts for all k-means 
clusters featuring putative regulatory non-promoter elements with differential accessibility (ATAC-seq 
signal levels) in foxd3-mutant (CC, Citrine/Cherry) and controls (C, Citrine) at 5-6ss. The clusters were 
computed by applying k-means clustering algorithm from the seqMINER platform. Linear enrichment 
clustering of normalised ATAC-seq datasets from foxd3-mutant and foxd3-control NC cells was computed 
genome-wide over the region covering ± 1.5 kb from the centre of each ATAC-seq peak. Peak Calling the 
individual replicates and retaining only the peaks present in both replicates was used to generate sets of 
reference peaks. The datasets were normalised by pooling the replicates for each condition and down-
sampling the files to the same number of mapped reads. Clusters 1-4-8 (6,777-4,493-8,245 el.) contain lower 
signal element with prominent differences between mutant and controls (C>>CC), Pearson corr. RCl1=0.11; 
RCl4=0.16; RCl8=0.17, clusters 5-67 (8,182-3,905-6,070 el.) comprise elements of equally low signal, but with 
comparable accessibility (C≈CC), RCl5=0.17; RCl67=0.5 and Cluster 3 (17,390 el.) features highly accessible regions 
with broad ATAC-seq peak distribution that showed intermediate signal decrease in mutant (C>CC), 
RCl3=0.96. 

Bar plots depict functional annotation of k-clusters 1, 4 and 67 showing specific enrichment of zebrafish gene 
expression ontology terms linked to brain (Clusters 1 and 67) and NC development (Cluster 4). Clusters 2, 5 
and 8 did not yield any significant terms. Statistical significance calculated by both binominal and 
hypergeometric tests (Bonferroni **p < 0.01). In particular, elements from k-cluster 4 elements that feature 
moderate accessibility and clear defect in the accessibility in the foxd3-mutants, are specifically enriched in 
the zebrafish gene expression ontology terms linked to all stages of NC development under study here (1-
4ss, 5-9ss and 10-13ss), as well as to the brain development. Interestingly, cluster 4 elements were also highly 
significantly associated to the Smad/TGFbeta signalling pathway (FDR<0.01) and assigned to genes that are 
normally downregulated in migrating NC and de-repressed in foxd3-mutant (acvr2aa, bmp2b, bmp4, 
bmpr1a/b, bmpr2b, dand5, foxh1, smad2, smad3a/3b, smad6b, smurf1, tgfb3; Bonferroni **p<0.01). Finally, 
association to molecules involved in negative regulation of neurogenesis, that were also de-repressed in 
foxd3-mutants by 14ss (epha4a, musk, robo2, slit3, her3, her9, neurog1, notch3; FDR **p<0.01), suggests that 
Cluster 4 elements could be acting in repression.  

(B) Top Transcription Factor Binding Site (TFBS) motifs enriched in other k-means clusters of lower 
accessibility (Clusters 1-4-8 and 5-67). CTCF was the top enriched binding motif (p=1E-39) in. Elements from 
clusters 1-4-8 that display defective chromatin accessibility in foxd3-mutant cells were also enriched in NC 
motifs, in particular TFAP2a and Ets1, but not Sox10, whereas cluster 5-67 elements (no differential 
accessibility in foxd3 mutants) harboured a non-crest neural regulatory code (Cdx, Lhx, Hox). Thus the 
enhancer elements whose accessibility is dependent on foxd3 appear to display unifying features of a NC 
enhancer. 

(C) Plots representing genes assigned to all putative regulatory elements, identified in foxd3-mutant (CC) 
and control (C) cells at 4 stages of development (Epi, 75% epiboly; HB, head reagion of the bud stage embryo 
1-2ss; 5-6ss NC and sox10-expressing cells at 16ss) ranked by the number of associated elements.   

Putative regulatory elements (all identified non-promoter ATAC-seq elements) identified in foxd3-mutant 
(CC) and control (C) NC were associated to the genes expressed at each corresponding stage and the 
assigned genes were ranked by the number of elements associated with them. Key developmental factors are 
most often regulated by multiple cis-regulatory elements, acting in concert to yield strong gene expression 
and defined tissue-specific patterns. Ranking plots show that a large proportion of expressed genes, 
considered as highly regulated loci, laid beyond the inflexion point on the ranking plot and was assigned a 
minimum of 3 regulatory elements. Interestingly, while the number of genes and the number of elements 
assigned per gene at epiboly stage did not differ, by 5-6ss we detected clear increase in expressed genes, 
elements and number of elements assigned per gene in control NC cells, suggesting that the defect of 
accessibility at distal cis-regulatory elements was clearly linked to the gene expression differences in foxd3-
mutant (CC) NC cells. Finally, by late NC differentiation stage, the number of regulated genes and 
associated elements increases overall. 
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Figure S5. Cluster analysis of differential non-promoter H3K27 acetylation from foxd3 mutant cells vs 
control. Related to Figure 6.  

(A,B) Complete heatmap (A) depicting k-means linear enrichment clustering of H3K27Ac signal across non-
promoter ATAC-seq peaks in foxd3-mutant and control NC at 5-6ss (k=10) and (B) associated mean density 
maps of merged profiles of all clusters are shown. Enrichment was computed genome-wide over the region 
covering ± 1.5 kb from the centre of each ATAC-seq peak, ATAC-seq reference set as described in Figure S4 
was used. We identified clusters with increased H3K27Acetylation in the foxd3 mutant (C<CC, 
K27Ac_Clusters 4 and 8) and clusters with decreased K3K27Ac signal in foxd3 mutants (C>CC, K27AC-
Clusters 5, 7, 9 and 10). (C) Bar plots depicting functional annotation of K27Ac_Clusters 4, 8, 7 and 10 
depicting specific enrichment of zebrafish gene expression ontology terms obtained by GREAT tool are 
shown (Bonferroni **p < 0.01). 
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Figure S6. Putative mechanisms of the foxd3 bimodality and potential co-interactors for NC gene 
regulation. Related to Figure 7.  

(A) FACS graph portraying a number of foxd3-mCherry expressing cells and underlying fluorescence 
intensities of control (green) and foxd3 mRNA injected (pink) embryos. P1-P5 – compartments of different 
fluorescence levels from the lowest to the highest. The graph illustrates an overall cellular fluorescence 
increase upon foxd3 overexpression in zebrafish embryos.  

(B,B’) Bar plots showing gene ontology (GO) biological processes derived from GREAT analysis that are 
associated with the regulation of DNA-elements showing increased accessibility upon foxd3 overexpression. 
(B) These regulatory sequences were shown to be directly bound by foxd3 by our biotin ChIP-seq analysis 
(merged 1-4,6,8 k-mean subclusters (out of eight subclusters) showing similar enhanced accessibility 
signature that were clustered using all foxd3 possible foxd3 ChIP-seq peaks from our data sets). (B’) These 
regulatory sequences belong to the core NC enhancer cluster 3.1 (subcluster 3.1_4 elements and merged 
comparable signature subclusters 3.1_5, 7, 9 (single GO term under the red line) showing enhanced 
accessibility; they were obtained by k-mean analysis (out of ten 3.1 subclusters)).  

(C,D) Circle plots showing different significant non-combined transcription factor (TF) motif enrichment 
underlying the (C) ‘early NC’ foxd3 biotin ChIP-seq peaks and statistically significant 2-way combinations 
between these factors that are hypothesised to act together with foxd3 during its activator stage and (D) ‘late 
NC’ foxd3 biotin ChIP-seq peaks and statistically significant 2-way combinations between these factors that 
are hypothesised to act together or in competition with foxd3 during its repressive stage.  

(E) Circle plot showing significant 2-way TF co-interactions on the regulatory elements that get directly 
decommissioned by foxd3. (E’) Bar plot showing gene ontology (GO) biological terms significantly enriched 
(**p<0.01) to the nearest expressed genes of the same DNA regulatory elements that get directly compacted 
upon foxd3 binding by the 14ss.  

(F) Nucleosomal occupancy tracks (NucleoATAC) showing nucleosome positions within the regulatory 
elements (promoters and enhancers) in foxd3 mutant (red) and control (green) cells. 


